
339

Reliability Prediction in Model-Driven Development

Genaı́na N. Rodrigues1, David S. Rosenblum1, and Sebastian Uchitel2

1 London Software Systems
Department of Computer Science

University College London
Gower Street

London WC1E 6BT
United Kingdom

{g.rodrigues,d.rosenblum}@cs.ucl.ac.uk
2 Department of Computing

Imperial College London
180 Queen’s Gate
London SW7 2RH
United Kingdom

su2@doc.ic.ac.uk

Abstract. Evaluating the implications of an architecture design early in the soft-
ware development lifecycle is important in order to reduce costs of development.
Reliability is an important concern with regard to the correct delivery of software
system service. Recently, the UML Profile for Modeling Quality of Service has
defined a set of UML extensions to represent dependability concerns (including
reliability) and other non-functional requirements in early stages of the software
development lifecycle. Our research has shown that these extensions are not com-
prehensive enough to support reliability analysis for model-driven software engi-
neering, because the description of reliability characteristics in this profile lacks
support for certain dynamic aspects that are essential in modeling reliability. In
this work, we define a profile for reliability analysis by extending the UML 2.0
specification to support reliability prediction based on scenario specifications. A
UML model specified using the profile is translated to a labelled transition system
(LTS), which is used for automated reliability prediction and identification of im-
plied scenarios; the results of this analysis are then fed back to the UML model.
The result is a comprehensive framework for addressing software reliability mod-
eling, including analysis and evolution of reliability predictions. We exemplify
our approach using the Boiler System used in previous work and demonstrate
how reliability analysis results can be integrated into UML models.

1 Introduction

The evaluation of system specifications early in the software development lifecycle has
increasingly gained attention from the software engineering community. Early evalu-
ation of software properties, including non-functional ones, is important in order to
reduce costs in software development before resources have been allocated and deci-
sions have been made. Dependability is one example of an important non-functional
property and represents the ability to deliver service that justifiably can be trusted. One

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 339–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.4 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.4 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

340 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

of the attributes encompassed by dependability is reliability, which is concerned with
the correct delivery of software system service.

There has been growing interest in closing the gap between commercial design
tools and quantitative evaluation of software systems. However, techniques available
to validate a design against non-functional properties often require significant effort
and expertise unrelated to the usual business of developing software. The UML 2.0
Specification itself has augmented the previous UML version so that software system
characteristics, and in particular the dynamic aspects of software behaviour, can be rep-
resented more accurately [14]. As a result, mechanisms to represent various aspects of
system design and analysis can be expressed within one consistent language for speci-
fying, visualising, constructing and documenting the artifacts of software systems. As a
result of the task force to make UML more comprehensive to cover all aspects and con-
cerns of the software development lifecycle, UML extension mechanisms (particularly
UML profiles) have been used to introduce capabilities for representing non-functional
concerns in UML models [15, 16].

The UML Profile for Modeling Quality of Service and Fault-Tolerance (henceforth
referred to as the QoS Profile) defines a set of UML extensions to represent depend-
ability concerns (including reliability) and other non-functional requirements using the
lightweight extension mechanisms of UML [15]. However, we believe the QoS Profile
is not comprehensive enough to support reliability analysis, as it does not address the
modeling of dynamic aspects (such as scenarios, component interactions, and opera-
tional profiles) often required in modeling reliability. On the other hand, dynamic as-
pects have been defined in the UML Profile for Schedulability, Performance and Time
Specification (henceforth referred to as the SPT Profile), but they were not incorporated
into the QoS Profile. Because a system consists of a set of interacting components such
that the interactions can reveal faults [1], modeling and annotating these interactions
appropriately can assist us in predicting software reliability.

In previous work, we defined a technique to predict software system reliability based
on scenario specifications [19]. The technique relies on LTSA, the Labelled Transition
Systems Analyser tool [21], which provides scenario-based model synthesis and model
checking capabilities to support the analysis. In this work, we define a profile for re-
liability analysis by extending the UML 2.0 specification to support reliability predic-
tion using our LTSA-based approach. Following this principle, our approach to meta-
modeling using the UML lightweight extension mechanisms (i.e., profiles) is consistent
with the MDA white paper [11], which defines basic mechanisms to structure models
consistently and to express formally the semantics of the model in a standardised way.
The result is a framework for systematically and pragmatically addressing software re-
liability modeling, including reliability analysis and prediction, with analysis results
integrated back with the UML modeling environment to support system reliability en-
hancement. We point out here that it is not our intent to propose a new, independent
UML profile. To the contrary, our purpose is to contribute towards a more comprehen-
sive profile for reliability modeling premised on existing directions sanctioned by the
OMG [15]. We exemplify our approach using the Boiler System used in previous work
and demonstrate how the analysis results can be applied back into the UML models.

Reliability Prediction in Model-Driven Development 341

This paper is structured as follows: In Section 2 we present the basic concepts re-
lated to our technique for software reliability prediction. In Section 3 we introduce our
model-driven development framework for reliability prediction. In Section 4 we present
the core steps of our MDA-compliant model-driven reliability prediction approach. We
illustrate the application of our profile in Section 5. Related work is presented in Sec-
tion 6, and we conclude in Section 7 with a discussion of future directions for our work.

