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Abstract. In this article, we continue our mathematical study of organic solar cells
(OSCs) and propose a two-scale (micro- and macro-scale) model of heterojunction
OSCs with interface geometries characterized by an arbitrarily complex morphology.
The microscale model consists of a system of partial and ordinary differential equa-
tions in an heterogeneous domain, that provides a full description of excitation/-
transport phenomena occurring in the bulk regions and dissociation/recombination
processes occurring in a thin material slab across the interface. The macroscale
model is obtained by a micro-to-macro scale transition that consists of averaging
the mass balance equations in the normal direction across the interface thickness,
giving rise to nonlinear transmission conditions that are parametrized by the in-
terfacial width. These conditions account in a lumped manner for the volumetric
dissociation/recombination phenomena occurring in the thin slab and depend lo-
cally on the electric field magnitude and orientation. Using the macroscale model
in two spatial dimensions, device structures with complex interface morphologies,
for which existing data are available, are numerically investigated showing that, if
the electric field orientation relative to the interface is taken into due account, the
device performance is determined not only by the total interface length but also by
its shape.

Keywords: Organic solar cell; nonlinear reaction-diffusion system with electrostatic
convection; scale transition; multiscale analysis; numerical simulation; finite element
method.

1. Introduction and Motivation

Research on photovoltaic energy conversion has recently received great impulse due to
the growing demand for low carbon dioxide emission energy sources. In particular, the
high manufacturing cost of crystalline silicon and the latest advancements on semicon-
ducting polymer design and synthesis in recent years have directed the attention of the
scientific community towards Organic Solar Cells (OSCs), i.e. solar cells based on organic
materials [12, 20, 21, 32, 33, 38, 42], especially because of the very limited thermal budget
required for the production of such materials and of their amenability to be deposited
on large areas, which is fundamental in light harvesting applications. One of the main
peculiarities of OSCs is that most physical phenomena that are critical for charge pho-
togeneration occur at the interface between the two materials that constitute the active
layer of such devices. In order to increase cell efficiencies, currently of the order of about
10% [22], the optimization of the morphology of such interface is considered by device de-
signers to be an issue at least as important as the optimization of the donor and acceptor
optoelectronic characteristics [40].

For this reason, in this article we continue our mathematical study of organic photo-
voltaic device models started in [17], and we focus on the accurate and computationally
efficient modeling of the main dissociation/recombination processes occurring in a thin
material slab across the material interface and evaluating their impact on device pho-
toconversion performance. With this aim, we consider a two-scale approach to OSC
simulation that is intermediate between a continuum model [6] and a full microscopic
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model [30, 11], and represents an extension to the case of arbitrary interface geometries
of the one-dimensional model for bilayer OSC devices proposed in [4].

The approach is based on the introduction of two distinct levels of description of the
physical system at hand, a micro and a macro scale, and of two corresponding mathemati-
cal models based on classical mass balance conservation laws. At the microscale, a system
of PDEs in a heterogeneous domain provides a full description of the excitation/transport
phenomena occurring in the bulk regions and of the dissociation/recombination processes
occurring in a thin material slab across the interface. The numerical treatment of the
microscale model presents several difficulties related to the wide difference in size between
the bulk regions and the interfacial width H. As a matter of fact, as polaron dissociation
is assumed to occur in the first layer of polymer chains on either side of the interface, the
length scale H can be taken to be that of the average separation between polymer chains
which is typically more than two orders of magnitude smaller than the size of the bulk
regions [4, 8, 44].

Therefore, to obtain a computationally efficient model, we carry out a micro-to-macro
scale transition that somewhat resembles model-reduction techniques used for porous me-
dia with thin fractures [31], for reaction problems with moving reaction fronts [29] and
for electrochemical transport across biological membranes [35], and relies on a system-
atic averaging of the mass balance equations in the normal direction across the interface
thickness. The resulting macroscale model is a system of incompletely parabolic PDEs to
describe mass transport in the materials, nonlinearly coupled with ODEs and transmission
conditions localized at the heterojunction parametrized by the interfacial width H. These
conditions account in a lumped manner for the volumetric dissociation/recombination
phenomena occurring in the interfacial thin slab. The fact that in the macroscale model
the interface is reduced to a zero width surface is further exploited to account for the
local dependence of the polaron dissociation rate on the electric field orientation, which
is the main advantage –together with the computational cost reduction– of our approach,
as compared to previous multi-dimensional models [8, 44, 26].

An outline of the article is as follows. In Sect. 2 we illustrate the sequence of physical
phenomena that lead from photon absorbtion to current harvesting in an OSC. Sect. 3
is devoted to characterizing the mathematical model of an OSC. In Sect. 3.1 we describe
the geometrical heterogeneous structure of the device, while in Sect. 3.2 we introduce the
basic modeling assumptions on the dependent variables of the problem. Then, in Sect. 3.3
we present the microscale PDE/ODE model system with the initial and boundary condi-
tions, while in Sect. 3.4 we describe in detail the scale transition procedure that leads from
the microscale model to the macroscale equation system. We complete the mathematical
picture of a bilayer OSC by illustrating in Sect. 3.5 a novel model that we have devised
for including the dependence of the polaron dissociation rate constant on the local electric
field and on the morphology of the material interface. In Sect. 4 we briefly comment
about the numerical methods used for discretizing the macroscale model, while Sect. 5 is
devoted to presenting and discussing numerical results. In particular, in Sect. 5.1 we suc-
cessfully perform the validation of the accuracy of the macroscale model with respect to
the microscale model through the numerical simulation of a one–dimensional OSC under
different working conditions. Extensive simulations of two–dimensional OSC structures
are instead reported in Sects. 5.2 to 5.4 in order to both validate the proposed macroscale
model with respect to previously available numerical results and to analyze its effectiveness
in the study of complex interface morphologies. Finally, in Sect. 6 we draw some conclu-
sions and sketch possible directions for further research in the area of OSC modeling and
simulation.
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2. Basic Principles of Photocurrent Generation in OSCs

In this section, we describe the basic principles of photocurrent generation in OSCs
only to the extent strictly needed for understanding the naming conventions adopted in
the following sections. For a more thorough introduction to the subject, we refer the
interested reader to [20, 38, 32]. The typical structure of an OSC is constituted by a thin
film a cross-section of which is schematically represented in Fig. 1.

Transparent electrode

Metal electrode

Donor

Acceptor

(a) Basic configura-
tion

(b) Device with disordered interface morphol-
ogy

Figure 1. Structure of an organic solar cell.

The photoactive layer of the device consists of two materials, one with higher electron
affinity (the “acceptor”, for example F8BT, P3HT) and one with lower electron affinity
(the “donor”, for example PFB, PCBM), sandwiched between two electrodes, one of which
is transparent to allow light to enter the photoactive layer while the other is reflecting in
order to increase the light path through the device.

The sequence of physical phenomena that leads from photon absorption to current
harvesting at the device contacts is represented in Fig. 2.
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Figure 2. Flow-chart of the photoconversion mechanisms in an OSC.

Absorption of a photon in either material produces an electron-hole pair, usually re-
ferred to as an exciton whose binding energy is of the order of about 0.5÷ 1 eV. Excitons
may diffuse through the device until they either recombine or reach the interface between
the donor and acceptor phases. If this latter event occurs, the exciton may get trapped at
the interface in such a way that its electron component lays in the high electron affinity
region while the hole component lays in the low electron affinity region. Such a trapped
excited state is referred to as a polaron pair or geminate pair [4, 44, 36, 34] and has a
lower binding energy compared to that of the exciton state, as the Coulomb attraction
between the electron and hole is reduced by the chemical potential drop between the two
materials. The polaron binding force may be overcome by the electric field induced by the
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small built-in voltage between the metallic contacts thus leading to the formation of two
independent charged particles (one electron and one hole), otherwise the polaron pair may
return to the untrapped exciton state or recombine. Free charge carriers move by drift
and diffusion mechanisms and, unless they are captured along their path by the coulombic
attraction of an oppositely charged particle and recombine at the interface to form a new
polaron pair, they eventually reach the contacts thus producing a measurable external
current.

