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ABSTRACT

SPATIAL AND TEMPORAL VARIATION IN DEGRADATION OF DISSOLVED 
ORGANIC CARBON ON THE MAIN STEM OF THE LAMPREY RIVER

By

Lucy Miller Parham

University of New Hampshire, December 2012 
Thesis Advisor: Dr. William H. McDowell

Degradation of dissolved organic carbon by microbial and photolytic processes 

was examined along the main stem of the Lamprey River Watershed located in 

southeastern New Hampshire. Eight sites were chosen and sampled biweekly 

throughout the seasonal hydrograph. Lab incubations were employed to assess 

microbial degradation of dissolved organic carbon (DOC) where one set of 

samples was exposed to natural sunlight for a day to assess photolytic 

degradation. Mean biodegradable dissolved organic carbon (BDOC) throughout 

the study period was 5.8% with no significant variation observed between sites. 

Temporal variation was found to be a much stronger driver of DOC composition 

with summer showing the highest degradation of 8.6% and winter the lowest. 

Initial DOC concentration was found to be the only significant positive predictor of 

BDOC on both an annual and seasonal scale. Photolysis had no significant effect 

on DOC degradation or availability of DOC to the microbial pool. Findings 

suggest that temporal variation is a significant driver of DOC composition via 

DOC sources that change throughout the season.



CHAPTER I

INTRODUCTION

Understanding the role of dissolved organic matter (DOM) in elemental cycling 

has become increasingly important given the dramatic nature of 

anthropogenically induced change occurring in both the carbon (C) and nitrogen 

(N) cycles. For most aquatic systems, dissolved organic matter is the major form 

of organic matter and its role in the global carbon cycle, specifically, the various 

ways in which it is transported and processed, continues to be rigorously 

addressed. Current models of the global C cycle are generated with increasing 

detail given to the vast number of intricate processes involved although the role 

of inland aquatic environments continues to be excluded from these models and 

has yet to be adequately delineated in its contribution to overall cycling (Cole et 

al. 2007).

When inland aquatic systems are included in global models, it is usually 

only for the transport of C through the riverine pipe even though a number of 

transformations and losses occur en route from land to sea (Cole et al. 2007). 

Riverine networks are a critical linkage among the various components of a 

landscape. Each year streams and rivers of the world transport, transform, or 

store nearly 2 Pg of terrestrial organic carbon, 0.25 Pg of which consists solely of 

dissolved organic carbon (DOC) (Battin et al. 2008). While the amount of DOC

transported to the oceans via rivers is sufficient to account for turnover of the
l



marine DOC pool, surprisingly, terrestrial-derived DOM comprises only 

approximately 2.5% of the total DOM in the ocean (Opshal and Benner, 1997). 

Furthermore, the accepted notion of the composition of riverine organic matter as 

highly degraded, humic rich, and nitrogen poor would lead one to believe that its 

fate through marine respiration would be unlikely, yet only a small fraction is 

preserved in marine sediment (Hedges et al. 1997). Recent evidence indicates 

that the fate of dissolved organic matter does not lie in the ocean but rather in 

fueling heterotrophy in riverine systems (Cole et al. 2001; Raymond and Bauer, 

2000;; Richey et al. 2002). Current global estimates of CO2 emissions from inland 

waters are 1.2-1.4 Pg CO2-C y r1 (Tranvik et al. 2009; Aufdenkampe et al. 2011). 

While work is under way to refine these global estimates, the extent and nature 

of DOM processing through respiration in rivers has yet to be clearly defined 

through space and time, especially when considering the “refractory” nature of 

the DOM having already been processed in soils as well as the shorter residence 

times experienced in riverine systems.

DOM in riverine systems serves several functions from influencing 

contaminant transport (Morris and Hargreaves, 1997), affecting light regime, 

altering stream pH (McKnight et al. 1985), and acting as a source of nutrients for 

bacteria (Findlay and Sinsabaugh, 2003). Perhaps one of its more significant 

services is as a microbial energy source (Raymond and Bauer, 2000), fueling 

heterotrophy in large river systems. While the fate of most terrestrial primary 

production is to be respired in terrestrial environments, 0.5 Gt C per year 

escapes respiration and is exported to aquatic systems, thus making DOC an



important pathway for C loss from terrestrial systems (Meybeck, 1993). Once in 

stream, three primary pathways become available for DOC; export from the 

watershed with documented flux rates ranging from 1 to 140 kg C ha'1 yr'1 

(Aitkenhead and McDowell, 2000) and mean annual DOC concentrations ranging 

from 0.1 to 36.6 mgC/L (Mulholland, 1997), storage in riverine sediments, and/or 

utilization by riverine bacteria in the form of uptake to build microbial biomass or 

complete mineralization. Utilization by bacteria is affected by both the 

composition of the DOC as well as extrinsic factors such as temperature, nutrient 

availability, trophic community structure, and composition of bacterial 

assemblages (del Giorgio and Davis, 2003). While extrinsic factors can be 

controlled for in lab experimentation, the complexity of DOC composition has 

made direct measurements of microbial utilization difficult.

Primary sources of DOC to aquatic systems can include both natural and 

anthropogenic sources with the land use of a catchment determining the 

proportion of contribution. Natural sources include leaching from leaf 

decomposition, throughfall, root exudates, decomposition of older soil organic 

matter (SOM), algal and macrophyte production, and abiotic leaching of SOM 

(Findlay and Sinsabaugh, 2003). Anthropogenic sources include effluent from 

wastewater treatment plants, fertilizers, and runoff (Seitzinger et al. 2002, 

Wiegner et al. 2006). These various sources result in a complex chemical 

composition that can be described as a continuum of organic matter pools with 

successively decreasing decomposition constants resulting in turnover times 

from hours to days, weeks, months, and years (Sondergaard and Middelboe,



1995). More recently, studies on microbial degradation have classified the DOC 

pool into two primary fractions characterized by a labile and semi-labile 

component where the labile component cycles rapidly and serves a large portion 

of the energy demands of heterotrophic bacteria, while the semi-labile DOC pool 

degrades more slowly providing a degree of metabolic stability for the 

downstream system (Qualls and Haines, 1992; Kaplan et al. 2008). Through an 

extensive analysis of several studies, Sondergaard and Middleboe (1995) found 

that for rivers, the average percentage of biodegradable dissolved organic 

carbon (BDOC) (defined as the amount utilized in 7 days or less) is 

approximately 19% of the total DOC pool. A second, more recent meta-analysis 

of 45 rivers by del Giorgio and Davis (2003) found that approximately 6% of the 

DOC pool degraded in 5 days and 12% degraded over 20 days. Lastly, a 

synthesis by Wiegner et al. (2006) found that riverine DOC biodegradation 

ranges from (0 to 72%) and averages around twenty-five percent.

Exposure to sunlight can also contribute to DOC transformation in streams 

resulting in a large range of photoproducts. Photoproducts that signify direct 

mineralization of carbon include inorganic compounds such as carbon monoxide 

or carbon dioxide (Graneli et al. 1996; Miller and Zepp, 1995) while other 

products may be organic molecules that are still a part of the DOC pool but with 

altered lability (Wetzel et al. 1995). The past twenty years of research in the 

photolysis field has revealed the generally accepted notion that recent algal- 

derived DOM is rendered less labile by sun exposure (Obernosterer et al. 1999; 

Tranvik et al. 2001) whereas humic-rich DOM of plant origin becomes more



bioavailable (Amon et al. 1996; Tranvik et al. 2001; Moran and Covert, 2003). 

