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Bart Orriëns, Jian Yang, and Mike. P. Papazoglou

Tilburg University, Infolab
PO Box 90153, 5000 LE, Tilburg, Netherlands

{b.orriens,jian,mikep}@kub.nl

Abstract. The current standards for web service composition, e.g. BPEL.
neither cater for dynamic service composition nor for dynamic business
configuration. Our firm belief is that business processes can be built dy-
namically by composing web services in a model driven fashion where the
design process is controlled and governed by a series of business rules.
In this paper we examine the functional requirements of service com-
position and introduce a phased approach to the development of service
compositions that spans abstract definition, scheduling, construction and
execution. Subsequently, we analyze the information requirements for de-
veloping service compositions by identifying the basic elements in a web
service composition and the business rules that are used to govern the
development of service compositions.

1 Introduction

The platform neutral nature of web services creates the opportunity for en-
terprisers to develop business processes by using and combining existing web
services, possibly offered by different providers. By selecting and combining the
most suitable and economical web services, business processes can be generated
dynamically by observing the changing business conditions.

Current composite web service development and management solutions are
very much a manual activity, which require specialized knowledge and take up
much time and effort. This applies even to applications that are being developed
on the basis of available standards, such as BPEL4WS [4] or BPML [2]. Due to
a vast service space to search, a variety of services to compare and match, and
different ways to construct composed services service composition is simply too
complex and too dynamic to handle manually. To automate the development of
service compositions, we require a systematic way of analyzing their requirements
and modelling the activities involved in them just as we do with software devel-
opment. The benefits of adapting a service development methodology for service
composition is that we gain much more insight in the process of constructing
service compositions so that we can better manage their implementations.

In this paper we use a model driven approach to facilitate the development
and management of dynamic service compositions. The central notion in this



approach entails separation of the fundamental composition logic from particular
composition specifications (e.g., BPEL and BPML) in order to raise the level of
abstraction. This allows rapid development and delivery of service compositions
based on proven and tested models, as such supporting the service composition
life-cycle. The proposed approach uses UML as the method for modelling service
compositions. This will enable us to develop technology independent composition
definitions, which can subsequently be mapped to a specific standard (e.g. BPEL)
automatically. Furthermore, in addition to UML we use the Object Constraint
Language (OCL) [9] to express business rules that govern and steer the process
of service composition.

Business rules are precise statements that describe, constrain and control the
structure, operations and strategies of a business. They can express e.g. pricing
and billing policies, quality of service, process flow - where they describe routing
decisions, actor assignment policies, etc - regulations, and so on. In current web
service technology solutions, such rules are deeply embedded in the implemen-
tation of processes, leaving the user with little empowerment to manage and
control them and eventually the processes themselves. When business rules are
relative to business processes, these statements should be extracted from the
application code in order to be more easily managed (defined and versified) and
consistently executed. Our thesis is that we can use business rules to determine
how a service composition should be structured and scheduled, how the services
and their providers should be selected, and how service binding should be con-
ducted. This paves the way towards developing dynamic service compositions.

The paper is structured as follows: In Section 2 we explain the functional
requirements for service composition development. Then we examine the infor-
mation model and business rules required for the development of compositions.
In Section 4 we describe the process of service composition development. Section
5 highlights related work and our contribution. We present our conclusions and
future research in section 6.

2 Functional Requirements of Service Composition

When considering service compositions it is useful to identify two main use
cases: service composition development and service composition management.
During the process of service composition development, the application developer
interacts with the service composition system to generate a business process by
composing services. The use case starts when the developer sends a request. The
system at the end produces an executable service composition.

In the second use case the application developer interacts with the service
composition system to execute and manage compositions. This use case begins
when the developer indicates that he wants to execute a service composition.
In response the system gathers the required information and subsequently ex-
ecutes the composition. During run-time the developer may interact with the
service composition system to make modifications, e.g. change service providers.



In this paper we only concentrate on the first use case, i.e., the development of
compositions.

This paper advocates a phased approach to service composition development.
The activities in this approach are collectively referred to as the service compo-
sition life-cycle [13]. Four broad phases are distinguished spanning composition
definition, scheduling, construction and execution, as shown in Fig. 1.