3. Mathematical Model

In this section, we propose a PDE/ODE model of photoconversion and charge trans-
port mechanisms in an OSC. The model relies on a two-scale approach that is based on the
introduction of two distinct levels of description of the physical system, namely, a micro
and a macro scale, and of two corresponding mathematical equation systems based on
classical mass balance conservation laws. The construction of the model proceeds through
four steps. In Sect. 3.1, we describe the geometrical and heterogeneous structure of the
device which consists of two bulk regions (the acceptor and donor phases) separated by an
interface region of (finite) thickness 2H, while in Sect. 3.2, we introduce the basic mod-
eling assumptions on the dependent variables of the problem. In Sect. 3.3, we introduce
the microscale PDE/ODE model system of conservation laws that governs transport of
the various species throughout the device, together with its initial and boundary condi-
tions and the generation/recombination mechanisms that occur in each subdomain of the
heterogeneous device. In Sect. 3.4, we describe in detail the scale transition procedure
that is applied to the microscale model in order to obtain the macroscale equation system.
This latter system basically consists of the same equations as in the microscale model, but
satisfied in the separate acceptor and donor phases, coupled through a set of flux trans-
mission conditions across the material interface that synthetize in a “lumped” manner
the dissociation and recombination mechanisms that actually occur in the thin volumet-
ric slab of width 2H surrounding the interface itself. The resulting macroscale model
system is a compromise between a continuum model and a full microscopic model, and
represents a consistent mathematical rationale and generalization of the various models
proposed in [4, 43, 44]. We conclude our mathematical picture of the OSC by illustrating
in Sect. 3.5 a novel model of the polaron dissociation rate properly devised for including
the dependence on the local electric field and on the morphology of the material interface.

3.1. Geometry of the Heterogeneous Computational Domain. A schematic 3D
picture of the OSC is illustrated in Fig. 3(a). The device structure Ω is a parallelepiped-
shaped open subset of R3 divided into two open disjoint subregions, Ωn (acceptor) and
Ωp (donor), separated by a regular oriented surface Γ = ∂Ωn ∩ ∂Ωp [14] on which, for
each x ∈ Γ, we can define a unit normal vector νΓ(x) directed from Ωp into Ωn. The
top and bottom surfaces of the structure are mathematical representations of the cell
electrodes, cathode and anode, denoted as ΓC and ΓA, respectively, in such a way that
∂Ωn = ΓC ∪ Γ∪ Γn and ∂Ωp = ΓA ∪ Γ∪ Γp (see Fig. 3(b)). We also denote by ν the unit
outward normal vector over the cell boundary ∂Ω.

Following [4, 43, 44], it is convenient, for modeling purposes, to associate with the
interface Γ the subregion ΩH ⊂ Ω depicted in Fig. 4(a) and defined as follows. For each
point x ∈ Γ, let tx = {x+ ξνΓ (x) : |ξ| < H} be the “thickness” associated with x. Then,
set

(1) ΩH =
⋃
x∈Γ

tx = {y ∈ Ω : dist(y,Γ) < H} .

The subregion ΩH is thus a 3D thin layer of thickness 2H surrounding Γ which repre-
sents the device volumetric portion where the dissociation and recombination mechanisms
of Sect. 2 are assumed to occur. It is worth noting that the width H is, in general, an



MULTISCALE MODELING AND SIMULATION OF ORGANIC SOLAR CELLS 5

Γ
Ωn

Ωp

?

6

?

6

XXXXXX©©©©©X
XXXXX©©©©©

XXXXXX©©©©©

XXXXXX

(a) 3D OSC

s
x

Ωn

Ωp

ΓC

ΓA

Γn Γn

Γp Γp

Γ�
��
νΓ(x) -

ν

6
ν

(b) 2D cross-section

Figure 3. Geometry of the cell bulk.
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Figure 4. Geometry of the cell bulk and interface region.

unknown of the physical problem. As such, it depends on x and t, it may assume different
values in the two material phases of the photoactive layer and might in principle locally
depend on the electric field. According to the data provided in [4, 43, 44], we assume
for simplicity H to be a constant quantity. Based on the definition (1), we can introduce

the two portions Ω′n = Ωn \ ΩH and Ω′p = Ωp \ ΩH (see Fig. 4(b)). Consistently, we also
introduce the boundary portions Γ′n and Γ′p and set Γ± = {x±HνΓ (x) : x ∈ Γ}, in such
a way that ∂Ω′n = ΓC ∪ Γ+ ∪ Γ′n, ∂Ω′p = ΓA ∪ Γ− ∪ Γ′p and ∂ΩH = Γ+ ∪ Γ− ∪ ΓH , where
ΓH = (Γn∪Γp)\(Γ′n∪Γ′p). Notice that, unlike Γ, the surfaces Γ− and Γ+ can be regarded
as “mathematical” interfaces.

3.2. Modeling Assumptions. Let us denote by e, P , n and p the volumetric densities
of (singlet) excitons, polaron pairs, electrons and holes, respectively, and by Je, JP , Jn
and Jp the associated particle fluxes. Based on the physical working principles of an
OSC illustrated in Sect. 2, on the heterogeneous geometrical decomposition of the device
introduced in Sect. 3.1 and the extensive numerical simulations reported in [8], we make
the following modeling and geometrical assumptions:

A.1: excitons can be generated at any position in the cell, so that e = e(x, t) is a
nonnegative function over all the cell domain Ω;

A.2: electrons (holes) are not able to penetrate the donor (acceptor) material beyond
the interface layer ΩH , so that electrons (holes) are nonnegative functions over
Ω′n ∪ ΩH (Ω′p ∪ ΩH), and are identically equal to zero in Ω′p (Ω′n);
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A.3: polarons are trapped and immobile in the interface region ΩH , so that P is a
nonnegative function over ΩH and identically equal to zero in Ω′n ∪ Ω′p;

A.4: the OSC is in the “off” state at t = 0− (that is, before illumination), so that
the initial condition for all the involved densities is e(x, 0) = P (x, 0) = n(x, 0) =
p(x, 0) = 0 for all x ∈ Ω;

A.5: the geometry of the device is an infinite periodic repetition of the computa-
tional domain of Fig. 3, so that periodic boundary conditions are enforced for all
variables on the lateral boundary of Ω.

3.3. Microscale Model. In this section, we illustrate the microscale model we advocate
in this work to be a mathematical representation of the functioning of an OSC.

We take excitons to obey:

(2a)
∂e

∂t
+∇ · Je = SBe + SHe in Ω

where we use assumptions A.1 and A.3 to define

(2b) SBe = Q− e

τe
in Ω

and

(2c) SHe =

 0 in Ω′n ∪ Ω′p

ηkrecP −
e

τdiss
in ΩH .

The superscripts B and H represent the fact that the corresponding volumetric production
terms are defined in the bulk and interface regions, respectively. The term Q denotes the
rate at which excitons are generated by photon absorption and is henceforth assumed to
be a nonnegative given function of time and position while τe is the exciton lifetime in
the bulk materials. In the interface region ΩH additional dissociation and recombination
mechanisms are taken into account and τ−1

diss and ηkrec represent the rate constants for the
transition of excitons to the polaron state and that of polarons back to the exciton state,
respectively. In particular krec denotes the total rate of polaron recombination events and
0 ≤ η ≤ 1 the fraction of such events which produce a singlet exciton. As excitons have
zero net charge, their flux is driven by diffusion forces only, i.e. the flux density may be
expressed as

(2d) Je = −De∇e in Ω

De being the exciton diffusion coefficient. At the contacts we assume perfect exciton
quenching [37] so that

(2e) e = 0 on ΓC ∪ ΓA.

