We model the dynamics of formation of multiple, long-lived, bright solitary
waves in the collapse of Bose-Einstein condensates with attractive interactions
as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006)
170401]. Using both mean-field and quantum field simulation techniques, we find
that while a number of separated wave packets form as observed in the
experiment, they do not have a repulsive \pi phase difference that has been
previously inferred. We observe that the inclusion of quantum fluctuations
causes soliton dynamics to be predominantly repulsive in one dimensional
simulations independent of their initial relative phase. However, indicative
three-dimensional simulations do not support this conclusion and in fact show
that quantum noise has a negative impact on bright solitary wave lifetimes.
Finally, we show that condensate oscillations, after the collapse, may serve to
deduce three-body recombination rates, and that the remnant atom number may
still exceed the critical number for collapse for as long as three seconds
independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure