2,197 research outputs found

    A study of Ultra-High-Energy Cosmic Ray propagation in one-dimensional simulations

    Get PDF
    Cosmic Rays have come to play an important role in understanding the universe, and astroparticle physics has undergone major developments in the last few decades. As such, several observatories have been set up with the purpose of detecting these particles, and simulation frameworks have been developed in order to further analyze their behavior by creating highly variable environments and parameters. This work covers the essential theory required to study propagation of Ultra- High-Energy Cosmic Rays restricted to linear one-dimensional propagation only; this includes the primary methods of energy loss during propagation, mainly through reactions with the photon background like photo-pion production and photo-disintegration, and additional cosmological effects. The study was done using the CRPropa 3.0 simulation framework. To determine the best possible maximum energy for the simulations, initial trials were done by testing the GZK cutoff for multiple energy values, followed by an analysis of heavier nuclei propagation. As a final complete test run, a model of the cosmic ray spectrum for energies above 1018 eV was made based on two data sets, one made from the average composition of the whole CR energy spectrum, and the other from The Pierre-Auger Observatory measurements for the high energy range. The results showed that initial source composition was the determining factor in the shape of the CR spectrum. These initial simulations done in this work will set the ground for future more complex simulations and studies.Los rayos cósmicos juegan un papel importante en nuestro entendimiento del universo, por eso, la física de astropartículas ha sido desarrollada en gran medida en estas últimas décadas. Varios observatorios han sido construidos con el propósito de detectar estas partículas, y a su vez se han desarrollado programas de simulaciones para analizar su comportamiento usando ambientes y variables con una alta variabilidad. Este trabajo cubre la teoría necesaria para estudiar la propagación de rayos cósmicos de ultra-altas energías restringido a una sola dimensión; esto incluye las principales causas de pérdida de energía durante su propagación, principalmente a través de interacciones con el fondo de fotones como la fotoproducción de piones y fotodesintegración, así como otros efectos cosmológicos. Este estudio fue realizado con el programa de simulaciones CRPropa 3.0. Para determinar la mejor energía máxima para las simulaciones, los primeros ensayos comprobaron el límite GZK para múltiples valores de energía, seguido de un análisis de la propagación de núcleos más pesados. A manera de ensayo final, un modelo del espectro de rayos cósmicos para energías mayores a 1018 eV fue hecho basado en dos grupos de datos, uno a partir de la composición general promedio de todo el espectro de energías de los rayos cósmicos, y el otro a partir de mediciones hechas por el observatorio Pierre-Auger para altas energías. Los resultados muestran que la composición inicial de la fuente es el factor determinante en la forma del espectro. Las simulaciones iniciales hechas en este trabajo serán utilizadas como base para futuras y más complejas investigaciones.Trabajo de investigació

    Absence of Electron Surfing Acceleration in a Two-Dimensional Simulation

    Full text link
    Electron acceleration in high Mach number perpendicular shocks is investigated through two-dimensional electrostatic particle-in-cell (PIC) simulation. We simulate the shock foot region by modeling particles that consist of three components such as incident protons and electrons and reflected protons in the initial state which satisfies the Buneman instability condition. In contrast to previous one-dimensional simulations in which strong surfing acceleration is realized, we find that surfing acceleration does not occur in two-dimensional simulation. This is because excited electrostatic potentials have a two-dimensional structure that makes electron trapping impossible. Thus, the surfing acceleration does not work either in itself or as an injection mechanism for the diffusive shock acceleration. We briefly discuss implications of the present results on the electron heating and acceleration by shocks in supernova remnants.Comment: 12 pages, 4 figures, accepted for publication in ApJ