Because of assumption A.2, the following equations hold for electrons:

(3a)


∂n

∂t
+∇ · Jn = SHn,p in Ω \ Ω′p

n ≡ 0 in Ω′p

and for holes:

(3b)


∂p

∂t
+∇ · Jp = SHn,p in Ω \ Ω′n

p ≡ 0 in Ω′n

where the term SHn,p is defined as

(3c) SHn,p =

{
kdissP − γnp in ΩH

0 in Ω′n ∪ Ω′p.
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Notice that SHn,p is identically zero in the bulk region Ω′n ∪ Ω′p as electrons and holes can
only recombine with each other, so no recombination occurs where either of the two species
is missing. In the interface region ΩH both electrons ad holes exist so the terms in SHn,p
take into account for polaron pair dissociation with kdiss rate constant (see Sect. 3.5 for
the model) and bimolecular recombination with rate constant γ. As electrons and holes
each bear a non-zero net charge, their flux is driven by both diffusion and electric drift
forces [25], therefore:

(3d) Jn = −Dn∇n− µnnE

and

(3e) Jp = −Dp∇p+ µppE

where E is the electric field while Dn, µn and Dp, µp are the diffusion coefficient and
mobility for electrons and holes, respectively.

Because of assumption A.2, the following boundary conditions hold at the artificial
interfaces separating the donor and acceptor bulk phases from the thin slab region ΩH :

(3f) νΓ · Jn = 0 on Γ−

and

(3g) νΓ · Jp = 0 on Γ+.

At the contacts we impose the same Robin-type boundary conditions as described in [10,
17]:

(3h) − κnν · Jn + αnn = βn on ΓC

and

(3i) − κpν · Jp + αpp = βp on ΓA,

where κn, κp, αn, αp βn, βp are nonnegative coefficients.
The electric field E in (3d) and (3e) is connected to the electric potential ϕ by the

quasi-static approximation

(4a) E = −∇ϕ in Ω

and satisfies the Poisson equation

(4b) ∇ · (εE) = ρ in Ω

where ρ is the space charge density in the device. Using assumption A.2, the piecewise
smooth definition of ρ turns out to be:

(4c) ρ = q(p− n) =


−qn in Ω′n
q(p− n) in ΩH
+qp in Ω′p,

q denoting the quantum of charge. The electric permittivity ε is equal to εrε0, εr and
ε0 being the relative material and vacuum permittivities, respectively, with εr = εr,a in
the acceptor phase and εr = εr,d in the donor phase, so that ε may be discontinuous
across the interface Γ. Dirichlet boundary conditions for the electric potential are set at
the contacts ΓA and ΓC , as follows

(4d) ϕ = 0 on ΓC

and

(4e) ϕ = Vappl + Vbi on ΓA

where Vbi = (ΦA − ΦC)/q is the built-in voltage of the cell, ΦA and ΦC are the contact
metal work functions while Vappl is the externally applied voltage.
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Because of assumption A.3, the flux JP is identically equal to zero in all Ω and for all
t ≥ 0, and polarons satisfy the following ODE in the interface region

(5a)
∂P

∂t
=

e

τdiss
+ γnp− (kdiss + krec)P in ΩH

while their density is identically zero in the bulk

(5b) P ≡ 0 in Ω′n ∪ Ω′p.

3.4. Micro-to-Macro Scale Transition. The microscale model of a bilayer OSC de-
scribed in Sect. 3.3 can be subdivided into three distinct groups of equations:

1): parabolic PDEs enforcing mass conservation of excitons, electrons and holes;
2): an ODE describing the kinetics of photogenerated polaron pairs;
3): an elliptic constraint enforcing Gauss theorem in differential form to be satisfied

at each time t > 0 throughout the whole cell domain.

The markedly spatially heterogeneous nature of the problem may be quite impractical
for numerical simulation, in particular when devices with complex interface morphology
in multiple spatial dimensions are considered. For this reason, in this section we propose
a scale transition procedure which allows us to derive a macroscale model that is more
amenable to numerical treatment. Other examples of multiscale mathematical approaches
that are based on the scale separation concept and scale transition can be found in [31,
29, 35].

To construct our multiscale model of an OSC, we abandon the perspective focused at
the nanoscopic characteristic level adopted so far, and prefer to look at the cell from a
“larger” distance. By doing so, necessarily, we loose control of the details (i.e, we cannot
distinguish the region ΩH from the two bulk regions Ωn and Ωp), but, at the same time,
we gain the advantage of not needing to resolve the interfacial bulk region across Γ. The
resulting macroscale problem is thus posed in the partitioned domain Ω \ Γ ≡ Ωn ∪ Ωp
(as a matter of fact, we are still able to neatly distinguish the interface separating the
two material phases!) without including the interfacial production terms SH(·) in the mass

balance and kinetics equations 1) and 2) introduced above.
Of course, we cannot simply limit ourselves to neglecting these latter terms, rather, we

do need to incorporate their effects, in the macroscale model, in an alternative way. For
this, the simplest approach to micro-to-macro scale transition consists of replacing SH(·), at

each point of Γ and for each time level, with its average σH(·) across the thickness of ΩH in

the normal direction, and then, of using σH(·) as a source term for suitable flux transmission
conditions, to be enforced on the interface Γ in the case of mass balance equations. In
the case of polaron pair equation, the averaging procedure automatically transforms the
volumetric kinetics balance within ΩH into a surface kinetics balance over Γ. In any case,
the scale transition results in the introduction of suitable interfacial terms that replace
in a “lumped” manner the volumetric dissociation/generation phenomena microscopically
occurring in ΩH . Having characterized the averaging procedure for equations 1) and 2), the
(macroscale) differential Gauss theorem 3) remains automatically (formally) unchanged
and is expressed in terms of the (macroscale) space charge density as in Eqns. (4).

3.4.1. Derivation of the Macroscale Equations. The macroscale model for excitons reads:

(6a)
∂e

∂t
+∇ · Je = SBe in Ω \ Γ

with

(6b) SBe = Q− e

τe
in Ω \ Γ
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and subject to the interface conditions:

(6c)

{
[[νΓ · Je]] = σHe on Γ

[[e]] = 0 on Γ

where [[f ]] := fn−fp denotes for any function f : Ω→ R the jump of f across the interface
Γ, fn and fp being the traces on Γ of the restrictions of f from Ωn and Ωp, respectively.
The continuity of e at the interface is a requirement consistent with the elliptic regularity
of both microscale and macroscale problems.

The interfacial source term σHe is defined as
(6d)

σHe =

∫ H

−H

(
ηkrecP −

e

τdiss

)
dξ = ηkrec

∫ H

−H
P dξ − 1

τdiss

∫ H

−H
e dξ ' ηkrecP̃ −

2H

τdiss
e|Γ.

In the above relation, e|Γ is the (single–valued) trace of e over Γ, while P̃ is the areal
density of the bonded pairs, defined as

(6e) P̃ (x, t) =

∫ H

−H
P (x+ ξtx, t) dξ ∀x ∈ Γ

and the midpoint quadrature rule is used for approximating the third integral in (6d). The
macroscale model for excitons is completed by the constitutive relation (2d) for exciton
flux density and by the perfect exciton quenching boundary conditions (2e).