Other studies have shown no effect of sun on availability (Wiegner and Seitzinger, 

2001). Whether or not the movement of DOM to the microbial food web via 

photochemical processes is a significant ecological process in riverine systems is 

still under investigation and appears to differ on an individual ecosystem basis.

The purpose of this study was to gain a better understanding of C 

dynamics in the main stem of the Lamprey River through quantifying dissolved 

organic C degradation as a result of microbial processing and photolysis. While 

BDOC has frequently been quantified for streams and rivers throughout 

temperate watersheds, it has yet to be quantified with high spatial and temporal 

resolution. High resolution becomes important for evaluating if a single sample 

constitutes an accurate representation of BDOC through space and time and 

also allows assessment of the importance of DOC utilization as a pathway for 

organic matter transformation. Rivers are highly dynamic systems exposed to 

great heterogeneity both in-stream and throughout the watershed, manifested as 

changing river morphology and variation in both point and nonpoint sources of 

carbon. These factors are highly susceptible to anthropogenic influence and have 

the potential to cause changes in DOC composition suggesting significant 

variation in BDOC throughout the main stem. Furthermore, given how stream 

characteristics and processes change throughout the seasons, significant 

temporal variation in BDOC may also occur. Lastly, because the Lamprey River 

watershed is primarily forested, and therefore consisting of humic-rich, terrestrial

5



DOC, we also hypothesized that light exposure would alter DOC composition 

making it more available to the microbial community.

The watershed in which this study was conducted is projected to undergo 

rapid population growth in the coming years, therefore understanding the role 

that DOC currently plays in this ecosystem is imperative for predicting how that 

role may change with land use alteration. Specifically, my objectives were:

Objective 1: To determine variability in BDOC for eight sites distributed from 

headwaters to lower portions of the main stem of the Lamprey River throughout 

the seasonal hydrograph and relate to other in-stream characteristics.

Objective 2: To determine the effect of light exposure on DOC degradation and 

the availability of DOC to microbial degradation.

Objective 3: To identify the relative contribution of C from the riparian zone of 

the main stem of the Lamprey River and describe the implications for 

downstream transport.
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CHAPTER II

METHODS

Site Description:

The Lamprey River Watershed is located in southeastern New Hampshire and 

encompasses nearly 479 km2 of area with an elevation range of around 20 to 350 

meters. The Lamprey is a sixth order stream that courses approximately 50 miles 

from its headwaters in Northwood, NH through several towns until it reaches its 

outlet in the Great Bay estuary. Although primarily forested (68% of the land 

area), the watershed is becoming increasingly urbanized with a projected 

population increase from 50 people/km2 to 80 people/km2 by 2020 (Lamprey 

River Hydrologic Observatory (LRHO)).

Throughout its 50 mile journey, the Lamprey travels primarily through 

mixed deciduous and coniferous forest with dominant species being red maple 

(Acer rubrum), sugar maple (Acer saccharin), red oak (Quercus rubrum), 

American beech (Fagus grandifolia), eastern white pine (Pinus strobus) and 

eastern hemlock (Tsuga canadensis). During the sampling period (June 2011- 

May 2012), average monthly air temperatures ranged from -2.3 °C (January 

2012) to 22.1 °C (July 2011) with a mean temperature of 10 °C (National Climatic 

Data Center (NCDC) for Durham, NH). Total monthly rainfall ranged from 23.5 

mm (July 2011) to 192.6 mm (October 2011) with a monthly mean of 94.7 mm 

and a total rainfall of 1136 mm (NCDC for Durham, NH). During the past ten



years, average annual discharge has ranged from 3.9m3/s to 16.1m3/s with a ten 

year mean of 10.1m3/s (USGS station number 01073500).

Eight sites were sampled for this study, all of which were located along the 

main stem of the river beginning at river kilometer (rkm) 07 and extending to rkm 

73. Relative location and name of the main stem sites are shown in Figure 1. 

Cumulative watershed characteristics such as basin area, land use, and 

population density can be seen in Table 1. Discharge was continuously 

monitored at both rkm 27(USGS station number 01073319) and rkm 73 (USGS 

station number 01073500). Throughout this 46 kilometer stretch, discharge 

increased by about 66% during the study period where average discharge was 

8m3/s with highest flows occurring in November (15.97 m3/s) and December 

(16.91 m3/s) and lowest in July (1.29 m3/s) and August (2.57 m3/s) (USGS station 

number 01073500) (Appendix A).
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Figure 1. Map of the Lamprey River watershed with locations of the eight main 
stem sampling sites designated with white asterisks.

Table 1. Watershed characteristics for the Lamprey River Watershed and sub-
basins (as classified by NH GRANIT, statewide GIS warehouse).

Site Watershed 
Area (km2)

Agriculture
(%)

Forested
(%)

Urban
(%)

Wetlands
(%)

Population 
Density 

(people/ km2)
LMP07 14.7 1.2 87.2 0.4 6.7 19.9
LMP19 80.5 3.0 78.0 2.6 6.8 30.6
LMP27 144.7 2.3 75.6 3.0 7.5 40.7
LMP39 197.6 2.1 70.5 4.6 8.6 60.7
LMP51 251.4 2.5 69.3 4.6 8.8 63.7
LMP59 396.0 2.9 69.6 4.0 10.3 52.9
LMP67 468.6 2.9 69.6 4.0 10.3 52.9
LMP73 478.8 3.0 69.5 4.1 10.2 53.4
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Sample Collection:

Water samples were collected on a biweekly basis from June 2011 through May 

2012 at eight sites along the main stem of the Lamprey River. Samples were 

collected in 500 ml acid washed HDPL bottles and transported in a cooler to the 

lab where they were vacuum filtered through a pre-combusted glass fiber filter 

(Whatman GF/F; nominal pore size 0.7pm) and then through a 0.2 pm filter 

(Supor-200 membrane filter) and frozen until incubation setup. Filters were 

changed frequently to minimize cell lysis and clogging of the filter due to high 

POM load.

DOC biodegradation:

Incubation methodology was similar to previous studies (McDowell et al., 2006;

Wiegner et al., 2006; Kaushal and Lewis, 2005) in that riverine DOM

biodegradation was assessed by adding freshwater native bacteria to sterile

filtered water with added nutrients and then monitoring loss in concentration at a

standardized temperature over a predetermined incubation time. This approach

allowed for assessment of the inherent lability of DOC at different sites

throughout the year by minimizing site-specific conditions and reflecting

differences in chemical composition.

On the day of the incubation setup, samples were thawed and a 50ml

subsample was taken for initial analysis. Four hundred milliliters of volume from

each site was transferred to a 500 ml flask. Inorganic nutrients were added in the

form of NaNOa and K2HP04 to raise the concentration of nitrate by 150 ug/L and

10



the concentration of phosphate by 20 ug/L. Each flask was amended with 4 ml of 

inoculum at a 1:100 ratio of inoculum to water with an estimated 105 cells/ml. A 

second 50 ml subsample was taken and frozen for analysis. The remaining 350 

ml of sample was divided evenly into three standard glass BOD bottles, each of 

which contained half of a Whatman GF/F filter to act as a substrate for bacterial 

growth. Bottles were covered with aluminum foil and placed in the dark in an 

incubator at 20 °C for 7 days. An incubation time of 7 days was chosen as it is 

long enough to clearly characterize the labile DOC pool (McDowell et al., 2006). 