    Galactoseismology: Discovery of Vertical Waves in the Galactic Disk

    Full text link
    We present evidence for a Galactic North-South asymmetry in the number density and bulk velocity of solar neighborhood stars. The number density profile, which is derived from main-sequence stars in the Sloan Digital Sky Survey, shows a (North - South)/(North + South) deficit at |z| ~ 400 pc and an excess at |z| ~ 800 pc. The bulk velocity profile, which is derived from the Sloan Extension for Galactic Understanding and Exploration, shows a gradual trend across the Galactic midplane as well as smaller-scale features. We speculate that the North-South asymmetry, which has the appearance of a wavelike perturbation, is intrinsic to the disk. We explore the physics of this phenomenon through an analysis of the linearized Boltzmann and Poisson equations and through one-dimensional simulations. The perturbation may be excited by the passage of a satellite galaxy or dark matter subhalo through the Galactic disk, in which case we are witnessing a recent disk-heating event.Comment: 10 pages, 5 figures, accepted for publication in the Astrophysical Journal Letter

    Approximating strongly correlated spin and fermion wavefunctions with correlator product states

    Get PDF
    We explore correlator product states for the approximation of correlated wavefunctions in arbitrary dimensions. We show that they encompass many interesting states including Laughlin's quantum Hall wavefunction, Huse and Elser's frustrated spin states, and Kitaev's toric code. We further establish their relation to common families of variational wavefunctions, such as matrix and tensor product states and resonating valence bond states. Calculations on the Heisenberg and spinless Hubbard models show that correlator product states capture both two-dimensional correlations (independent of system width) as well as non-trivial fermionic correlations (without sign problems). In one-dimensional simulations, correlator product states appear competitive with matrix product states with a comparable number of variational parameters, suggesting they may eventually provide a route to practically generalise the density matrix renormalisation group to higher dimensions.Comment: Table 1 expanded, Table 2 updated, optimization method discussed, discussions expanded in some sections, earlier work on similar wavefunctions included in text and references, see also (arXiv:0905.3898). 5 pages, 1 figure, 2 tables, submitted to Phys. Rev.

    Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions

    Full text link
    We model the dynamics of formation of multiple, long-lived, bright solitary waves in the collapse of Bose-Einstein condensates with attractive interactions as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006) 170401]. Using both mean-field and quantum field simulation techniques, we find that while a number of separated wave packets form as observed in the experiment, they do not have a repulsive \pi phase difference that has been previously inferred. We observe that the inclusion of quantum fluctuations causes soliton dynamics to be predominantly repulsive in one dimensional simulations independent of their initial relative phase. However, indicative three-dimensional simulations do not support this conclusion and in fact show that quantum noise has a negative impact on bright solitary wave lifetimes. Finally, we show that condensate oscillations, after the collapse, may serve to deduce three-body recombination rates, and that the remnant atom number may still exceed the critical number for collapse for as long as three seconds independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure

    Feedback from Central Black Holes in Elliptical Galaxies: Two-dimensional Models Compared to One-dimensional Models

    Full text link
    We extend the black hole (BH) feedback models of Ciotti, Ostriker, and Proga to two dimensions. In this paper, we focus on identifying the differences between the one-dimensional and two-dimensional hydrodynamical simulations. We examine a normal, isolated LL_* galaxy subject to the cooling flow instability of gas in the inner regions. Allowance is made for subsequent star formation, Type Ia and Type II supernovae, radiation pressure, and inflow to the central BH from mildly rotating galactic gas which is being replenished as a normal consequence of stellar evolution. The central BH accretes some of the infalling gas and expels a conical wind with mass, momentum, and energy flux derived from both observational and theoretical studies. The galaxy is assumed to have low specific angular momentum in analogy with the existing one-dimensional case in order to isolate the effect of dimensionality. The code then tracks the interaction of the outflowing radiation and winds with the galactic gas and their effects on regulating the accretion. After matching physical modeling to the extent possible between the one-dimensional and two-dimensional treatments, we find essentially similar results in terms of BH growth and duty cycle (fraction of the time above a given fraction of the Eddington luminosity). In the two-dimensional calculations, the cool shells forming at 0.1--1 kpc from the center are Rayleigh--Taylor unstable to fragmentation, leading to a somewhat higher accretion rate, less effective feedback, and a more irregular pattern of bursting compared to the one-dimensional case.Comment: 15 pages, 10 figures, ApJ 237:26. Updated to match published versio
    corecore