The macroscale model for electrons reads:

(7a)


∂n

∂t
+∇ · Jn = 0 in Ωn

n ≡ 0 in Ωp

subject to the interface/boundary condition

(7b) νΓ · Jn = σHn,p on Γ.

The interfacial source term σHn,p is defined as
(7c)

σHn,p =

∫ H

−H
(kdissP − γnp) dξ ' kdiss|Γ

∫ H

−H
P dξ−

∫ H

−H
γnp dξ ' kdiss|ΓP̃−2H γ|Γ n|Γ p|Γ

where definition (6e) is used in the first integral while the midpoint quadrature rule is
again used to approximate the third integral in (7c). The macroscale model for electrons
is completed by the constitutive relation (3d) for electron flux density and by the Robin-
type boundary condition (3h).

Proceeding in a completely analogous manner as done with electrons, the macroscale
model for holes reads:

(8a)


∂p

∂t
+∇ · Jp = 0 in Ωp

p ≡ 0 in Ωn

subject to the interface/boundary condition

(8b) νΓ · Jp = −σHn,p on Γ.

The macroscale model for holes is completed by the constitutive relation (3e) for hole flux
density and by the Robin-type boundary condition (3i).

The conditions (7b) and (8b) assume an interesting physical meaning upon introducing
the electron and hole current densities, defined respectively as jn := −qJn and jp := +qJp,
and the total (conduction) current density j := jn + jp. Recalling that n = 0 (p = 0) in
Ωp (Ωn), we have:

j =

{
jn in Ωn

jp in Ωp
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from which we get

(8c) [[νΓ · j]] = 0 on Γ,

that expresses the property of current conservation across the interface Γ.
Integration of (5a) across the interface thickness yields the following macroscale model

for the areal density of polaron pairs

(9a)
∂P̃

∂t
= σHP on Γ

where

(9b) σHP =
2H

τdiss
e|Γ + 2H γ|Γ n|Γ p|Γ − (kdiss|Γ + krec) P̃ .

The macroscale model for the differential Gauss theorem is expressed by the following
Poisson problem in heterogeneous form:

(10a) ∇ · (εE) = ρ in Ω \ Γ

with

(10b) ρ =

{
−qn in Ωn

+qp in Ωp

and subject to the interface conditions:

(10c)

{
[[νΓ · εE]] = 0 on Γ

[[ϕ]] = 0 on Γ.

Two remarks are in order with system (10). First, we notice that the Gauss theorem in
differential form (10a) looks formally identical to the corresponding microscale formula-
tion (4b), the difference between the two methodologies being in the definition of the space
charge density ρ (compare (4c) with (10b)). Second, the transmission conditions (10c) ex-
press the physical fact that the normal component of the electric displacement vector and
the electric potential do not experience any discontinuity at the material interface, as is
the case of the microscale formulation.
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3.4.2. Summary of the Macroscale Model. For sake of convenience, we summarize below
the macroscale model of an OSC written in primal form:

∂e

∂t
−∇ · (De∇e) = Q− e

τe
in Ωn ∪ Ωp ≡ Ω \ Γ

[[e]] = 0, [[−νΓ ·De∇e]] = ηkrecP̃ −
2H

τdiss
e on Γ,

e = 0 on ΓC ∪ ΓA,

e(x, 0) = 0, ∀x ∈ Ω,

(11a)


∂P̃

∂t
=

2H

τdiss
e+ 2Hγnp− (kdiss + krec) P̃ on Γ,

P̃ (x, 0) = 0, ∀x ∈ Γ,

(11b)



∂n

∂t
−∇ · (Dn∇n− µnn∇ϕ) = 0 in Ωn

νΓ · (Dn∇n− µnn∇ϕ) = −kdissP̃ + 2Hγnp on Γ,

κnν · (Dn∇n− µnn∇ϕ) + αnn = βn on ΓC ,

n(x, 0) = 0, ∀x ∈ Ω,

(11c)



∂p

∂t
−∇ · (Dp∇p+ µpp∇ϕ) = 0 in Ωp

−νΓ · (Dp∇p+ µpp∇ϕ) = −kdissP̃ + 2Hγnp on Γ,

κpν · (Dp∇p+ µpp∇ϕ) + αpp = βp on ΓA,

p(x, 0) = 0, ∀x ∈ Ω,

(11d)



−∇ · (ε∇ϕ) = −q n in Ωn

−∇ · (ε∇ϕ) = +q p in Ωp

[[ϕ]] = [[νΓ · ε∇ϕ]] = 0 on Γ,

ϕ = 0 on ΓC ,

ϕ = Vappl + Vbi on ΓA.

(11e)

System (11) is completed by periodic boundary conditions on Γn∪Γp, as stated in assump-
tion A.5. For the physical models of the coefficients in system (11) we refer to [4, 19, 23],
except for the description of the polaron dissociation rate constant kdiss which is addressed
in detail in Sect. 3.5. In particular, for the carrier mobilities, we neglect the effect of ener-
getic disorder, so that they can be assumed to depend only on the electric field magnitude,
according to the Poole-Frenkel model. As for diffusivities, in the computations of Sect. 5,
Einstein relations

(12) Dn = (KBT/q)µn, Dp = (KBT/q)µp

are assumed to hold, although the proposed multiscale formulation remains unchanged if
such an assumption is removed. In (12), KB is Boltzmann’s constant and T is the absolute
temperature. Finally, for the bimolecular recombination rate constant γ a Langevin-type
relation is used [4].

3.5. Model for the Polaron Dissociation Rate. Numerical simulations as those re-
ported in Sect. 5 show that the polaron dissociation rate kdiss has a significant impact on
the cell photoconversion efficiency, for this reason we devote this entire section to modeling
the dependence of kdiss on the electric field and on the morphology of the material inter-
face. A commonly used polaron dissociation rate model is the Braun-Onsager model [7]
which is derived assuming the OSC bulk to be a homogeneous medium and takes into
account only the magnitude of the electric field. In [4] the authors propose a model for
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kdiss(E) tailored for bilayer devices which is derived by performing an average over the
admissible range of the escape angle relative to the electric field direction. In this latter
model, the electric field is assumed to be always directed orthogonally to the interface con-
sistently with the planar geometry of the device considered therein. The authors of [44]
apply the dissociation rate model of [4] to more complex geometries by performing an
average along the interface of the field component normal to the contacts which amounts
to neglecting the effect of local electric field orientation.

To construct a novel model which also takes into account this latter effect we repeat
the derivation of [4] with two differences. The first difference is that of removing the
assumption that the field is normal to the interface. The second difference is that of
considering a limited range of admissible escape directions to account for the physical fact
that polaron pairs tend to be aligned with the gradient of the electron affinity due to the
different materials in the two device subregions.

n

Et
E

θ

ψΓ

ν

x

E

r

Figure 5. Geometrical notation of the quantities involved in polaron
dissociation at the material interface.

Referring to Fig. 5 for the geometrical notation, we let

(13) kdiss(E) = kdiss(0)

∫ 2π

0

dψ

∫ π/2

0

w(θ, ψ) β (E · r) dθ,

where kdiss(0) is the zero-field dissociation rate constant, r is the escape direction of the
electron part of the polaron at the point x ∈ Γ, w is a nonnegative weight representing the

probability distribution of admissible escape directions, and such that
∫ 2π

0
dψ
∫ π/2

0
w(θ, ψ) dθ =

1, and β is an enhancement/suppression factor given by the Poole-Frenkel formula:

(14) β(z) =

{
e−Az z ≥ 0

e2
√
−Az z < 0,

having set A = (4πε)−1q3(Kb T )−2. The product E · r can be expressed in terms of the
normal component En and the tangential component Et of the electric field as

E · r = En cos θ + Et sin θ cosψ.

