17,925 research outputs found

    Non-innocent side-chains with dipole moments in organic solar cells improve charge separation

    Get PDF
    Providing sustainable energy is one of the biggest challenges nowadays. An attractive answer is the use of organic solar cells to capture solar energy. Recently a promising route to increase their efficiency has been suggested: developing new organic materials with a high dielectric constant. This solution focuses on lowering the coulomb attraction between electrons and holes, thereby increasing the yield of free charges. In here, we demonstrate from a theoretical point of view that incorporation of dipole moments in organic materials indeed lowers the coulomb attraction. A combination of molecular dynamics simulations for modelling the blend and ab initio quantum chemical calculations to study specific regions was performed. This approach gives predictive insight in the suitability of new materials for application in organic solar cells. In addition to all requirements that make conjugated polymers suitable for application in organic solar cells, this study demonstrates the importance of large dipole moments in polymer side-chains

    Donor/Acceptor Heterojunction Organic Solar Cells

    Get PDF
    The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF ≈ 50%, an external quantum efficiency (electrons/s over incident photons/s) EQE ≈ 5% and a power conversion efficiency of about 0.5%. Measurements of the photoelectrical characteristics with time are also reported, confirming that non encapsulated organic solar cells have limited stability in ambient atmosphere

    Organic solar cells

    Get PDF
    Tato bakalářská práce je zaměřena na charakterizaci vlastností nových organických materiálů pro solární články. V teoretické části je rešerše na téma solární články a je zde popsána fotovoltaická přeměna energie. Praktická část zahrnuje přípravu solárních článků s klasickou i invertovanou strukturou a porovnává jejich účinnost na transparentních elektrodách od různých výrobců.This bachelor thesis concentrates on the properties characterization of new organic materials for solar cells. In the theoretical part, there is a solar cells themed literature search and a description of the fotovoltaic energy conversion. The practical part includes the preparation of solar cells with classic and invert structure and comparsion their efficiency on transparent electrodes from a different producers.

    Combined plasmonic gratings in organic solar cells

    Get PDF

    Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.

    Get PDF
    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells

    Organic solar cells

    Get PDF
    2014/201

    Multiscale Modeling and Simulation of Organic Solar Cells

    Get PDF
    In this article, we continue our mathematical study of organic solar cells (OSCs) and propose a two-scale (micro- and macro-scale) model of heterojunction OSCs with interface geometries characterized by an arbitrarily complex morphology. The microscale model consists of a system of partial and ordinary differential equations in an heterogeneous domain, that provides a full description of excitation/transport phenomena occurring in the bulk regions and dissociation/recombination processes occurring in a thin material slab across the interface. The macroscale model is obtained by a micro-to-macro scale transition that consists of averaging the mass balance equations in the normal direction across the interface thickness, giving rise to nonlinear transmission conditions that are parametrized by the interfacial width. These conditions account in a lumped manner for the volumetric dissociation/recombination phenomena occurring in the thin slab and depend locally on the electric field magnitude and orientation. Using the macroscale model in two spatial dimensions, device structures with complex interface morphologies, for which existing data are available, are numerically investigated showing that, if the electric field orientation relative to the interface is taken into due account, the device performance is determined not only by the total interface length but also by its shape
    corecore