Bottles were shaken every day throughout the incubation period. At the end of 

seven days, samples were filtered again (Whatman GF/F, nominal pore size 

0.7pm; Supor-200 membrane filter, pore size 0.22 pm) and frozen until analysis. 

To ensure the viability of the inoculum, a glucose solution was used for all 

incubations where on average, 90% of the carbon was degraded by the end of 

the incubation period. In addition, a control of deionized water (Dl) with added 

nutrients and inoculum was used to assess evolution of carbon from the 

inoculum throughout the incubation. All glassware used in this experiment was 

acid washed and combusted.

On two sampling dates (10/12/2011; 05/08/2012), the incubation period 

was extended to 10 days and 30 ml subsamples for four of the eight sites 

( LMP07, LMP27, LMP51, LMP73) were taken on Day 2, 4, and 7 to capture the 

time sequence of degradation.

Biodegradability of DOC includes two microbial processes: 1) microbial

uptake (the breakdown of original compounds which are then used for the

l i



biosynthesis of microbial cell materials) and 2) mineralization to obtain energy 

and inorganic nutrients (Marschner and Kalbitz, 2003). In this portion of the study, 

process (1) and (2) were quantified using loss in concentration over seven days. 

The amount of DOC consumed during the incubation was calculated from initial 

and final concentrations in each flask. Total biodegradation of labile DOC is 

expressed as a percentage of DOC utilized (amount DOC consumed/amount 

DOC initially present x 100) (Seitzinger et al., 2002; Wiegner et al., 2004).

Inoculation:

In order to create a standardized inoculum that could be used throughout the 

twelve month period, 2 liters of river sediment, riparian soil, and water was 

collected from each of the eight sites during the spring of 2011. The mixture was 

stored at 4°C for the duration of the experiment. At the start of each incubation, a 

100 ml sample of water, sediment, and soil was removed from the two liter 

container and stored overnight in the dark at 20°C. The day of the incubation, the 

100 ml sample was shaken and then centrifuged at 3,000 rpm for 2 minutes to 

remove particulate matter and protists and filtered (Whatman GF/F; nominal pore 

size 0.7pm ) (Seitzinger et al., 2002; Petrone et al., 2009).

12



Photolysis:

To determine the effect of sunlight on the composition of DOC, samples were 

taken from two sites (LMP07, LMP73) in July, filtered in the lab (Whatman GF/F; 

nominal pore size 0.7pm; Supor-200 membrane filter 0.2 pm) and stored over 

night at 4°C until exposure the following day. Samples were exposed to natural 

sunlight for one day (8am-6pm) in quartz flasks. For each site (and a control), 

there were two treatments. Half of the sample water was incubated in triplicate in 

quartz flasks while the other half was incubated in triplicate in BOD bottles 

wrapped in foil. The control consisted of Dl water only. All samples were kept in a 

shallow water bath where temperature was maintained using ice. Average solar 

radiation for the ten hour period was 530.7 W/m2 (NCDC for Durham, NH). At the 

end of exposure, 50 ml samples were taken and the remaining water from each 

similar site and treatment were combined and run through a standard incubation 

setup.

13



Riverine DOC Modeling:

Creating a partial mass balance model for estimating the contribution of carbon 

from the main stem riparian zone required several steps. The first step was to 

calculate the amount of carbon being produced in the landscape where both 

concentration and discharge data was available. For eight Lamprey tributaries, 

DOC concentration was measured monthly by the McDowell lab throughout the 

study period (June 2011-May 2012) and multiplied by total runoff to estimate 

DOC flux (kg/ha/yr). For the upper main stem sites (which were treated as 

tributaries), DOC flux (kg/ha/yr) was calculated using discharge-weighted 

concentration and total runoff which was then multiplied by watershed area to 

acquire a total cumulative flux (kg/yr) for each site. Total runoff for each sub­

watershed was estimated from discharge measured at LMP27 (USGS station 

number 01073319) and LMP 73 (USGS station number 01073500). From these 

total cumulative fluxes, incremental fluxes were determined by subtracting the 

upstream flux from the downstream flux and any known tributary flux for that 

particular site. The resulting total flux was then divided by the area of the 

watershed to get area-weighted DOC flux (kg/ha/yr). All of these sites are 

designated as measured tributaries in Figure 2.

Secondly, a model was developed with which to predict DOC production in 

the landscape where discharge and concentration data was unavailable. In the 

Lamprey River Watershed, % wetlands has been found to be the best predictor 

of area-weighted DOC flux, therefore % wetland and DOC flux data was 

gathered where DOC concentration was available from both main stem sites and

14



tributary sites in order to estimate DOC flux from the unmeasured tributaries and 

riparian corridor (Fig. 2).

L I J  Riparian corridor
[  j Measured Tributaries
H H  Unmeasured tributaries 
I I Sub-basins

Surface water

Great
Bay

5 km

Figure 2. Location of the riparian corridor and both measured and unmeasured 
tributaries used in understanding carbon flux.

In order to minimize the amount of area from which we were predicting flux, we 

chose to examine only a portion of the lower main stem riparian corridor (LMP59- 

LMP73), treating the main stem above LMP59 as a tributary. This also allowed 

the use of those upper main stem sites (LMP07-LMP51) to be included as points 

in the model. Area-weighted fluxes were plotted against % wetlands for fourteen 

sites producing a model that could be used to estimate DOC contribution from 

both the unmeasured tributaries and the riparian corridor.

15



In ArcGIS 10.0, area and % wetlands was determined for the unmeasured 

tributaries and riparian corridor from LMP59-LMP73. Area-weighted fluxes were 

produced from the model and multiplied by total area to get total flux (kg/yr). 

Contribution from the riparian corridor was calculated as follows:

Riparian DOC (kg C/yr) = DOC @ LMP73 -  DOC @ Measured tributaries - 

DOC @ Unmeasured tributaries

We then ran the % wetlands from our riparian corridor to estimate DOC flux from 

that area in order to further differentiate between possible in-stream production 

and wetland input. Lastly, using the 7 day incubation time and an estimated 

residence time of 3.5 days from the study reach to Great Bay, a degradation rate 

was determined and applied to the riparian DOC value to quantify the amount of 

carbon being transported downstream.

Analytical Measurements:

All water chemistry analyses were conducted at the Water Resources Research

Center (WRRC) laboratory at the University of New Hampshire. Dissolved

organic carbon (detection limit 0.1 mg C/L) and total dissolved nitrogen (detection

limit 0.07 mg N/L) were measured using a Shimadzu TOC-5000 (Shimadzu Corp,

Kyoto, Japan) coupled with TNM-1 Nitrogen Detector. Ammonium (detection limit

5 ug/L) was analyzed using a SmartChem 200 discreet automated colorimetric

analyzer (Westco Scientific Instruments). Nitrate (detection limit 3 ug N/L) was

16



analyzed through ion chromatography using an Anions/Cations Dionex ICS-1000 

with AS40 Autosampler. Dissolved organic nitrogen was calculated from filtered 

subsamples as TDN-^NhV+NCV). Nitrite was assumed to be negligible. Specific 

ultraviolet absorbance (SUVA) was measured at 254 nm and normalized to DOC 

concentration.

Statistical Analyses:

Analysis of Variance (ANOVA) was used to compare solute means across sites 

and months and analyze the effects of Site and Month on BDOC with a 

significance threshold of P < 0.05. Tukey's HSD was conducted for post-hoc 

comparison of means. Linear regression was used to determine significant 

relationships between BDOC and initial DOC concentration, flow, initial 

DOC:DON ratio, and SUVA. Variables were tested for normality and log 

transformed in cases where kurtosis occurred. Statistics were performed in JMP 

Pro 10.

Two USGS gages exist on the main stem of the Lamprey River at site 

LMP27 and site LMP73. From these two gages, discharge was estimated for the 

other six sites. For each sampling date, discharge at main stem sites LMP07 and 

LMP19 was estimated using area-weighted discharge from site LMP27 (USGS 

station number 01073319) where discharge at sites LMP39, LMP51, LMP59, and 

LMP67 was estimated using area-weighted discharge from site LMP73 (USGS 

station number 01073500).
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CHAPTER III

RESULTS

River Water Composition:

Stream solutes did not vary greatly between the eight sites with the exception of 

nitrate which had a range of 0.03 to 0.16 mg/L with the highest value occurring at 

LMP51 (Table 2). The DOC:DON ratio ranged from 27 to 31 with the highest 

value occurring at LMP07 and LMP19 (Table 2). Dissolved organic nitrogen 

showed a similar trend to DOC with increasing concentration from LMP07 to 

LMP73. DON and DOC were significantly and positively correlated (R2=0.61, P < 

0.0001). No significant relationship existed between mean annual DOC and flow 

(Appendix C-1) or SUVA and flow (Appendix D-2) for the study period. DOC 

concentration and SUVA were not significantly correlated (Appendix D-1).
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Table 2. Chemical composition of the eight main stem sites with mean annual

Site
TDN

(mg/L)
n o 3

(mg/L)
nh4

(ug/L)
DON

(mg/L)
P04

(ug/L)
DOC:
DON SUVA

LMP07 0 .2 1 ± 0 .0 2 0 .0 3 + 0 1 7 .7 2 + 2 .6 5 0 .1 7 1 0 .0 2 3 .0 3 + 0 .6 7 3 1 + 2 4 .4 1

LMP19 0 .2 7 ± 0 .0 1 0 .0 8 1 0 .0 1 1 5 .2 8 1 1 .5 7 0 .1 8 + 0 .0 2 6 .5 6 1 1 .4 7 31 1 3 4 .1 7

LMP27 0 .2 7 ± 0 .0 1 0 .0 7 1 0 .0 1 1 4 .3 1 2 .4 2 0 .1 9 1 0 .0 2 5 .4 3 1 0 .9 9 2 9 1 2 3 .9 2

LMP39 0 .3 2 ± 0 .0 2 0 .1 1 1 0 .0 1 1 3 .6 5 1 1 .8 4 0 .1 9 + 0 .0 2 4 .9 1 1 0 .9 5 2 9 1 2 4 .2 6

LMP51 0 .3 8 1 0 .0 2 0 .1 6 1 0 .0 2 1 9 .7 7 + 3 .9 3 0 .2 1 0 .0 1 5 .2 7 1 0 .6 9 2 7 1  1 3 .8 9

LMP59 0 .3 3 1 0 .0 1 0 .1 1 1 0 .0 1 1 7 .0 4 1 1 .9 6 0 .2 1 0 .0 1 5 .9 7 1 1 .1 6 2 9 1 2 3 .9 2

LMP67 0 .3 2 1 0 .0 2 0 .1 1 0 .0 2 1 8 .9 9 1 2 .4 2 0 .2 1 0 .0 1 7 .6 8 1 1 .4 6 3 0 1 2 3 .9 5

LMP73 0 .3 4 1 0 .0 1 0 .1 2 + 0 .0 1 1 8 .8 1 1 1 .4 9 0 .2 1 0 .0 1 6 .1 8 1 0 .8 9 2 8 1  1 4 .0 5
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Mean concentration of DOC for the eight main stem sites ranged from 5.07 to 

5.87 mg/L and was not significantly different among sites although there was a 

slight trend of increasing concentration from LMP07 to LMP73 (Fig. 3). This 

pattern is consistent with mean DOC concentrations represented in the 2000- 

2011 data (Appendix B-1) although the trend in increasing concentration is not 

significant for the study period where it was significant for the 2 0 0 0 - 2 0 1 1  data 

(Appendix B-2).

7  ----------------------------------------------------------------------------------------

6.5

 ^  j mmmm  j wmmmm f ............  J...................... i------- ------------------1........   \.............................

LMP07 LMP19 LMP27 LMP39 LMP51 LMP59 LMP67 LMP73

Site

Figure 3. Mean DOC concentration (±SE) for the eight main stem sites 
throughout the entire sampling period.
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There was greater temporal variation in mean DOC concentration with the fall 

months, particularly September and October, exhibiting significantly higher 

concentrations than the other nine months (P < 0.0001) (Fig. 4). Data from 2000- 

2011 also showed highest mean DOC concentration in the fall months (6.03 

mg/L) although mean DOC concentration in the summer was nearly as high (5.84 

mg/L) and was not significantly different from the fall (Appendix B-3).

9

Month
rigure 4. Monthly mean DOC concentration (±SE) throughout the entire 
sampling period.
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One-way ANOVA revealed no significant difference in SUVA values by site but 

did show significant variation when compared by month (df =10, F-ratio = 2.9496, 

P < 0.0025) with June exhibiting the highest mean value (4.64) and April the 

lowest (3.66) (Fig. 5). Mean SUVA value for all sites throughout the sampling

period was 3.99.

6.0-

5.5-

5.0-

4.5-

3.5-

3.0-

2.5

Figure 5. SUVA values across all sites by month for the study period. Solid line 
and bars represents the mean and standard error for each month. December
was excluded due to lack of data.
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DOC Biodegradation:

Mean BDOC for ail sites on the main stem throughout the entire sampling period 

(n=366) was 5.8% (±1).

Spatial and Temporal Variation

When pooled over time, BDOC at each of the eight sites showed large variation 

with values ranging from 0% to upwards of 20% (Fig. 6 ). Because this large 

degree of variation occurred among all sites, mean values were similar. Mean 

BDOC for the eight sites ranged from 4% (LMP67) to 7% (LMP07) with no 

detectable trend from headwaters to mouth (Fig. 6 ). One-way ANOVA found that 

site location did not significantly affect BDOC. Coefficient of variation for 

replicates ranged from 0.4% to 16% with an average of 2.2%. In any case where

variation was larger than 1 0 %, the sample was not used.

1 0.0% .... -...................-........ -.......... ...—......... -.....................  I
9.0% ----------------------------------------------------------------------- I
f t  A O /.

LMP07 LMP19 LMP27 LMP39 LMP51 LMP59 LMP67 LMP73

Figure 6. Mean BDOC for the eight main stem sites throughout the sampling 
period. Bars represent one SE from the mean.
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When all sites were averaged by month, there were noticeable differences in 

mean values. BDOC ranged from 1% (November) to 13% (June) with June and 

July showing the highest values followed by October (Fig. 7). One-way ANOVA 

revealed that month significantly affected BDOC (df =10, F-ratio = 15.9755, P < 

0.0001). Post-hoc comparison analysis showed June with a significantly higher 

mean BDOC than most other sites (P < 0.0001).