To specify an expression for w we assume an escape direction r to be admissible only when
the angle it forms with respect to the normal unit vector ν is not too large. Indicating by
θmax the maximum admissible value for θ and allowing all admissible values to be equally
likely, we obtain:

w(θ, ψ) =


sin θ

2π(1− cos θmax)
0 < θ ≤ θmax

0 θmax < θ ≤ π

2
.
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Two limits are of particular interest, θmax → 0+ and θmax = π/2.
In the first case, Eq. (13) can be checked to yield

(15) kdiss(E) = kdiss(0) β (En) .

This corresponds to assuming that all geminate pairs are exactly aligned with the interface
normal unit vector, thus neglecting any possible variability in their orientation due to, e.g.
interface surface roughness and/or thermal vibrations.

In the second case, Eq. (13) becomes

(16) kdiss(E) = kdiss(0)

∫ 2π

0

dψ

∫ π/2

0

sin θ

2π
β (E · r) dθ,

which, in the special case where Et = 0, coincides with Eqs. (17)-(21) of [4]. Notice
that if Et 6= 0 the choice θmax = π/2 may overestimate the effective dissociation rate
as it corresponds to completely neglecting the alignement of the geminate pairs with the
electron affinity gradient. This is observed to give rise to non-physical effects as shown by
the simulations of Sect. 5.2. Therefore, for practical purposes, the quantity θmax should
be used as a fitting parameter to be calibrated on experimental data.

Fig. 6 shows the dissociation rate constant (normalized to kdiss(0)) computed by
model (15) (left) and (16) (right) for several values of the angle between E and ν and
having set T = 300 K and εr = 4. We notice that the dissociation rate computed by
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Figure 6. Comparison between models (15) and (16) for various angles
between E and ν.

model (16) has a significantly smaller range of variability than predicted by model (15).
A possible explanation to this difference is related to the smoothing operated by the in-
tegral in (16). The higher variability of the dissociation rate translates into an higher
sensitivity of model (15) to the inclination of the electric field with respect to the interface
normal as will be further discussed in the numerical results section when commenting
Fig. 14(b). A discussion of the impact of (15) and (16) on the model predictions will be
carried out in Sect. 5.2.

4. Numerical Approximation

In this section we describe the numerical techniques used to solve the mathematical
models introduced in Sects. 3.3 and 3.4. The full details of the discrete system of linear
algebraic equations resulting from problem approximation are postponed to A. As for the
simulation of the model in the transient regime carried out in Sect. 5.1, we have adapted
to the case at hand the numerical method described in [17] based on Rothe’s method
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and on the use of adaptive Backward Differentiation Formulas (BDF). In the steady-state
simulations illustrated in Sects. 5.2, 5.3 and 5.4, all partial derivatives with respect to
time t have been dropped out in system (11) in such a way that Eq. (11b) reduces to an
algebraic constraint.

The numerical strategy adopted in the present paper is basically composed of three
steps:

(1) Linearization
(2) Spatial discretization
(3) Solution of the linear algebraic system

Step (1)
For model linearization, we adopt a quasi-Newton approach similar to that used in [17],
where, in the computation of Jacobian matrix entries, the dependence of mobilities and
polaron pair dissociation rate on the solution is neglected.

Step (2)
Similarly to [17], for the spatial discretization of the sequence of linear systems of PDEs
stemming from Step (1) we adopt the Galerkin-Finite Element Method (G-FEM) stabilized
by means on an Exponential Fitting technique [3, 18, 45, 28] in order to deal with possibly
dominating drift terms in the continuity equations. A peculiarity of the heterojunction
model (11) as compared to the homogenized model of [17] is the presence of non-trivial
interface conditions at the donor-acceptor interface, which are taken care of by means of the
substructuring techniques described, e.g., in [39, 24] which turn out to be of straightforward
implementation in the adopted G-FEM method.

Step (3)
To solve the linear algebraic systems arising from problem discretization, we employ the
Unsymmetric Multi Frontal method implemented in the UMFPACK library [15] as on
current hardware architectures memory constraints are not the main limiting factor and
the use of a direct sparse solver has the advantage of being more robust than iterative
approaches with respect to coefficient matrix conditioning

5. Simulation Results

In this section we carry out an extensive computational study of the micro and macroscale
models introduced in Sects. 3.3 and 3.4. In Sect. 5.1, one-dimensional transient simulations
under different working conditions are carried out to verify the accuracy of the macroscale
model with respect to the microscale system. In Sects. 5.2, 5.3 and 5.4, computations
are performed in steady-state conditions, in order to validate the macroscale model by
comparison with available results in the literature. The numerical schemes of Sect. 4 have
been implemented in Octave using the Octave-Forge package bim [16] for matrix assembly.

5.1. Numerical Validation of the Accuracy of the Macroscale Model. In Sects. 3.4
and 3.3, we have illustrated two models of the operating principles of bilayer OSCs at two
increasing levels of detail, corresponding to the macro and micro scales, respectively. The
two modeling descriptions are expected to provide a correspondingly more refined level of
quality in the representation of the principal physical phenomena that govern the func-
tioning of an OSC, at the price, however, of a substantial increase in implementation com-
plexity and computational effort, especially in the case of multi-dimensional simulations
(mesh generation of complex interface morphologies, solution of large algebraic systems
with possibly badly-balanced matrices). The natural question that arises at this point of
the discussion is whether the macroscale formulation of Sect. 3.4.2 is capable of returning
an output picture of the performance of a bilayer OSC with sufficient accuracy compared
to that of the microscale formulation of Sect. 3.3. By construction of the two models, the
extent by which the word “accuracy” is mathematically identified cannot certainly refer
to a pointwise comparison between micro and macroscale solutions (they will certainly
look different!), rather, it should be concerned with average quantities that best represent
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Parameter Symbol Numerical value

Acceptor relative dielectric constant εr,a 2.5
Donor relative dielectric constant εr,d 2.5
Built-in voltage Vbi -0.6 V
Temperature T 298 K
Electron mobility µn 4 · 10−8 m2 V−1 s−1

Hole mobility µp 2 · 10−8 m2 V−1 s−1

Exciton diffusion coefficient De 1 · 10−7 m2 s−1

Exciton lifetime τe 1 · 10−9 s
Exciton dissociation time τdiss 1 · 10−12 s
Polaron pair recombination rate constant krec 1 · 106 s−1

Singlet exciton recombination fraction η 0.25
Polaron pair dissociation rate constant (Vappl = 0 V) kdiss 1 · 107 s−1

Polaron pair dissociation rate constant (Vappl = −Vbi = +0.6 V) kdiss 2 · 105 s−1

Bimolecular recombination rate constant γ 1 · 10−19 m3 s−1

Boundary condition parameters for electrons
κn 0
αn 1 m s−1

βn 0 m−2 s−1

Boundary condition parameters for holes
κp 0
αp 1 m s−1

βp 0 m−2 s−1

Table 1. Model parameter values used in the simulations of Sect. 5.1.

the overall performance of the device. In this respect, the verification test we are going to
carry out later on, is a check of the total current per unit area jtot(t) predicted by the micro
and macro formulations, where jtot(t) = |(j(t) + ∂(εE)/∂t) · ν|Γcont , Γcont being either of
the two contacts ΓC or ΓA. The choice of jtot for model validation is due to the fact that
the total output current density is an easily accessible quantity in experiments, and thus
represents the most significant parameter for assessing the photoconversion performance
of a solar cell [32].

