49,688 research outputs found

    Model-driven software development for pervasive information systems implementation

    Get PDF
    Model-driven development (MDD) conceptions and techniques essentially centre the focus of development on models. They are subject of current research as they allow enhanced productivity, technological platform independence and longevity of software artifacts. Another area of current research is the ubiquitous/pervasive computing area. This field of computing research focuses on the widespread adoption of embedded or mobile heterogeneous computing devices, which, when properly orchestrated, globally compose pervasive information systems (PIS). This work intends to clarify how should be MDD concepts and techniques structurally consolidated into an approach to software development for PIS. It involves two projects as case studies. From these case studies, it will be proposed methodological insights to design approaches for software development of PIS. While clarifying several issues pertaining to MDD for PIS, it shall promote other research works based on issues needing further study

    Model-driven Enterprise Systems Configuration

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A promising idea to manage and simplify the configuration process is based on the premise of using reference models for this task. Our paper continues along this idea and delivers a two-fold contribution: first, we present a generic process for the task of model-driven Enterprise Systems configuration including the steps of (a) Specification of configurable reference models, (b) Configuration of configurable reference models, (c) Transformation of configured reference models to regular build time models, (d) Deployment of the generated build time models, (e) Controlling of implementation models to provide input to the configuration, and (f) Consolidation of implementation models to provide input to reference model specification. We discuss inputs and outputs as well as the involvement of different roles and validation mechanisms. Second, we present an instantiation case of this generic process for Enterprise Systems configuration based on Configurable EPCs

    Model-driven design of distributed applications

    Get PDF
    The design process is structured into a preparation and an execution phase. In the preparation phase, designers identify (and, when necessary, define) the required levels of models, their abstract platforms and the modelling language(s) to be used. In addition, a designer may also identify or define transformations between related levels of models. The results of the preparation phase are used in the execution phase, which entails the creation of models of an application using specific modelling languages and abstract platforms.\ud The main aspects of the approach are illustrated with a case study involving the design of context-aware mobile services. We define three levels of models: a platform-independent service specification level, a platformindependent service design level and a platform-specific service design level. Particular attention is given to the representation and transformation of behavioural aspects of service designs

    Applying model-driven paradigm: CALIPSOneo experience

    Get PDF
    Model-Driven Engineering paradigm is being used by the research community in the last years, obtaining suitable results. However, there are few practical experiences in the enterprise field. This paper presents the use of this paradigm in an aeronautical PLM project named CALIPSOneo currently under development in Airbus. In this context, NDT methodology was adapted as methodology in order to be used by the development team. The paper presents this process and the results that we are getting from the project. Besides, some relevant learned lessons from the trenches are concluded.Ministerio de Ciencia e Innovación TIN2010-20057-C03-02Junta de Andalucía TIC-578

    Reliability prediction in model driven development

    Get PDF
    Evaluating the implications of an architecture design early in the software development lifecycle is important in order to reduce costs of development. Reliability is an important concern with regard to the correct delivery of software system service. Recently, the UML Profile for Modeling Quality of Service has defined a set of UML extensions to represent dependability concerns (including reliability) and other non-functional requirements in early stages of the software development lifecycle. Our research has shown that these extensions are not comprehensive enough to support reliability analysis for model-driven software engineering, because the description of reliability characteristics in this profile lacks support for certain dynamic aspects that are essential in modeling reliability. In this work, we define a profile for reliability analysis by extending the UML 2.0 specification to support reliability prediction based on scenario specifications. A UML model specified using the profile is translated to a labelled transition system (LTS), which is used for automated reliability prediction and identification of implied scenarios; the results of this analysis are then fed back to the UML model. The result is a comprehensive framework for addressing software reliability modeling, including analysis and evolution of reliability predictions. We exemplify our approach using the Boiler System used in previous work and demonstrate how reliability analysis results can be integrated into UML models

    The ModelCC Model-Driven Parser Generator

    Full text link
    Syntax-directed translation tools require the specification of a language by means of a formal grammar. This grammar must conform to the specific requirements of the parser generator to be used. This grammar is then annotated with semantic actions for the resulting system to perform its desired function. In this paper, we introduce ModelCC, a model-based parser generator that decouples language specification from language processing, avoiding some of the problems caused by grammar-driven parser generators. ModelCC receives a conceptual model as input, along with constraints that annotate it. It is then able to create a parser for the desired textual syntax and the generated parser fully automates the instantiation of the language conceptual model. ModelCC also includes a reference resolution mechanism so that ModelCC is able to instantiate abstract syntax graphs, rather than mere abstract syntax trees.Comment: In Proceedings PROLE 2014, arXiv:1501.0169
    corecore