16.0%

14.0%

12.0%

10.0%

V . 8.0%

W? v* *8 ^

Month

Figure 7. Mean BDOC (±SE) across sites for each month of the sampling period.
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A seasonal analysis of BDOC also revealed significant differences (df = 3, F-ratio 

= 13.9472, P < 0.0001) with summer showing the highest BDOC of 

approximately 9% (Fig. 8 ).

10

wintersummerspring
Season f

Figure 8 . Mean BDOC (±SE) across sites by season throughout the entire study 
period.

Two-way ANOVA revealed a statistically significant interaction between Site and 

Season (df = 31, F-ratio = 3.0913, P < 0.0067) meaning that differences in BDOC 

among sites varied according to the season analyzed.
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BDOC and in-stream characteristics

There was only a marginally significant relationship between initial DOC 

concentration and BDOC (R2=0.03, P < 0.002) (Fig. 9). Exploration of 

relationships between BDOC and SUVA, DOC:DON ratio, and flow resulted in no 

significant findings (Appendix E). Land cover (wetland, forested, urban, and 

agriculture) was also not a successful predictor of BDOC.

25-

20 -

• %
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10-
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•  »«2

DOC (mg/L)

Figure 9. Bivariate relationships between initial DOC concentration and BDOC 
for all sites.
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When the dataset was isolated by season and bivariate relationships between 

BDOC and other in-stream factors reassessed, the relationship between BDOC 

and initial DOC concentration was significant during the summer (R2=0.26, P < 

0.0001) and winter (R2=0.15, P < 0.0009) (Fig. 10) but not for spring or fall.

15-

1 0-

o-

2.£

25-

20 -

o  15-

5-

Figure 10. Bivariate relationship between initial DOC concentration and BDOC 
for the summer (A)  and winter (#) months.

There was also a significant relationship between SUVA and BDOC in the spring 

(R2 = 0.62, P < 0.0001) (Fig. 11).

9 -
8 -
7 -

o

3 -
2 -

0 -

SUVA

Figure 11. Bivariate relationship between SUVA and BDOC in the spring.
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Seasonal spatial variation

On account of the significant interaction between site and month, spatial 

differences were furthered explored by season with the intent of teasing out the 

influence of biological processes. For BDOC, winter was the only month that 

showed a significant spatial trend of decreasing BDOC downstream (R2 = 0.12, P 

< 0.0036) (Fig. 12). During the summer months when BDOC was highest, no 

relationship was found (Appendix F-1).

15-

10 -

5-

80
rkm

Figure 12. Relationship between rkm and BDOC during the winter months of the 
study period.
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When analyzed by river kilometer (rkm) and season, DOC concentration showed 

a strong significant downstream increase during the winter (R2=0.88, P <

0.0001) (Fig.13), but not during the other three seasons (Appendix F-2).

4.25

4-

3.75-
03

3.5-

3.25-
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80

rkm

Figure 13. Relationship between rkm and DOC during the winter months of the 
study period.
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When analyzed by rkm and season, SUVA showed a significantly negative 

relationship in the summer (R2=0.31, P < 0.0001) and fall (R2=0.19, P < 0.0001) 

(Fig. 14). No significant trend was detected during the spring or winter.

6.5-
4 5 -6 -

5.5
4 -

5 -

4.5- 3.5-

3.5- 3 -

20 35 40 50 60  70 80
rfcm

Figure 14. Significant spatial trends in SUVA during summer (A) and fall ( y ).
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Time sequence of degradation

Sub-sampling of four sites on two selected dates in May and October showed a 

decrease in DOC concentration up until Day 7 for most sites at which point 

concentration increased (Fig. 15). Mean BDOC for all sites (n=8 ) reported at Day 

7 was 19% compared to 7% at Day 10.

o>
E
co+3re
k .**creocoo
ooo

■LMP07 
’ LMP27 

«®0ss» LMP59 
»LMP73 
■LMP07 
•LMP27 
■LMP59 
•LMP73

Figure 15. Time sequence of DOC degradation for four sites during October 
2011 (grey line) and May 2012 (black line).
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Photolysis:

Exposure to sunlight did not directly degrade DOC at either site (Table 3). 

Although the table reports small percentages of degradation, similar amounts of 

DOC loss occurred in both the light exposed flask and the dark control flask for 

both sites that were not significantly different. Furthermore, sun exposure had no 

significant effect on availability of DOC to the microbial community with only a 

3.4% and 4.7% loss at LMP07 and LMP73 for the microbial light exposed 

treatment. At both sites, there was an increase in DOC concentration for the dark 

treatment bioassays resulting in negative degradation values.

Table 3. Percent degraded of DOC from photolysis and/or microbial degradation. 
Positive percentage indicates a loss in concentration where a negative value 
indicates an increase in concentration.

LMP07 photolysis light 6 . 1  %

LMP07 photolysis dark 5.3 %

LMP07 microbial light

Sco

LMP07 microbial dark -6.7 %

LMP73 photolysis light 5.3 %

LMP73 photolysis dark 4.7 %

LMP73 microbial light 4.7 %

LMP73 microbial dark - 1 .8 %
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Riverine DOC Modeling:

The model created from our fourteen tributaries using % wetlands and DOC flux 

was significant (R2=0.54, P < 0.003) (Fig. 16). Percent wetlands ranged from 1. 6  

to 16.4 and DOC flux ranged from 16.69 to 47.28.

50

45-

40-
x  T  = 5-35- raO €
O  o) 3 0 - Q 5.

25-

20-

% wetlands

Figure 16. Predictive DOC flux model using percent wetlands 
(DOC flux (kg/ha/yr) = 16.303414 + 1.4569454*% wetlands).

Total flux calculated at LMP73 for the entire study period was 1,566,150 kg C/yr 

(Fig. 17) where total flux from the measured tributaries was 1,266,666 kg C/yr 

and modeled flux from the unmeasured tributaries was 103,637 kg C/yr. Percent 

contribution of C from both measured and unmeasured tributaries and the 

riparian corridor can be seen Figure 17. When taking model error into account by 

using slope and intercept at the upper and lower 95% bounds, flux from the 

unmeasured tributaries was 161,433 kg C/yr and 45,836 kg C/yr resulting in a 

percent contribution range from the riparian corridor of 9 to 16%.
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The degradation rate calculated from incubation time and mean BDOC was 

0.86% per day or approximately 3% for the 3.5 day residence time which resulted 

in a total loss of 5,680 kg C/yr.

f 1 Riparian corridor
1 i Measured Tributaries
9 H  Unmeasured tributaries 
I I Sub-basins 
■ ■  Surface water■̂'<1

MT + UT = 87% LMP73

RC = 12%

Great
Bay

5 km

Cumulative Flux @ LMP73 = 1,566,150 kg C/yr

Figure 17. Map showing the percent DOC contribution from both the measured 
(MT) and unmeasured tributaries (UT) and the riparian corridor (RC).

Percent wetlands in the riparian corridor (12.7%) resulted in a flux of 48,263 kg 

C/yr. When that value was included as another parameter in our equation, the 

remaining C in-stream was 141,904 kg C/yr or 9% of total DOC being produced 

in the landscape. The fringing wetlands in the riparian corridor of the main stem 

were accounting for only 3% of the C input versus the 9% possibly being 

produced in-stream.
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CHAPTER IV

DISCUSSION

High resolution samplings in the main stem of the Lamprey River revealed that 

neither microbial utilization nor photolysis were significant causes of DOC 

transformation on an annual scale. Furthermore, temporal variation in BDOC 

rather than spatial variation plays a much more important role when considering 

main stem C dynamics.