For sake of computational simplicity, we consider a biplanar OSC, so that the resulting
spatial geometrical description can be reduced to a one–dimensional model. The total
length Lcell of the device is equal to 100 nm, with the two regions Ωn and Ωp occupying
each one half of the cell. All model coefficients are assumed to be constant quantities, and
their values are listed in Tab. 1. We start by simulating the cell turn-on transient at short
circuit condition (Vappl = 0 V), which corresponds to computing the device response to an
abrupt variation at t = 0 in the photon absorption rate Q from zero to 1025 m−3 s−1. The
simulation time interval is taken wide enough for the device to reach stationary conditions.
In Fig. 7(a) the relative discrepancy between the stationary values of jtot computed with
the two methods is reported for several values of the interface width parameter H. Results
allow us to conclude that in the physically relevant range of variation of H, the relative
discrepancy between the micro and macroscale models remains consistently below 10% and
that, as expected, the predictions of the two models tend to become undistinguishable as H
tends to zero. In Fig. 7(b) we set H = 0.25 nm and we show the time evolution of the total
current per unit area in the two biasing conditions Vappl = 0 V and Vappl = −Vbi = 0.6 V
this latter being the “flat band” voltage. Accordingly to Fig. 7(a), in both regimes the
curves almost coincide over the whole simulation time interval.
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Figure 7. Comparison between microscale and macroscale models.

5.2. Model Validation through Comparison with Existing Simulation Data. In
this section, we aim to compare the predictions of our macroscale model to those of [43, 44]
and to investigate the impact of the model for kdiss proposed in Sect. 3.5 on the simulated
device performance. We consider the same device as in [43, 44, 13] where the acceptor and
donor materials are F8BT and PFB, respectively. The values of the model parameters are
listed in Table 2.

The device morphology, shown in Fig. 8, is an interpenetrating rod-shaped structure
of donor and acceptor materials with Lcell = 150 nm, Lelec = 50 nm, LR = 79 nm and
WR = 6.25 nm. Throughout this section, we denote by y the direction between the two
electrodes ΓC and ΓA.

Lelec

L
c
e
ll

L
R

WR

Ωn

Ωp

Γ

ΓA

ΓC

WR WR

Figure 8. Internal morphology with rod-shaped donor-acceptor interface.

In [43, 44] an optical model has been used to determine the exciton generation term Q.
Here, instead, we follow a simpler approach by considering Q to be constant in the entire
device structure and equal to the value obtained averaging the result in [43, 44]. The
choice κn = κp = 0 corresponds to enforcing Dirichlet boundary conditions for the carrier
densities at the contacts and amounts to neglecting the dependence of charge injection on
the electric field and assuming an infinite recombination rate at the contacts.

Fig. 9(a) shows the current density-voltage characteristics in the case of an exciton
generation rate Q = 1.53 · 1023 m−3 s−1. The three curves correspond to the use of three
different expressions for the polaron dissociation rate constant kdiss, identified as follows:
(A) the model proposed in [43, 44] with Ey = |Γ|−1∫

Γ
Ey dx as the driving parameter

for polaron pair dissociation (solid line); (B) the model (16) (dash-dotted line); (C) the
model (15) (dashed line). The result computed using model (A) is in excellent agreement
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Figure 9. Comparison of the current-voltage characteristic lines with
two different values for the exciton generation rate. Solid line curve
refers to model proposed in [43], dash-dotted line refers to model (16)
while dashed line refers to model (15).

with that of Fig. 7(right) in [44] despite the above mentioned modeling differences. Model
(A) does not account for the orientation of the electric field with respect to the donor-
acceptor interface and is expected to overestimate dissociation in the case where E · νΓ '
0. This is confirmed by the curve for model (B). As a matter of fact, in this case all
the dissociation directions are assumed to be equally likely and the computed output
current density before flat-band condition occurs (Vappl ≤ 0.6 V) is smaller than predicted
by the solid line curve. For Vappl > 0.6 V the computed current-voltage characteristic
exhibits a non-monotonic behavior. This latter behavior is not observed in any of the
experimental measurements we are aware of, and is most probably to be ascribed to a too
important contribution of the tangential component of the electric field Et that leads (16)
to overestimate polaron dissociation at the material interface. If, instead, model (C) is
used, the obtained output current density characteristics is the dashed line in Fig. 9(a). We
observe a smoother trend than in previous cases for all applied voltages, and close to short
circuit condition we note that the current density is further reduced since dissociation is
assumed to occur only in the normal direction and on a significant portion of the interface
En is almost vanishing. In all the considered cases, the nonsmooth behavior at flat band
condition (Vappl = 0.6 V) is to be ascribed to the discontinuity of ∂β/∂z at z = 0 in (14).

Fig. 9(b) shows the results of the same analysis as above in the case of an exciton
generation rate Q = 1.53 · 1025 m−3 s−1. The shape of the characteristics is very similar
to those with low light up to a scaling factor of about 100, this suggesting a linearity
between the output current density and the illumination intensity. Notice the absence
of the bump for Vappl > 0.6 V in the case of model (B). This is a consequence of the
increased magnitude of the charge carrier densities compared to the previously considered
illumination that in turn determines stronger Coulomb attraction forces and hence more
recombination phenomena. With reduced attractions, instead, charge carriers have more
chances to escape from the interface following concentration gradients.

In Fig. 10 we show the charge carrier densities in a device with geometrical data set to
Lcell = 150 nm, Lelec = 440 nm, LR = 79 nm and WR = 55 nm, at short circuit condition
with exciton generation rate Q = 1.53 · 1025 m−3 s−1. We first observe that computed
charge carrier distributions in Fig. 10(left) are in very good agreement with those of
Fig. 3(i) in [43] and show the same peaks close to the vertical sides of the donor-acceptor
interface. It is interesting to notice that the total number of holes in the donor material is
higher than the number of electrons in the acceptor material because of the significantly
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Parameter Symbol Numerical value

Acceptor relative dielectric constant εr,a 4
Donor relative dielectric constant εr,d 4
Temperature T 298 K

Poole-Frenkel mobility model parameters for electrons [4]
µn(0) 3 · 10−10 m2 V−1 s−1

γa 1.55 · 10−3 V−1/2 m1/2

Poole-Frenkel mobility model parameters for holes [4]
µp(0) 1 · 10−10 m2 V−1 s−1

γd 3 · 10−4 V−1/2 m1/2

Exciton diffusion coefficient De 1 · 10−7 m2 s−1

Exciton lifetime τe 1 · 10−9 s
Exciton dissociation time τdiss 1 · 10−12 s
Polaron pair recombination rate constant krec 1 · 106 s−1

Singlet exciton recombination fraction η 0.25
Polaron pair zero-field dissociation rate constant kdiss(0) 1 · 105 s−1

Interface width 2H 2 · 10−9 m

Boundary condition parameters for electrons [17]
κn 0
αn 1 m s−1

βn 3.4995 · 1018 m−2 s−1

Boundary condition parameters for holes [17]
κp 0
αp 1 m s−1

βp 3.4995 · 1018 m−2 s−1

Table 2. Model parameter values used in the simulations of Sects. 5.2,
5.3 and 5.4.

different values of their respective mobilities. Negative charges can move through the
device faster to be finally extracted at the cathode so that an overall positive charge
builds-up in the device. The charge densities computed using models (B) and (C) exhibit
a qualitatively similar profile with a gradual reduction of the magnitude compared to the
result of model (A). This behavior is completely consistent with the previous analysis of
the current-voltage characteristics predicted by the three models of kdiss.

We conclude this preliminary validation of model (11) by illustrating in Fig. 11 the
open circuit voltage Voc and short circuit current density Jsc of a device with the same
characteristics as in the previous set of simulations for values of exciton generation rate in
the range from 1.53 · 1020 to 1.53 · 1030 m−3 s−1. Fig. 11(a) is in excellent agreement with
Fig. 6(right) of [44], and indicates that models (A), (B) and (C) predict a linear behavior
of Voc with respect to the logarithm of the exciton generation rate, as already pointed out
in [43, 44]. Fig. 11(b) illustrates the current density Jsc that can be extracted from the
device at short circuit condition. The log-scale plot indicates that Jsc increases linearly
in a wide range of illumination regimes until values of the order of 1028 m−3 s−1. With
more intense irradiation the increase becomes sublinear, suggesting that saturation of the
device occurs due to more relevant excitonic and electron-hole recombination phenomena
which in turn are a consequence of the increased densities.
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Figure 10. Charge carrier densities [m−3] at short circuit condition
with Q = 1.53 · 1025 m−3 s−1 using models (A) (left), (B) (right) and
(C) (bottom), respectively.
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Figure 11. Open circuit voltage and short circuit current density as
functions of the exciton generation rate.
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5.3. The Role of Interface Morphology. In this section, we aim to investigate the
role of interface configuration in affecting the OSC performance. Referring to Fig. 8, we
set Lcell = Lelec = 150 nm and LR = 75 nm, and we analyze the importance of interfacial
length by considering devices with an increasing density of interpenetrating structures,
starting from a biplanar device and then taking decreasing values for the rod width WR.
Model parameters are the same as in the previous simulations and the exciton generation
rate is Q = 1.53 · 1025 m−3 s−1.
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Figure 12. Short circuit current density as a function of interface length.

Fig. 12 illustrates the computed short circuit current density as a function of the inter-
facial length for the various polaron pair dissociation rate models we previously considered
in this section. In all cases, current saturation is predicted for high densities of nanostruc-
tures due to the depletion of excitons in the interface area that in turn is a consequence of
the abundance of dissociation sites. Computed saturation levels greatly differ among the
three choices of the model for kdiss, in accordance with the analysis of Sect. 5.2. Fig. 12
also shows that when a biplanar device is considered, using model (C) a higher short
circuit current density is obtained compared to the other approaches. An explanation
of this result is that the electric field in this case is actually vertically directed and this
fact, combined with the assumption that dissociation occurs only in the normal direction,
brings to overestimate its rate (cf. the solid lines in Fig. 6). Qualitatively similar results
have been obtained in [8, 43, 44].

Also the orientation of the interface is expected to play a role in determining device
operation and the following set of simulations aims to investigate this issue. This is a
distinctive feature of our model that, to our knowledge, has not been treated in previous
works. For a proper analysis, we allow the orientation of the donor-acceptor interface to
change while its overall length remains almost constant, in order to single out the effect
of the former and analyze it.

The considered device geometry is shown in Fig. 13, where the number of rods is kept
constant to four for each material but the incidence angle α is varied in a range from 90◦ to
77◦ 11′. The geometric data are Lcell = Lelec = 150 nm, LR = 75 nm and WR = 37.5 nm.

Since the changes in the amplitude for α are small, the interface length does not
vary significantly (as demonstrated by Fig. 14(a)) and we expect model (A) to be quite
insensitive to such small modifications since Ey mainly depends on the potential drop
across the electrodes. Concerning with model (B), we again do not expect a relevant
sensitivity to such variations in the interface morphology since the changes in En and
Et should balance in the overall contribution. We instead expect model (C) to be most
sensitive since the normal field that is screened at the interface may experience significant
variations as a function of the angle α.
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Figure 13. Internal morphology with nanorods with a varying inci-
dence angle α.
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Figure 14. Interface length and short circuit current density as func-
tions of α.

Our expectations are confirmed by the results in Fig. 14(b), showing that the perfor-
mance of the device in terms of computed short circuit current density does not vary with
α when models (A) and (B) are considered, while if model (C) is used, an increase of the
short circuit current density is observed as soon as the inclination of the nanorod structure
is modified with respect to the initial configuration. This behavior can be explained as
follows. The choice of model (15) predicts an increase of the dissociation for negative
values of the normal electric field that is higher than the reduction for positive values of
En. Since at short circuit the electric field can be reasonably assumed to be directed along
the y axis (i.e., from the cathode to the anode), the sides of each rod experience opposite
normal fields. As a result, the overall effect is dominated by the contribution of the sides
with negative fields and dissociation is enhanced.

5.4. The Case of a Complex Interface Morphology. In this concluding section, we
test the versatility of the model proposed in the present article in dealing with a very
complex internal morphology as that shown in Fig. 15. In this regard, it is important
to notice that the use of the microscale model (2)-(5) would require an extremely fine
grid resolution to accurately describe the volumetric terms in the active layer around
the donor-acceptor interface, while the use of the macroscale model (11) has the twofold
advantage of considerably simplifying the design of the computational mesh and reducing
the size of the nonlinear algebraic system to be solved.

Fig. 16(a) illustrates the computed charge carrier density at short circuit (Vappl = 0 V)
for the geometry of Fig. 15, where the domain is a square 150 nm sided, with exciton
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Figure 15. The computational mesh used to numerically solve the
model of Sect. 3.4 in the case of a complex geometry.
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(b) Current-voltage characteristics

Figure 16. Log-plot of charge carrier density [m−3] and current-voltage
characteristics for a device with very complex internal structure.

generation rate Q = 1.53 ·1025 m−3 s−1 and using model (B) for kdiss. Notice in particular
that the densities assume much higher magnitudes compared to those of Fig. 10. This is
a consequence of the complexity of the geometry, where donor and acceptor form dead-
end areas in which the charges are trapped and experience recombination. In Fig. 16(b)
we show again a comparison of the current-voltage characteristics obtained using the
three different polaron dissociation rate models. The differences among the obtained
characteristic lines are reduced with respect to the previous simulated cases. In particular
the computed short circuit current densities attain closer values with respect to more
regular morphologies, such as that of Fig. 8, for comparable values of the interface length
(approximately 900 nm), see Fig. 12. This is probably to be ascribed to the tortuosity of
device internal morphology which makes interface recombination effects more significant
than in the case of a more regular internal structure.

6. Concluding Remarks and Future Perspectives

The research activity object of the present article is a continuation of the mathematical
study of organic photovoltaic devices started in [17] and is focused to:

-: the accurate and computationally efficient modeling of photoconversion mecha-
nisms occurring at the interface separating the acceptor and donor layers;
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-: the investigation of the impact of the interface morphology and of polaron pair
dissociation on device performance.

With this aim, we propose a two-scale (micro- and macro-scale) multi-dimensional
model for organic solar cell devices with arbitrary interface geometries. The microscale
model is a system of incompletely parabolic nonlinear PDEs in drift-diffusion form set
in a heterogeneous domain. The macroscale model is obtained via a micro-to-macro
scale transition that consists of averaging the mass balance equations in the direction
normal to the interface, giving rise to nonlinear transmission conditions parametrized by
the interfacial width. This averaging procedure is similar to model-reduction techniques
used in porous media with thin fractures [31], in reaction problems with moving reaction
fronts [29] and in electrochemical transport across biological membranes [35]. The fact that
in the macroscale model the interface is reduced to a zero width surface is further exploited
to account for the local dependence of the polaron dissociation rate on the electric field
orientation, which is the main advantage –together with the computational cost reduction–
of our approach, as compared to previous multi-dimensional models [8, 44, 26].