2 Background

In this section we present a succinct description of our reliability prediction technique
based on scenario specification, presented in detail in previous papers [19, 18].

Scenarios are partial descriptions of how components interact to provide system
functionality. A scenario specification is formed by composing multiple scenarios pos-
sibly from different stakeholders. To support reliability prediction, we annotate a sce-
nario specification with probability annotations and use LTSA to process the annotated
scenarios. LTSA is a tool that allows using behaviour models of distributed systems
as prototypes for exploring system behaviour, and for automated checking of model
compliance to properties (i.e., model checking) [21].

2.1 Reliability Prediction

In Figure 1 we depict the major steps our reliability prediction approach comprises.
The steps are applied to a scenario specification expressed as a collection of Basic Mes-

1. Annotated MSCs
2. Synthesis of Annotated

LTS

4. System Reliability

Estimate
5. Implied Scenarios Detection

3. Stochastic Matrix

Construction

NegativePositive

Fig. 1. The Steps of Our Reliability Prediction Approach.

sage Sequence Charts (henceforth BMSCs) and High-Level Message Sequence Charts
(henceforth HMSCs). HMSCs provide sequential, conditional and iterative composition
of BMSCs and other HSMCs, while BMSCs describe the message exchange between
components on a time-line basis.

In the first step, we annotate the scenarios with two kinds of probabilities, the prob-
ability of transitions between scenarios PTSij , and the reliability of the components
RC . PTSij is the probability that the system will execute scenario Sj after executing
scenario Si. This information would be derived from an operational profile for the sys-
tem [9] and is annotated on the HMSCs. The sum of the probabilities PTSij for all
successor scenarios Sj must equal one. As for the component reliabilities RC , they are

342 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

annotated on the BMSCs. For the purposes of our approach, we interpret the reliability
of a component C as being the probability of successful completion of an invocation of
any service offered by C, irrespective of the execution time of the service.

The second step of our method is to synthesise a probabilistic Labelled Transition
System (LTS) from the annotated scenario specification. This step is an extension of the
synthesis approach of Uchitel et al. [22], in which a separate LTS is first synthesised
for each component, and then the system architecture is taken as the parallel compo-
sition of the component LTSs. Our extension involves enhancements to this synthesis
approach and exploits recent probabilistic extensions to the LTS formalism [2]. The en-
hancements have the effect of mapping the probability annotations of the scenario spec-
ification into probability weights for transitions in the synthesised architecture model.
The probability weights of the composed LTS are computed according to the notion of
generative parallel composition defined by D’Argenio et al. [5]. At the end of this step,
it follows that for each state i of the synthesised architecture model and for all succes-

sor states j of i,
n∑

j=1

PAij = 1, where n is the number of states in the LTS architecture

model and PAij is the probability of transition between state si and sj of the composed
LTS; PAij = 0 if the transition (si, sj) does not exist.

In the third and fourth steps of our reliability prediction method, the architecture
model synthesised in the second step is interpreted as a Markov model, and we apply the
method of Cheung to compute the reliability prediction [3]. In particular, the probability
weights of the architecture model are mapped into a square transition matrix whose row
entries sum to one. To conform to Cheung’s model, we extend the scenario specification
to ensure that it contains exactly one initial and one final scenario. At this stage we can
also perform sensitivity analysis of the prediction [18].

2.2 Implied Scenarios

Given a scenario specification, it may be impossible to build a set of components that
communicate exclusively through the interfaces described and that exhibit only the
specified traces when running in parallel [23]. The additional unspecified traces that
are exhibited by the composed system are called implied scenarios and are the result of
specifying the behaviour of the system from a global perspective while expecting the
behaviour to be provided by components having only a local system view.

From the reliability prediction point of view, the existence of an implied scenario
means that the system produces a trace that reveals a mismatch between behaviour
and architecture. In that case, the model can exhibit behaviour (an implied scenario)
that has not yet been validated and that, depending on whether it describes intended or
unintended system behaviour, can impact system reliability. If we decide that the occur-
rence of the trace is desirable, we then need to appropriately place the positive scenario
containing the trace into the scenario specification and annotate it with probabilities
as described above. If we consider the occurrence of the trace as undesirable, then the
scenario is a negative scenario, and the synthesised model must be constrained to pre-
vent the occurrence of the negative scenario; this is accomplished by composing the
synthesised model with an LTS that encodes the constraint [23]. We refer to the model
where we apply such constraints as the Constrained Model, while the unconstrained

Reliability Prediction in Model-Driven Development 343

model we refer to as the Architecture Model. In both cases, a new reliability prediction
is computed from the revised model.

3 The Reliability Prediction Domain

Our framework for reliability prediction in model-driven development is based on the
process depicted in Figure 2. The contribution presented in this paper is for steps 1, 2
and 3. The other steps constitute the work described in the previous section.