'HILQH�DEVWUDFW �

FRPSRVLWLRQ

>�5HTXHVW�UHFHLYHG�@

6FKHGXOH�

FRPSRVLWLRQ

>�$EVWUDFW�FRPSRVLWLRQ�@

&RQVWUXFW�

FRPSRVLWLRQ

0DS�WR�H[HFXWDEOH�

FRPSRVLWLRQ

> �&RQVWUXFWHG�FRPSRVLWLRQ�@

>�([HFXWDEOH�FRPSRVLWLRQ�@

> �6FKHGXOHG�FRPSRVLWLRQ�@

Fig. 1. Service composition life cycle

The idea behind the phased approach to service composition development is
to start with an abstract definition and gradually make it concrete so that we
can generate executable service processes from these abstract specifications.

The system starts in the Definition phase with an abstract composite service,
which specifies the constituent activities of a composite service, the constraints
under which they operate, their informational requirements, and the exceptional
behavior that may occur during their execution

In the Scheduling phase of the approach, the service composition system de-
termines how and when services should run and prepares them for execution. Its
main purpose is to make the definition developed in the definition phase con-
crete by correlating messages to express data dependencies, and synchronizing
and prioritizing the execution of the constituent activities. During this phase the
system may generate alternative composition schedules and present them to the
application developer for selection.

Next, the service composition system proceeds with the Construction phase
to construct an unambiguous composition of concrete services out of a set of
desirable or potentially available/matching constituent services. Similar to the



scheduling phase the system may produce alternative construction schemes (e.g.
varying in quality or price) from which the application developer can select.

Lastly, during the Execution phase the service composition system prepares
the constructed composed services for execution. This phase maps the resulting
specification to an executable web service orchestration language (e.g. BPEL).

3 The Information Model for Service Composition
Development

The information model (IM) is an abstract meta-model that represents the build-
ing blocks of all possible service compositions. The IM models the components
required for a given composition as well as their inter-relationships. Relationships
in the IM indicate how a composition is constructed. For example, a relation-
ship between an activity and a flow indicates that this activity is used in the
flow. We model all the required information as classes containing special pur-
pose attributes so that this information can be captured and described. A service
composition derived on the basis of the IM generates a specific instance of this
model by populating its classes. The IM comprises classes referred to as service
composition classes, while the instances of these classes are referred to compo-
sition elements. Relationships between composition classes, i.e., how to relate a
certain activity to a flow, how to relate a service to an activity, and so on, are
determined on the basis of business rules.

3.1 Service composition classes and elements

The IM is based on generic service composition constructs derived after a thor-
ough study of the current standards (e.g. BPEL, BPML). Based on this study
we have identified the following service composition classes: activity, condi-
tion, event, flow, message, provider and role. These classes and their inter-
relationships are illustrated in Fig. 2, and presented in what follows.

– Activity: This abstract class represents a well-defined business function
(similar to e.g. basic activities in BPML). It contains four attributes: name,
function, input, output. An instance of this class can be defined as fol-
lows:
Activity: (
name="flightActivity"
function="flightTicketBooking"
inputs="departureDate,returnDate,from,to"
outputs="airline,flightNr,seatNr"
)

This example shows an activity named ”flightActivity” that is meant for
booking a flight ticket. It requires several input parameters to carry out this
task, such as, for instance, departure and return date. The output parameters
of this class include the airline name, and the flight and seat number.



--A rol e can rai se  an eve nt if  i t is capabl e and authori ze d to perform the funct ion in
whose context the event can occur--

role.capabil it ies->exi sts(event .context) AND role.perm issions->e xi sts(event .context)

--A provider can play a role if the functionality 
of its services includes the capabilities required
for this role--

provider.services->includesAll(role.capabilities)

--A message can be used to as output of an 
activity if it contains all the information that is 
generated by this activity--

message.parts->includesAll(activity.outputs)

--A flow can include an activity i f the funct ion of this 
activity i s one of the subfunctions of  the f low--

f low.sub functions->exi sts(activity .functi on) OR
f low1.su bfunctions->exi sts(f low2.function)

Flow

name
pattern
function
subfunctions

governActivity()
containFlow()