Extensive numerical simulations of realistic device structures are carried out to study
the performance of the proposed models and the impact of the lumping procedure. First,
one-dimensional transient simulations under different working conditions are carried out
to verify the accuracy of the macroscale model with respect to the microscale system.
Results indicate that in the physically reasonable range of values for the parameter H the
relative discrepancy between the micro and macroscale formulations is consistently below
10%. Two-dimensional realistic device structures with various interface morphologies are
then numerically investigated to assess the impact of our novel model for kdiss on the
main device properties (short circuit current and open circuit voltage). Simulation results
indicate that, if the electric field orientation relative to the interface is taken into due
account, the device performance is determined not only by the total interface length but
also by its shape.

Research topics currently under scrutiny include:

-: application of the proposed computational model to the study of more complex
three-dimensional morphologies, as considered in [27];

-: investigation of more advanced models for carrier mobilities and polaron dissoci-
ation rate, as well as the simulation of other material blends currently employed
in the fabrication of up-to-date organic solar cells (see, e.g., [1, 5, 9]);

-: extension of the model to the general case where Γ+ and Γ− are free boundaries
to be determined for each x ∈ Γ and at each time level t > 0;

-: a more thorough mathematical investigation of the proposed equation system (11)
in both stationary and time-dependent regimes to extend the analysis carried out
in [17].
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Appendix A. Finite Element Discretization

In this appendix, for sake of completeness, we provide more detail about the Finite Ele-
ment (FE) discretization of the linear problem resulting from the application of time semi-
discretization and linearization to the equation system (11) as schematically described in
Sect.4. Before we proceed we need to introduce some notation.

The time semi-discretization consists of approximating the time derivative of the generic
quantity U (representing any of the unknowns in (11)) as

(17)
∂U

∂t
' w0UN +

m=M∑
m=1

wmUN−m = w0UN + dN,M (U) ,

where N is the index of the current time step and M is the order of the adopted BDF
formula. The notation dN,M (U) is used to group together the terms that depend only on
results from past time steps and is therefore a known quantity at the N -th time integration
level.

To treat the spatial discretization of the problem, we assume only for ease of pre-
sentation that Ω is a rectangular domain, as depicted in Fig. 3(b), but the approach
remains completely valid also in the three-dimensional case, provided to replace “trian-
gle” by “tethrahedron” and “edge” by “face”. Let Th denote a conformal partition into
open triangles K of the computational domain Ω, h being the maximum diameter over
all triangles, and let Ωn,h and Ωp,h denote the finite element partitions of the subregions
Ωn and Ωp, such that Γh = ∂Ωn,h ∩ ∂Ωp,h is their separating interface, consisting of the
union of a set of edges of Th.

We introduce the following finite dimensional spaces of FE functions:

Vh ≡
{
v ∈ C0 (Ω) , v|K ∈ P1(K)∀K ∈ Th

}
(18a)

V gh ≡
{
v ∈ Vh, v = g at the nodes on ΓA ∪ ΓC , g ∈ C0 (ΓA ∪ ΓC)

}
(18b)

Vn,h ≡
{
v|Ωn,h

, v ∈ Vh
}

(18c)

Vp,h ≡
{
v|Ωp,h

, v ∈ Vh
}

(18d)

VΓ,h ≡
{
v|Γh

, v ∈ Vh
}
.(18e)

Let ϕD ∈ C0 (ΓA ∪ ΓC) be such that ϕD|ΓC
= 0 and ϕD|ΓA

= Vappl + Vbi. Then, we

denote by

(19) yh = [eh, P̃h, nh, ph, ϕh]T ∈
(
V 0
h × VΓ,h × Vn,h × Vp,h × V ϕD

h

)
≡ Yh

the vector of discrete unknown functions at a given quasi-Newton iteration of a given time
step, and by

(20) δyh = [δeh, δP̃h, δnh, δph, δϕh]T ∈
(
V 0
h × VΓ,h × Vn,h × Vp,h × V 0

h

)
≡ Vh

the corresponding increments to be computed in order to advance to the next iteration of
the quasi-Newton method.

The linear problem to be solved in order to compute the increments (20) reads:
given yh ∈ Yh, find δyh ∈ Vh such that:
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∫
Ω

De∇δeh · ∇v +

∫
Ω

(
1

τe
+ w0

)
δeh v +

∫
Γh

[
2H

τdiss
δeh − ηkrec δP̃h

]
v =

−
[∫

Ω

De∇eh · ∇v +

∫
Ω

fe(yh) v +

∫
Γh

ge(yh) v

]
, ∀v ∈ V 0

h

(21a)

∫
Γh

[
− 2H

τdiss
δeh + (w0 + kdiss + krec) δP̃h − 2Hγ (phδnh + nhδph)

]
v = −

∫
Γh

gP̃ (yh) v, ∀v ∈ VΓ,h,

(21b)

∫
Ωn,h

(Dn,h∇δnh − µn,hδnh∇ϕh) · ∇v −
∫

Ωn,h

µnnh∇δϕh · ∇v +

∫
Ωn,h

w0 δnh v+∫
Γh

[
kdissδP̃h + 2Hγ (phδnh + nhδph)

]
v +

∫
ΓC

αn
κn
δnh v =

−

[∫
Ωn,h

(Dn,h∇nh − µn,hnh∇ϕh) · ∇v +

∫
Ωn,h

fn(yh) v +

∫
Γh

gn(yh) v +

∫
ΓC

bn (yh) v

]
, ∀v ∈ Vn,h,

(21c)

∫
Ωp,h

(Dp,h∇δph + µp,hδph∇ϕh) · ∇v +

∫
Ωp,h

µpph∇δϕh · ∇v +

∫
Ωp,h

w0 δph v+∫
Γh

[
kdissδP̃h + 2Hγ (phδnh + nhδph)

]
v +

∫
ΓA

αp
κp
ph v =

−

[∫
Ωp,h

(Dp,h∇nh + µp,hph∇ϕh) · ∇v +

∫
Ωp,h

fp(yh) v +

∫
Γh

gp(yh) v +

∫
ΓA

bp (yh) v

]
, ∀v ∈ Vp,h,

(21d)

∫
Ω

ε∇δϕh · ∇v + q

∫
Ωn,h

δnh − q
∫

Ωp,h

δph = −
[∫

Ω

ε∇ϕh · ∇v +

∫
Ω

fϕ(yh) v

]
∀v ∈ V 0

h ,

(21e)
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where v denotes in each of the equations (21) the test function in the appropriate FE
space, and where we have made use of the following definitions:

fe (yh) =

(
1

τe
+ w0

)
eh −Q+ dN,M (eh)(22a)

ge (yh) =
2H

τdiss
eh − ηkrecP̃h(22b)

gP̃ (yh) = − 2H

τdiss
eh + (w0 + kdiss + krec) P̃h − 2Hγnhph + dN,M

(
P̃h
)

(22c)

fn (yh) = w0nh + dN,M (nh)(22d)

gn (yh) = kdissP̃h + 2Hγnhph(22e)

bn (yh) =
1

κn
{αnnh − βn}(22f)

fp (yh) = w0ph + dN,M (ph)(22g)

gp (yh) = kdissP̃h + 2Hγnhph(22h)

bp (yh) =
1

κp
{αpph − βp}(22i)

fϕ (yh) = qnh − qph.(22j)

Then, once system (21) is solved, the unknown vector is updated as

yh ← yh + δyh.

A couple of further comments is in order about the numerically stable implementation
of the FE linear system (21). First, note that Dn,h and µn,h in (21c) (respectively
Dp,h and µp,h in (21d)) are tensor diffusivities and mobilities chosen according to the
Exponential Fitting stabilization technique as in [41, 3, 18, 45, 28] in order to avoid the
onset of possible spurious oscillations in the discrete electron and hole densities due to
drift terms. Second, all the integrals involving zeroth order terms are computed using
the two-dimensional trapezoidal quadrature rule in order to end up with strictly positive
diagonal (approximate) mass matrices [2].
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