DOC Biodegradation:

The overall DOC loss of only 5.8% in the main stem suggests a chemical 

composition of DOC that renders it largely unavailable to the Lamprey River 

microbial community. Chemical composition of DOC is a product of both source 

and flow path. With respect to source, the Lamprey River Watershed is a 

primarily forested landscape (69%), resulting in riverine DOC that is mostly of 

terrestrial origin. Terrestrially derived stream DOC is humic and lignin-rich, 

consisting of high molecular weight compounds and hydrophilic acids, generally 

considered to be unavailable to bacteria (Qualls and Haines, 1992; Aitkenhead- 

Peterson et al. 2003). A heavily forested landscape also implies less input from 

anthropogenic sources such as waste water treatment plants and nonpoint 

sources which are largely considered to be more labile supplies of carbon 

(Petrone et al. 2009; Wiegner et al. 2004). The Lamprey Watershed currently has
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only one small waste water treatment plant discharging into the main stem and 

while population growth is increasing, it is unclear to what extent DOC quality will 

be affected by nonpoint sources.

Algal and/or macrophyte production of DOC in-stream can also contribute 

to the DOC pool and has been found to be readily available to bacteria (Cole et 

al. 1982; Mann and Wetzel, 1996). In the Lamprey, the actual contribution of this 

source is unknown as a detailed organic matter budget has not been conducted, 

however in an analysis of organic matter budgets for 29 streams, Webster and 

Meyer (1997) found that in-stream primary production accounted for more than 

40% of carbon input in eight of the streams and more than 80% in five streams 

(Bertilsson and Jones, 2003). These results were largely dependent on stream 

size, temperature, and light availability. As the Lamprey is a sixth order stream 

with temperatures reaching 24°C in the summer, one could suggest that in- 

stream production is a significant contributor to the DOC pool but only on a 

seasonal scale, particularly during the summer when light intensity and stream 

temperature are highest.

The flow path of water from terrestrial to aquatic systems also has the

potential to affect DOC composition (Aitkenhead-Peterson et al. 2003; Findlay et

al. 2001; Hood et al. 2006). As water infiltrates the soil, concentration and

composition change due to adsorption of hydrophobic compounds in mineral soil

(Kaiser and Zech, 1998; McDowell and Likens, 1988) and utilization of labile

carbon by soil microbes (Qualls and Haines, 1992; Kalbitz et al. 2003). In cases

where base-flow dominates stream water, DOC composition may be more
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recalcitrant due to prior soil processing whereas with storm-flow, DOC 

concentration is higher on account of a flushing response from riparian area and 

catchment hill-slopes (Hood et al. 2006) and more labile due to shorter residence 

time in soils and lack of contact with the mineral horizon. For the Lamprey River 

Watershed, the abundance of wetlands confounds this model resulting in no 

significant relationship between flow and DOC concentration (D-2) or flow and 

BDOC (Appendix E-3) indicating that hydrologic transport was not as important 

as DOC source when understanding in-stream concentration and composition. 

This idea was further confirmed by the lack of influence flow exerted on SUVA 

values (Appendix C-4), a direct indicator of DOC composition. Mullholand (2003) 

suggested that wetland presence can cause surface flow paths to dominate even 

during times of high flow, thus eliminating any "flushing" effect and subsequent 

change in composition.

In addition to source and transport, there is also the possibility that DOC 

experienced prior processing in tributaries. The eight tributaries sampled by the 

McDowell lab throughout the study period showed a wide range in DOC 

concentration (0.9 to 10.4 mg/L), but more constrained SUVA values with an 

overall mean of 4.15 (±0.10). This 4.15 mean corresponds to an approximately 

30% aromatic content according to the linear model developed by Weishaar et al. 

(2003) and is slightly higher than values reported in the main stem indicating an 

increasing difficulty in utilization. Without conducting bioassays for each tributary, 

it is difficult to draw any solid conclusion about the extent of in-stream processing 

that might have occurred.
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Our mean DOC biodegradation value compares well to other studies of 

riverine DOC degradation. It’s within the 0 to 72% range of riverine DOC 

biodegradation reported by Wiegner et al. (2006), and compares well to the del 

Giorgio and Davis (2003) review that reported only a 6% DOC loss over five days 

and the study by Wiegner et al. (2006) of BDOC from nine rivers in the eastern 

United States that found only 4% DOC consumed over six days. However; it is 

noticeably lower compared to the Sondergaard and Middleboe (1995) meta­

analysis that documented an average of 19% degradation in riverine systems. 

This discrepancy can be attributed to factors related to incubation set up such as 

incubation time, temperature, nutrient availability, light availability, bacterial 

community composition, and DOM chemical composition (reviewed in del Giorgio 

and Davis (2003) and Marschner and Kalbitz (2003). Because all studies are 

constructed differently, making across the board comparisons is difficult, thus 

emphasizing the need for standardized incubation methodology (McDowell et al. 

2006).

Spatial and Temporal Variation

It was originally proposed that the heterogeneity of both the watershed and the

main stem would result in significant spatial differences in BDOC. That was not

the case in the Lamprey for BDOC (Fig. 6) or any other indicators of DOC

composition such as DOC concentration (Fig. 3), SUVA, and DOC:DON ratio

(Table 2). These results speak to the ability of the river to assimilate

heterogeneity of both in-stream and watershed processes that affect DOC
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concentration and composition on an annual scale and suggest that source and 

flow path may be more similar at each site than previously hypothesized.

Longitudinal studies of DOC bioavailability in a single river continuum are 

scarce; however, Maranger et al. (2004) reported on bacterial production (BP) 

and bacterial respiration (BR) in a 250km stretch of the Hudson River and found 

that BP was higher in the northern reaches versus the lower whereas respiration 

showed no spatial pattern. Higher BP rates in the north were attributed to specific 

quantified DOC inputs such as sewage effluent and macrophyte leachate. Stable 

respiration rates were indicative of the concept that all bacterial cells respire, yet 

only some divide and increase biomass creating a difference in the two 

parameters. Lamprey bioassay methodology did not differentiate between BP 

and BR, therefore the absence of any spatial differences in BDOC may reflect 

the consistent respiration rates depending on the proportion of degradation that 

was mineralization versus uptake. More likely, land cover in the Lamprey 

Watershed and the physical characteristics of the main stem channel are not 

diverse enough to produce significant spatial differences in DOC composition.

Temporal variation exerted much more influence than spatial variation on

BDOC and other in-stream characteristics. June and July showed the highest

amount of BDOC when in-stream production of labile DOC from algae and

macrophytes was greatest (Fig. 7). There was another pulse during October

when leaf litter input became a part of the DOC pool providing more labile

sources. DOC concentration was highest in the fall months (Fig. 4) on account of

leaf litter input yet that was not reflected in the BDOC values as they were
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highest in the summer (Fig. 8) highlighting the significance of autochthonous 

production for main stem carbon dynamics. The lack of relationship between both 

DOC concentration (Appendix C) and flow and BDOC (Appendix E-3) and flow 

verifies that this temporal variation was not driven by discharge. Surprisingly few 

studies have looked at seasonal effects on riverine DOC bioavailability. Wiegner 

and Seitzinger (2004) found that BDOC was higher in the spring and fall rather 

than summer in pristine and polluted wetlands which they attributed to soil 

freezing and thawing. Several other studies have concluded that DOC lability 

increases during spring flooding (Michaelson et al. 1998; Holmes et al. 2008), yet 

these studies were carried out in Arctic systems where DOC dynamics 

fundamentally differ due to the presence of permafrost. The Wiegner et al. (2006) 

study that reported on BDOC for nine rivers in the east found only 4% 

degradation during summer months where Petrone et al. (2009) found a range of 

1-17% BDOC in ten rivers in southern Australia during summer base-flow 

compared to the 8% Lamprey BDOC. This range in BDOC again highlights the 

difficulty in making cross system comparisons when differences in incubation 

methodology and initial DOC composition exist.

Throughout the study period, SUVA values were highest during the 

summer months particularly June and July (Fig. 5) and within the range of 

reported values for other studies (Petrone et al. 2009; Wiegner et al. 2006). As 

SUVA is a surrogate measure of the aromatic content of DOC and thus, a proxy 

for humic content (Weishaar et al. 2003), high summer SUVA values are

indicative of terrestrial-derived DOC that has already been processed in soils.
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BDOC and in-stream characteristics

The lack of any strong significant relationships between BDOC and other 

in-stream characteristics on an annual scale is evidence that these parameters 

vary throughout the seasonal hydrograph. The relationship between initial DOC 

concentration and BDOC was only marginally significant indicating that higher 

concentrations do not necessarily mean greater lability. Evidence of this in the 

Lamprey is seen by observing seasonal trends in DOC concentration and BDOC 

specifically during fall and summer. The fall is when DOC concentrations are 

highest and although there is a pulse in BDOC, it is not nearly as high as in the 

summer. When the relationship is revisited on a seasonal basis, initial DOC 

concentration and BDOC are not correlated in the fall but in the summer when a 

labile source of carbon is being produced in-stream causing the relationship to 

become much stronger (Fig. 10). A commonly accepted paradigm in river 

ecology is that a larger DOC pool implies a larger source of energy for microbes 

(Sondergaard and Middleboe, 1995), yet that is not necessarily the case 

depending on variation in DOC source as seen in the Lamprey and also in the 

del Giorgio and Davis review that found no significant relationship between initial 

DOC concentration and BDOC in their meta-analysis of 45 rivers. The 

relationship between decreasing BDOC and increasing DOC concentration in the 

winter (Fig. 10) is not as easily explained. It could be that the labile portion of the 

DOC pool stays relatively constant through changes in DOC concentration (due 

to the absence of in-stream production/utilization) so that any increase in

concentration is mostly refractory compounds.
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The relationship between BDOC and SUVA has yet to be reconciled in the 

scientific community with studies reporting both the existence and absence of 

relationships. Fellman et al. (2009) described a non-significant relationship 

between BDOC and SUVA in a forested upland stream which was attributed to 

complex and various interactions between abiotic and biotic removal and 

differences in soil hydrologic flow paths. Petrone et al. (2009) also found higher 

BDOC values in riverine samples with higher SUVA values than reported for the 

Lamprey although the time scale for degradation was longer. Contrastingly,

Kalbitz et al. (2003) showed a significant negative correlation between BDOC 

and SUVA in soils. For the Lamprey, the lack of relationship between SUVA and 

BDOC on an annual scale indicates that the aromatic content of the DOC pool is 

not driving utilization and that different factors may be driving variability in the two. 

While a relatively strong relationship between BDOC and SUVA exists in the 

spring, the relatively low BDOC values make it difficult to draw a solid conclusion. 

It would be helpful if future research in BDOC incorporated both pre-incubation 

SUVA and post-incubation SUVA to further delineate the relationship between 

these two DOC quality parameters in order to determine what components of the 

DOC pool are being utilized during incubation. Ultimately, these results suggest 

that for the Lamprey system, SUVA is not a good indicator of BDOC and other 

factors should be explored such as fluorescence which has been proven to be a 

useful predictor (Fellman et al. 2008).

Because flow does not appear to be a driver of either DOC quality or

quantity, these seasonal changes in relationships can be mostly explained by a
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shifting DOC source, specifically through in-stream production during the 

summer and leaf litter input in the fall. Furthermore, the lack of relationship 

between BDOC and flow and SUVA and flow indicates that flow paths are not 

changing to an extent that affects DOC composition during high flow events 

which could partly be explained by the presence of wetlands. However; it should 

be noted that this was a relatively low flow year with highest flows occurring in 

November and December, two months that are under represented by the 

sampling regime. Higher flow years could produce a different scenario.

Seasonal spatial variation

Exploration of spatial variation by season for several parameter led to further 

insight on DOC quality and quantity dynamics in the main stem. When analyzed 

by rkm and season, BDOC showed a significant decreasing downstream trend 

during the winter only (Fig. 12). Assuming that in-stream biological processes are 

greatly reduced during the winter, this relationship indicates a change in DOC 

composition independent of autochthonous production. More surprisingly, was 

the lack of relationship during the summer when autochthonous production was 

highest and the lower reaches of the river did not show higher values indicating 

that in-stream production is consistent along the river continuum. A detailed 

analysis on primary production and macrophyte coverage across sites is needed 

to confirm this finding.

DOC showed a strong significant increase in concentration downstream

during the winter only, illustrating the lack of biological processes occurring
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during those months. In the winter, temperature limits in-stream processing 

allowing DOC concentration to increase downstream. Relationships between 

DOC and rkm during other seasons showed much more scatter in the 

downstream direction (Appendix F-2). While variation in DOC concentration can 

be caused by several factors, such as microbial utilization, hydrologic regime, 

and morphological change (Vannote et al. 1980), the trend in DOC concentration 

in the winter clearly identifies the importance of biological processes in this 

system during warmer months. A similar finding was reported by Sabater et al. 

(1993) in the Ogeechee River where intermediate and high molecular weight 

DOC showed a more linear longitudinal pattern than labile compounds.

Longitudinal trends in SUVA became much more apparent when 

examined by season. Summer and fall showed significant decreasing longitudinal 

trends meaning aromatic content became reduced downstream which could be a 

product of changing DOC source through in-stream production and leaf fall.

SUVA may also be at the cusp of reflecting a population signal evidenced by the 

significantly negative relationship between SUVA and % urban land cover. As 

high spatial and temporal resolution SUVA for a single system has not been 

reported on thus far in the literature, drawing conclusions about these patterns is 

difficult.

Time sequence of degradation

The time sequence of DOC degradation (Fig. 15) illustrates the importance of

incubation time in assessing degradation and also provides insight into kinetics of
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the decay process. Sites within each month showed a comparable linear decline 

until day 7 confirming the similar composition of DOC along the main stem. 

October saw a slightly higher BDOC than May, the majority of which occurred by 

Day 2 indicating a readily usable DOC most likely a product of leaf fall. 

Concentration in all sites increased by Day 10 probably due to lysis of bacterial 

cell walls as carbon evolution was also observed in the control flasks at this time. 

Average BDOC for the eight sites at Day 7 was almost double the BDOC 

documented at Day 10 due to carbon production from the inoculum.
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Photolysis:

Photolytic removal of DOC in aquatic environments has been reported to range 

from 0 to 50% under exposure to natural sunlight and up to 60% under artificial 

light exposure (Wiegner and Seitzinger, 2001). This large spread in values 

reflects the differences in exposure methodology as well as the inherent 

complexity in DOC composition and how it reacts to sunlight. In the Lamprey, sun 

exposure did not appear to directly degrade DOC nor did it alter the composition 

of DOC molecules in terms of making them more labile to the microbial 

community (Table 3). Small amounts of degradation did occur in the light 

exposed flasks but a similar amount also degraded in the dark treatment leading 

to the conclusion that no sun-induced degradation actually occurred.

Other studies conducting natural sun exposures have reported varying 

results on DOC degradation. Wiegner (2001) reported no photolytic degradation 

of DOC in runoff from either agricultural or anthropogenic sources whereas Amon 

and Benner (1995) found that over 15% of DOC in the Amazon was 

photochemically reactive. It has also been reported that initial DOC composition 

is responsible for the extent to which the DOC degrades where humic-rich 

organic matter is more available to photolysis than algal-derived DOC (Amado et 

al. 2005). Given that the Lamprey samples were taken during the summer when 

algal-derived DOC was presumably the highest, it may be that the composition 

was resistant to change although the fact that microbial degradation did not occur 

in the dark treatment bioassay (Table 3) hampers this theory. If the DOC was

algal-derived, microbial degradation would be expected to have occurred.
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Additionally, Tranvik et al. (2001) found that photolysis had no effect on DOC 

degradation and it also altered the composition of the DOC pool in such a way to 

make it less available to the microbial community. The study concluded that DOC 

compounds from algae which contain no lignin and are less aromatic can be 

converted to compounds of lower lability through photochemical condensation 

reactions that render the pool less prone to degradation. Furthermore, humic-rich 

terrestrial DOC becomes more available due to the breakdown of high molecular 

weight compounds (Moran and Zepp, 1997).

Isotopic tracers have shown that summer base-flow in the Lamprey is 

sourced from a very shallow groundwater reservoir resulting from surrounding 

surface water bodies and wetlands (Frades, 2008) indicating that water is 

consistently exposed to the sun in this system with no effect on the DOC pool. 

However, further studies are required to understand if that result changes on a 

seasonal basis as DOC composition changes.
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Riverine DOC Modeling:

The DOC modeling exercise provided a better understanding of carbon sources 

within the landscape by identifying a 12% contribution of DOC from the riparian 

corridor in the lower reaches of the river (Fig. 17). Due to proximity to the main 

stem of the river, carbon sourced from this riparian corridor is most likely less 

processed than carbon being input from the farther reaches of the landscape and 

therefore much more susceptible to degradation. Coupled with the relatively short 

travel distance from this corridor to the Great Bay outlet, additional riverine 

processing is unlikely, suggesting an input of labile carbon to the Great Bay. 

Further utilization of the model provided a distinction between C being input from 

fringing wetlands in the riparian corridor versus C being produced in-stream. A 

9% contribution from in-stream is relatively large compared to the 3% loss that C 

in this reach experiences en route to the bay. Therefore, when considering C 

dynamics in the main stem, production is bigger relative to loss indicating that C 

from the Lamprey is a potentially significant usable source of energy in the bay.

Delineating carbon processing in the estuary is a recommended avenue

for future research not only for understanding the cycling and export of carbon,

but also for shedding light on dissolved organic nitrogen (DON) dynamics.

Nitrogen impairment is currently the most pressing environmental concern for the

Great Bay and as DON has been shown to be the dominant form of nitrogen

leaving the Lamprey River Watershed, it’s utilization in the bay is of interest.

Studies have shown estuarine DON bioavailability to be 23% from forested

landscapes and as high as 59% from urban/suburban landscapes (Seitzinger et
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al. 2002). As the Lamprey is becoming increasingly urbanized, DON 

bioavailability will probably increase further compounding nitrogen impairment.

Using DOC consumption as a proxy for DON requires some initial 

experimentation to determine their synchronicity as they have been shown to be 

utilized at dramatically different rates in riverine systems with DON degradation 

being much higher (Petrone et al. 2009, Wiegner et al. 2006). Preliminary 

investigation into Lamprey DOC degradation in the estuary was conducted by 

inoculating Lamprey DOC in late spring with estuarine bacteria. Over a ten day 

incubation period, no degradation occurred although that could change with 

longer incubation times.
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CHAPTER V

CONCLUSION

The 5.8% annual mean DOC loss in the main stem of the Lamprey is a measure 

of the potential for DOC to be utilized under optimal conditions. This study took a 

biological approach to assessing DOC quality through lab bioassays and 

therefore does not reflect in situ degradation rates which most likely vary both 

spatially and temporally on immeasurably small scales. It also does not take into 

account the possibility of hyporheic processing which has been shown to be an 

efficient utilization location of DOC, more so than lab incubations (Sobczak et al. 

2002).

This study does however begin to create a picture of C cycling in the 

Lamprey River by identifying the importance of temporal variation in DOC 

composition more as a result of seasonal changes in biotic demand rather than 

hydrologic flowpath. Of course, this temporal variation is representative of only 

one year and may vary under different hydrologic regimes especially considering 

that the study period was a relatively low flow year that did not experience 

significant snow melt. This study also illustrated the relative unavailability of DOC 

to the Lamprey microbial community which could have implications for the Great 

Bay depending on extent of DOC processing in the estuary.

Because the Lamprey River Watershed has one of the fastest growing

populations in the country, it is inevitable that both DOC quantity and quality will
5 0



be impacted. Evidence of this effect is already being seen through the significant 

negative relationships between urban land cover and SUVA values. DOC 

utilization has been shown to be greater in urban catchments (Petrone et al. 

2009) and as a result, could potentially change the metabolism of the river by 

becoming more labile. Future research should focus on identifying chemical 

markers of BDOC and understanding how intensifying urbanization will affect 

DOC composition in the Lamprey River.
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APPENDICES

APPENDIX A. Mean monthly discharge for sites LMP27 and LMP73 during the 
1 2  month study period.
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APPENDIX B. Historical trends in DOC concentration for the eight main stem 
sites on the Lamprey River from 2000-2011.
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3-1. Mean DOC concentration for the eight main stem sites on the Lamprey 
River from 2000-2011. Error bars show one SE from the mean.
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B-2. DOC concentration from 2000-2011 by river kilometer showing a significant 
trend in increasing concentration (R2 = 0.05, P<0.0001).
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B-3. Seasonal trends in mean DOC concentration for the eight main stem sites 
on the Lamprey River from 2000-2011. Mean represents all eight sites for each 
season. Error bars show one SE from the mean.
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B-4. Relationship between DOC concentration and log (Q m3/s) from 2000-2011.
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APPENDIX C. Relationship between log (Q) and DOC concentration for the two 
main stem sites where discharge is measured by USGS gage (LMP27 and 
LMP73).
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APPENDIX D. Relationships between SUVA and other parameters for all sites 
during the study period.
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D-1. Relationship between initial DOC concentration and SUVA.
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D-2. Non-significant relationship between log (Q) and SUVA throughout the study 
period. Only includes sites where discharge was being directly measured 
(LMP27, LMP73).
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APPENDIX E. Bivariate relationships between BDOC and other in-stream 
characteristics.
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E-1. Bivariate relationship between SUVA and BDOC.
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E-2. Bivariate relationship between initial DOC:DON ratio and BDOC.
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APPENDIX F. Seasonal spatial variation in various stream solutes.
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F-1. BDOC by river kilometer during the summer months (June, July, August).
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Seasons represented as spring (■), summer (A), and fall ( y ).
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