0..n

0. .n

0..n

+contain0. .n

Condition

name
argument
predicate
value

preguardActivity()
postguardActivity()
controlEvent()
constrainMessage()

Message

name
parts

assignAsInput()
assignAsOutput()
signalEvent()
correlateMessage()

0. .n+constrain 0. .n

0. .n
+correla te
0. .n

Provider

name
description
services
cost
quality

playRole()

Act iv it y

name
function
inputs
outputs

handleEvent()
0..n

0..n

0..n

+govern

0..n

0..n

0..n

0..n+preGuard

0..n

0..n

0..n

0..n+postGuard

0..n

0. .n

1

+output0. .n

1
1

0..n

1

+input

0..n

Event

name
context
severity
information
solut ion

influenceActivi ty()

0..n

0. .n

0..n

+control 0. .n
0..n

1..n

0..n

+influence
1..n

1

0..n

1

+handle
0..n

1

0..n

1

+signal

0..n

Rol e

name
type
capabili ties
permissions

performActivity()
raiseEvent()

1..n
+play

1..n

1..n
+perform

1..n

1 0..n1
+raise
0..n

Correlation

type

Fig. 2. Service composition model

– Condition: This class constrains the behavior of the composition by con-
trolling event occurrences, guarding activities and enforcing pre-conditions,
post-conditions and integrity constraints. To achieve this a condition class
has four attributes, name, argument, predicate, value. A typical post-
condition for ”flightActivity” could be that ”a seat has been reserved”.

– Event: This abstract class describes occurrences during the process of ser-
vice composition and its impact on an activity. These can be both of a normal
and exceptional nature (e.g. encompassing WSDL faults). An instance of this
class can be defined as follows:

Event: ( name="seatAvailabilityError"
context="flightTicketBooking"
severity="unrecoverable"
information="seatStatus"
solution="abandonCompositionExecution" )

This example illustrates an event class called ”seatAvailabilityError”. If the
attribute ”Severity” in this event class is set to ”unrecoverable”, then the



execution needs to be abandoned. To signal the occurrence of ”seatAvail-
abilityError” a ”seatStatus” message must be sent.

– Flow: This abstract class defines a block of activities and how they are
connected. An example of an instantiation of the flow class can be:
Flow: (
name="TravelPlanFlow"
function="travelPlanning"
subfunctions="(flightTicketBooking,hotelRoomReservation)"
pattern="sequential"
)

The above example shows a flow named ”TravelPlanFlow whose function
is ”travelPlanning”. Its subfunctions are ”flightTicketBooking” and ”hotel-
RoomReservation”. These subfunctions are carried out in a ”sequential”
manner (indicated by the pattern attribute). Other patterns include ”it-
erative”, ”parallel”, ”conditional”, etc, as described in [13].

– Message: This abstract class represents a container of information (like
e.g. properties in BPEL). Messages are used and generated by activities as
input and output, respectively. They are also used to signal events, and can
be correlated to other messages to express data dependencies. They have
attributes such as name and parts.

– Provider: This abstract class describes a party offering concrete services,
which can play a role(s) at runtime. A provider class declares attributes
such as name, description, services, cost and quality. (Observe that no WSDL
constructs are used here to describe providers to maximize the independency
of the IM model with regard to particular standards)

– Role: This class provides an abstract description for a party participating in
the service composition. Roles are responsible for performing activities and
raising events. An instance of this class can be:
Role: (
name="flightRole"
type="airline"
capabilities="(flightTicketBooking,cancelTicketBooking)"
permissions="(flightTicketBooking)"
)

The above example describes ”flightRole” as being of the type ”airline”, both
capable and authorized to book flight tickets.

Please observe that the above model closely resembles standard workflow
meta-models, which have been developed (e.g. by the WfMC [12]). This is not
surprising, since service composition is in many ways similar to workflow, e.g.
concerning task structuring, transition conditions, roles, and etceteras. How-
ever, in the IM these are perceived and subsequently represented from a service
oriented point of view. Also, some concepts like events are often not defined
workflow meta models (e.g. in [12]), but they are an important part of the IM.

Now, at this stage it is easy to understand that the difference between an ab-
stract, scheduled, and constructed service composition lies in the absence of spe-
cific composition elements or associations between these elements. More specif-
ically, the service composition system starts by only specifying activities, mes-
sages and constraints elements in the abstract based on the user requirements



and leave the flow, role, providers elements unspecified. Then it can progress
from an abstract service composition specification to an executable composition
by gradually generating these elements on the basis of applying business rules
and seeking user input. This is discussed in what follows.

3.2 Service composition rules

A concrete service composition needs to link elements such as ”service provider”
to ”service”, ”service” to ”activity”, ”activity” to ”flow”, and so on, as indicated
in Fig. 2. These associations in a service composition IM are constrained by
means of business rules. Fig. 2 shows some examples of these rules, referred to as
composition rules, as notes attached to associations between service composition
classes.

Composition rules are expressed in the Object Constraint Language
(OCL) [9]). We apply such rules to constrain composition element at-
tributes values and associations. An example of an attribute constraint is
activity.function="FlightTicketBooking", specifying that the function of
an activity must be ”FlightTicketBooking”. The expression activity.input ->
notEmpty is an example of an association constraint, depicting that the ”input”
of the activity must not be empty, i.e., an activity must always be associated
with an input message.

Service composition comprises a number of composition rules that in our
approach are classified into five broad categories of rules, namely structural, be-
havioral, data, resource and exception rules. These categories of business rules
are discussed in what follows. To illustrate the concepts that we introduced we
will use the composition elements illustrated in Table 1 to 7. In reality composi-
tion will likely be much harder as they may involve complex matching algorithms
and conformance rules, which are not elaborated in this paper to provide more
intuition.

Label Name Function Inputs Outputs
Activity1 flight flightTicketBooking departureDate,from,to flightNr,seatNr
Activity2 hotel hotelRoomReservation checkinDate,duration, hotelName
Activity3 car carRental period pickupDate,carType
Activity4 stop stopExecution none none

Table 1: Activity elements

Label Name Argument Predicate Value
Condition1 destinationCheckCondition from != to
Condition2 seatReservedCondition seatNr != -1
Condition3 seatUnavailableCondition seatStatus = unsuccessful
Condition4 departureDateCondition departureDate > currentDate

Table 2: Condition elements

Label Name Context Severity Information Solution
Event1 seatUnavailableException flightTicketBooking unrecoverable seatStatus stopExecution



Table 3: Event elements

Label Name Function Subfunctions Pattern
Flow1 hotelCarFlow hotelCar hotelRoomReservation,carRental ParallelWithSynchronization
Flow2 travelFlow flightHotelCar flightTicketBooking,hotelCar Sequential

Table 4: Flow elements

Label Name Parts Correlations
Message1 flightReservationData departureDate,returnDate,from,to
Message2 hotelRoomBookingData checkinTime,duration,roomType checkinTime=arriv-time
Message3 carRentalData period,carType,insurance
Message4 flightTicket airline,dept-time,arriv-time,flightNr,seatNr
Message5 hotelRoomConfirmation hotelName,period,roomNr
Message6 carRentalApproval carType,pickupLoc,pickupDate,period,dropOffLoc
Message7 seatUnavailableSignal seatStatus

Table 5: Message elements

Label Name Description Services Cost Quality
Provider1 KLM Royal Dutch Airline flightSearching,flightTicketBooking expensive high
Provider2 MartinAir Dutch Airline flightSearching,flightTicketBooking cheap average
Provider3 Hertz Car Rental Company carRental expensive high
Provider4 Dollar Car Rental Company2 carRental average average
Provider5 HotelDirect Hotels Worldwide hotelRoomReservation cheap average

Table 6: Provider elements

Label Name Type Capabilities Permissions
Role1 flightRole airline flightTicketBooking,bookingCancellation flightTicketBooking
Role2 hotelRole hotelBroker hotelRoomReservation hotelRoomReservation
Role3 carRole carRentalCompany carRental,carSale carRental

Table 7: Role elements

Structural rules: rules in this category are used to guide the process of
structuring, scheduling and prioritizing activities within a service composition.
An example of a structural rule in this category can be defined as:

structuralActivity: flow.subfunctions->exists(activity.function)

OR flow1.subfunctions->exists(flow2.function) (1)

Suppose we have a travel plan composition consisting of flight ticket booking,
hotel reservation and car rental activity, i.e., Activity1-3 in Table1. One of the
first concerns that a designer would face is to schedule these activities. We can
observe from the structural rule (1) that we may only include an activity in a
flow if its function attribute coincides with one of the subfunction attributes in
a flow element. Consequently, Activity1 in Table 1 can be included in Flow2 in
Table4. In a similar manner Activity2 and Activity3 can also be both included
in Flow1 (since the functions of Activity2 and Activity3 are subfunctions of
Flow1). This yields the two flows: Flow1 and Flow2. In order to merge these
flows, we need to re-apply the structural rule (1). This time the rule indicates
that we may include Flow1 in Flow2. As a result we have a composition in which



the activities are scheduled in accordance with the specified dependencies and
priorities, and the association instances are created by linking Activity1 with
Flow2, Activity2-3 with Flow1, and Flow1 with Flow2.

Data rules are used to control the use of data in a composition, i.e., how
messages are related to each other, what is the necessary input/output mes-
sage for an activity. There are four data rules: assignAsInput, assignAsOutput,
signalEvent and correlateMessage. These are defined as follows:

assignAsInput: message.parts->includesAll(activity.inputs)

assignAsOutput: message.parts->includesAll(activity.outputs)

signalEvent: message.parts->includesAll(event.information)

correlateMessage: message1.part != message2.part AND

message1.correlations->includes(message2.part) (2)

To illustrate how the data rules assignAsInput and assignAsOutput are ap-
plied, we try to determine the input and output message for Activity1 (Table
1). The rule assignAsInput indicates that a message is only suitable if it in-
cludes all the information required by the activity. Activity1 requires an input
message containing a departure date, a starting point and a destination. This
is satisfied by Message1 (Table 5) as it provides the required data. In a simi-
lar fashion we can derive the output message for Activity1. It must be noted
that Message1-3 are not suitable, since the outputs of Activity1 are not all
contained in one of these messages. However, Message4 turns out to be suitable
(even though it contains additional information).

We use the rule signalEvent to determine which message signals the occur-
rence of an event. To illustrate this, we consider as example Event1 (Table 3),
which describes a seat unavailability exception. The rule Event1 also indicates
that an appropriate seat status needs to be included in its signal. Thus the only
message satisfying this requirement is Message7.

Lastly, messages may be correlated to express dependencies between data in a
composition. The creation of such correlations is governed by a special rule called
correlateMessage. This rule specifies that a correlation exists if a part attribute
in a message is correlated to a part attribute in another message. For example,
in Message2 ”checkinDate” must be equal to ”arriv-time”. Therefore Message2
can be correlated with Message4 by applying the rule correlateMessage.

Behavioral rules are used to derive conditions for guarding activities, con-
trolling event occurrences and enforcing integrity constraints. We may define the
following behavioral rules:

preguardActivity: activity.inputs->exists(condition.argument)

postguardActivity: activity.outputs->exists(condition.argument)

controlEvent: event.information->exists(condition.argument)

preserveIntegrity: message.parts->exists(condition.argument) (3)

The first two rules derive the pre- and post-conditions of an activity, re-
spectively. In particular, the rule preguardActivity specifies that a condition can



guard the execution of an activity only if its argument constrains an input of the
activity. In other words, pre-execution guards can be based solely on informa-
tion that is used as activity input. Take Condition1 (in Table 2) for example, it
constrains the inputs ”from” and ”to” of Activity1 by stating that the starting
place must not be equal to the destination. Therefore, Condition1 can guard
the execution of Activity1 according to rule preguardActivity.

Another important use of conditions is to control how events can be raised
by indicating in which situations they may occur. For this purpose the rule con-
trolEvent is used to specify that if a condition constrains part of the information
required to signal the event, then it can control the occurrence of that event. To
understand this, we consider Event1 (in Table 3) and Condition3 (in Table 2).
Rule Event1 represents a seat unavailability exception, therefore it should only
occur if no seats can be reserved. The rule Condition3 can be used to constrain
its occurrence, since this condition checks the value of ”seatStatus” which is
”information” required by Event1 according to rule controlEvent.

Finally, conditions can be used to influence integrity constraints. For ex-
ample, the rule preserveIntegrity guides the creation of constraints by estab-
lishing associations between condition and message. More specifically, rule
preserveIntegrity specifies that only if the argument of the condition refers to a
part in a given message, then the condition can be used to enforce data integrity.
For instance Condition4 (in Table2), which specifies a constraint that the de-
parture date for the flight must always be greater than the current date, has
an argument ”departureDate”. This argument is part of Message1 (in Table5).
Consequently, rule preserveIntegrity helps establish a valid association between
Condition4 and Message1.

Resource rules are provided to guide the use of resources in the composition
in terms of selecting services, providers, and event raisers.

performActivity: role.capabilities->exists(activity.function)

AND role.permissions->exists(activity.function)

raiseEvent: role.capabilities->exists(event.context)

AND role.permissions->exists(event.context)

playRole: provider.services->includesAll(role.capabilities)(4)

The rule performActivity regulates which role is responsible for carrying out
an activity in the composition. It indicates that this can only be the case when-
ever a role is capable and authorized to perform the function in the activity.
For instance, in the case of Activity1, rule performActivity indicates that a role
both capable of and authorized to book flight tickets needs to be found. As a
result of this Role1 (in Table 7) is selected to handle the functions of Activity1.

Roles are also responsible for raising events. The requirements for doing so
are expressed by the rule raiseEvent. This rule specifies that a role must be
capable of and authorized to perform the function in those contexts where the
event can occur. For instance, only role Role1 can raise event Event1 according



to rule raiseEvent. This is due to the matching of the attribute ”context” in
Event1 with the ”capabilities” and ”permissions” attributes in Role1.

At runtime roles are carried out by concrete service providers. To guide the
selection process for each role we use the rule playRole. This rule controls se-
lection by demanding that a provider’s services must provide the functions for
which the role is capable of and authorized to perform. This means that, for
example, Role1 requires that a service provider must offer a service with flight
ticket booking. According to this rule, playRole Provider1 (Table 6) is the first
suitable provider.

Exception rules are finally used to guide the exceptional behavior regarding
service compositions. In this case the influenceActivity is used to determine which
events can affect an activity at run-time, while the rule handleEvent governs how
these events are to be handled. These rules are defined as follows:

influenceActivity: event.context->includes(activity.function)

handleEvent: activity.function=event.solution (5)

Rule influenceActivity specifies that for an event to impact an activity at run-
time, the context in which the event occurs must be equal to the function of the
activity. According to this rule an event such as Event1 can only influence an
activity whose function is the attribute ”flight-ticket-booking”. As a result, the
only element with which an association can be established is Activity1.

Knowing which activity is affected by which event is relatively useless if it
is not clear how this event is handled. Each event specifies in its ”solution”
attribute the preferable way to react to its occurrence. The rule handleEvent is
used for this purpose by specifying that an activity can only handle an event
if its ”function” is equal to specified ”solution” in the respective event. For
Event1 this means finding an activity whose function is to ”stop execution” of
the composition. Accordingly, Activity4 is assigned to handle Event1.

4 Service Composition Development Process

In this section we use the constructs we introduced in the previous to show how
to construct service compositions. We assume that already defined composition
elements, such as the ones described in Table-1, as well as all composition ele-
ments in Tables 2 to 7, are stored in the repository of the service composition
tool (see Fig 3). We also assume that the user is interested in booking a flight
from New York to Vancouver with departure date July 15th, and return date
August 22th. Furthermore, the user needs to reserve a hotel room and rent a
car.

The process of designing a composite service for this travel example becomes
a matter of applying the composition rules to incrementally construct composi-
tion elements and associations. Again we use the composition elements in Table
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Fig. 3. Architecture for the Service Composition Development System

1 to 7 for this example. The user triggers a request by either writing an applica-
tion program that retrieves existing activity elements and tries to combine them
in a composite service or by issuing a request expressed in a formal XML based
request language such as the one described in [1], [10]. The process of construct-
ing composite services out of elementary activities can proceed in accordance
with the steps of the algorithm found in Fig. 4, and is described in the following.
To describe this process we will use the travel example we introduced in the
previous.

The service composition development system receives the user request and
enters the Definition phase of the algorithm depicted in Fig. 4. In the first
instance the system attempts to determine/select activities that satisfy a user
request. As a result of the request expressed above, Activity1, Activity2
and Activity3 (in Table 2) are added to the composition. Subsequently, for
each activity the service composition development system tries to add message
exchanging behavior. To achieve this the system must determine for each activity
what type of messages it should use as input and generate as its output messages.
For example, for Activity1 message Message1 is found as input and Message4
as output. As a result these elements are added to the composition.

The next steps in the algorithm defines exceptional behavior for the service
composition by applying the rule influenceActivity for events and activities
possible to determine possible event occurrences. For example, for Activity1



1. Define abstract composition

1.a Determine activities
get Request from Interface, retrieve Activities with requested functionalities

1.b. Add message exchanging behavior
for each Activity

do while (no Input for Activity)
apply assignAsInput in Message to every Message/Activity combination

do while (no Output for Activity)
apply assignAsOutput in Message to every 
Message/Activity combination

1.c Define exception behavior
for each Activity

do
apply influenceActivity in Event to every Event/Activity combination
if (Event influences Activity)

do while (no Raiser for Event)
apply raiseEvent in Role to every Role/Event combination

do while (no Signal for Event)
apply signalEvent in Message to every Message/Event combination

do while (no Handler for Event)
apply handleEvent in Activity to every Activity/Event combination

1.d Place constraints
for each Activity

do
apply preguardActivity in Condition to every 
Condition/Activity combination

do
apply postguardActivity in Condition to every 
Condition/Activity combination

do
ask User for Data Constraints

do
apply controlEvent in Event to every Condition/Event combination

2. Derive scheduled composition
do while (User request alternative Schedule)

2.a Correlate messages
for each Message

do
ask User for Message Correlations

2.b Structure activities
do while (not every Activity in one Flow)

apply governActivity in Flow to every Flow/Activity combination
apply containFlow in Flow to every Flow/Flow combination

ask User to select Scheduled Composition

3. Develop constructed composition
do while (User request alternative Construction)

3.a Compose abstract services
for each Activity

do while (no Role for Activity)
apply performActivity in Role to every 
Role/Activity combination

3.b Assign concrete services
for each Role

do while (no Provider for Role)
apply playRole in Provider to every Provider/Role combination

ask User to select Constructed Composition

4. Create executable composition

Fig. 4. Algorithm for the Service Composition Development Process

Event1 (Table 4) is found as an influencing event. If an event influences an
activity, subsequently the event raiser, signal and handler need to be determined.
For Event1 this is done as follows:

1. Apply raiseEvent to role to determine the role raising the event. For
Event1 Role1 (Table 8), is found.

2. Apply signalEvent to message to derive the message signalling the event
occurrence. As a result Message7 is found for Event1.

3. Apply handleEvent to activity to determine the activity that will handle
the event. For example Activity4 is found for Event1.

Following the definition of exceptions, necessary constraints (if any) are
placed on the service composition. The constraints under which the composition
is to be executed are depicted in condition elements. These can be predefined,
e.g., pre-condition, post-condition, or user specified, e.g., data constraints. As
an example we can derive pre-conditions for the activities in the composition by



applying preguardActivity for each activity. This means that for Activity1
condition Condition1 applies.

Next, the abstract composition is made more concrete by entering the Schedul-
ing phase in the algorithm. During this phase we need to correlate messages and
structure activities. Correlations are usually context-dependent and thus can-
not be derived by a general business rule. Instead they can be defined for each
message by the user. This may, for instance, mean that for the travel request
we consider, the user may wish to define a correlation between ”arriv-time” in
Message4 and ”checkinDate” in Message2 to ensure that he will have a ho-
tel room the day he arrives. Following this, activities must be structured. This
is accomplished by applying the governActivity and containFlow structur-
ing operations which group related activities into a single flow. The construct
governActivity can be applied to both Activity2 and Activity 3 (Table 1)
to indicate that they can be included in Flow1 (Table 5). It can also be applied
to Activity1 to include it in Flow2. Finally, the constructs Flow1 Flow2 can
be combined into a single flow using containFlow to create a complete activity
schedule. The correlation and structuring sub-steps may be repeated to generate
additional schedules that may be relevant to a user request.

During the next step the algorithm enters Construction phase during which
the scheduled composition will turn into an unambiguous composition of concrete
services. First the algorithm composes abstract services by associating each activ-
ity with a role, specifying the requirements for a party interested in carrying out
the activity. This is accomplished by applying the operation performActivity
for each activity until a role has been found. For example, for Role2 can be
found for Activity2. As a last sub-step in the construction phase concrete ser-
vices are selected for the roles in the composition. For this purpose the operation
playRole is applied to each role, resulting in, for example, Provider2 (Table
6) as the first suitable provider for Role2. The construction sub-steps can be
repeated to create multiple concrete compositions for the user to choose from.

The final step in the algorithm is the Execution phase during which the con-
structed composition is mapped to an executable format in a service composition
language, e.g., BPEL. Such a translation can be likely done without too much
difficulty, however, we do not elaborate on it here due to space limitations.

It is not necessary that every composition needs to go through each individual
step discussed in the previous. If, for example, part of a composition is already
partially constructed with some of the composition elements defined, the model
only needs to be completed and mapped to an executable format.

5 Related Work

Most of the work in service composition has focused on using work flows either
as a engine for distributed activity coordination or as a tool to model and define
service composition. Representative work is described in [3] where the authors



discuss the development of a platform specifying and enacting composite services
in the context of a workflow engine.

The workflow community has recently paid attention to configurable or ex-
tensible workflow systems which present some overlaps with the ideas reported
in the above. For example, work on flexible workflows has focused on dynamic
process modification [8]. In this publication workflow changes are specified by
transformation rules composed of a source schema, a destination schema and of
conditions. The workflow system checks for parts of the process that are isomor-
phic with the source schema and replaces them with the destination schema for
all instances for which the conditions are satisfied.

The approach described in [6] allows for automatic process adaptation. The
authors present a workflow model that contains a placeholder activity, which
is an abstract activity replaced at run-time with a concrete activity type. This
concrete activity must have the same input and output parameter types as those
defined as part of the placeholder. In addition, the model allows to specify a
selection policy to indicate which activity should be executed.

In [14] authors developed an agent-based cross-enterprize Workflow Manage-
ment System (WFMS) which can integrate business processes on user’s demand.
Based on users’ requirements, the integration agent contacts the discovery agent
to locate appropriate service agents, then negotiates with the service agents
about task executions. Authors in [15] proposed a dynamic workflow system
that is capable of dynamic composition and modification of running workflows
by using a business rule inference engine. However these two approaches are
more of the focus of dynamic process execution and management.

Our approach differs from the above work as regards supporting the dynamic
composition of web services in the following manner:

– We propose a model driven approach towards service composition, which
covers the entire service composition life cycle ranging from abstract service
definition, scheduling, construction, execution and evolution. By raising the
level of abstraction compositions developed in our approach are flexible and
agile in the face of change.

– Service compositions are defined in terms of basic abstract elements, i.e.
composition elements, which are used to construct a concrete service com-
position specification. This design process is governed by composition rules,
supporting highly flexible composition development.

– Business rules are classified based on the requirements of service composition,
something which to the best of our knowledge has not been addressed in work
related to business rule classification, such as [5],[7] and [11].

6 Conclusions and future research

Current standards in service composition, such as BPEL, are not suitable for
dealing with the complex and dynamic nature of developing and managing com-



posite web services to realize business processes. With a vast service space to
search, a variety of services to compare and match, and different ways to con-
struct composed services, manual specification of compositions is an almost im-
possible task requiring specialistic knowledge, taking up much time and effort.
The challenge is thus to provide a solution in which dynamic service composition
development and management is facilitated in an automated fashion.

In this paper we have presented a phased approach to service composition
development conducted on the basis of abstract constructs provided by a model
driven architecture. Service compositions are constructed in a piecemeal fashion
by progressing from abstract service descriptions to more concrete ones on the
basis of a set of business rules that synthesize the activities in a composition.
This approach makes service composition more flexible and dynamic compared
to current standards and recent research activities.

The work presented herein is at an initial stage. Several issues including the
mappings and conformance between compositions need to be further investigated
and verified in a formal manner. In addition, a change management sub-system
to control the evolution of business rules and service composition specifications
needs to be developed.
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