The framework consists of a UML profile for reliability prediction, plus a translation
from the UML diagrams to LTSA. Reliability prediction is carried out as described be-
fore, as is the validation of the model by LTSA for implied scenarios. The result of this
analysis provides a specification that has been elaborated through detection and valida-
tion of implied scenarios. Additionally, the results provide guidance to which software
elements modeled in the UML profile the system is more sensitive. The rationale be-

Apply the

UML Profile for
Reliability

Prediction

Configured UML

Model in XMI

4. Architecture LTS

Synthesis

5. Reliability

Computation

3. Translation to

LTSA

6. Implied Scenarios

and System

Reliability

Sensitivity

2.

LTSA

1.

Fig. 2. The Model Processing Framework for Reliability Prediction.

Fig. 3. The Domain Model of the Reliability Prediction Technique.

hind our approach is that the reliability of the system depends on two key pieces of
information, as explained in Section 2: (1) scenario transition probabilities and (2) the

344 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

reliability of the components. In order to support this approach within the MDA, we
devise the conceptual model of reliability prediction depicted in Figure 3.

From Figure 3 it can be noticed that there are two main abstract constructs in our
domain model: the Node and the Scenario. A Node represents the nodes of an HMSC.
These nodes can be specialized as a BMSC or another HMSC, in case of a hierarchical
HMSC. A BMSC corresponds to a Basic Message Sequence Chart describing the inter-
actions between components participating in a scenario, and an HMSC corresponds to
the high-level structure representing the composition of BMSCs. A Node element may
be associated to an HTransition element, which represents the probability of transition
to a node representing one of a set of alternative choices of behaviour. In that case, each
node representing an alternatives is stereotyped as an HTransition.

A Scenario, the other main abstraction of our domain model, is an aggregation of
at least two BComponents and at least one BConnector. A BComponent represents a
software component, while a BConnector represents the logical or physical connection
between two BComponents. The number of BConnectors associated to a BComponent
is equal to the number of other components connected to that BComponent. A Scenario
can be specialised as a BMSC or a NegBMSC, with the latter corresponding to a negative
scenario as previously explained in Section 2.2.

In the next section, we delve more deeply into the processes depicted in Figure 2
and present the UML viewpoint of the structures in Figure 3.

4 Our Reliability Prediction Profile

Our profile for reliability prediction exploits the lightweight extension mechanisms of
UML rather than the heavyweight mechanisms. Lightweight extensions of UML con-
sist in defining a profile, i.e., a set of stereotypes, tagged values and OCL constraints.
Heavyweight extensions of UML work in a higher level of abstraction by extending the
Meta-Object Facility with new UML modelling constructs [13]. These extension fea-
tures present in UML allow us to express the design and analysis domains seamlessly
using the concepts inherent to these domains. Also, they permit us to map the behaviour
of distributed component architectures into a domain representation preserving the se-
mantics of UML in accordance with the MDA.

4.1 The UML Viewpoint

From the UML point of view, our profile depends on two major packages: (1) the SPT
Profile, which defines the notion of time and resources modeling, and (2) the UML
2.0 Specification, where we realise the structures defined in the SPT domain and those
required to model reliability.

In Figure 4 we show how the elements of our domain model relate to the elements
that constitute the SPT Profile. The elements in Figure 4 in italicised font are part of
the SPT Profile. A Scenario, in the SPT Profile, is an ordered series of steps called ac-
tion executions, and a step, at one level of abstraction, can be decomposed further into
a set of finer-grained steps. As can be noticed, all the elements in our domain model,

Reliability Prediction in Model-Driven Development 345

except for Node and Scenario, extend elements of the SPT Profile. The abstract ele-
ment Node of our domain, depicted in Figure 3, can be represented as a Scenario in the
SPT profile or as coarse-grained ActionExecutions. A Scenario of our domain, depicted
in Figure 3, can be represented as fine-grained ActionExecutions in the SPT profile. A
Scenario in the SPT profile is specialized as an HMSC and an ActionExecution class is
specialised as a BMSC or as an HTransition. The specialisation of the ActionExecution
as an HTransition happens whenever the ActionExecution represents a choice of behav-
ior. The HTransition also holds an association with Resource Service Instance, meaning
that an HTransition keeps the reference of the resource service.

Fig. 4. Relationship between our Reliability Profile and the SPT Profile.

In SPT, resources are categorised being passive or active. Passive resources cannot
generate their own behaviour, but only react to the occurrence of a stimulus, while active
resources are those capable of spontaneous unprompted behaviour. The BConnector is
a kind of passive resource, while the BComponent is an active resource.

Table 1 describes the elements constituting the UML profile for reliability modeling.

Table 1. Stereotypes and Tag Definitions for the Reliability Profile.

Stereotype Base Class Tags

� HMSC � Interaction
Activities

HName

� BMSC � Interaction BName
� NegBMSC � Interaction BName
� HTransition � Interaction PTS

� BComponent �
Classifier
Component
Instance

BCompRel

� BConnector � Stimulus
Message

BConnRel

� Stop � Interaction N/A

Tag Type Multiplicity
PTS Real (0,1] [0..1]
BCompRel Real (0,1) [0..1]
BConnRel Real (0,1) [0..*]
HName String [0..1]
BName String [0..1]

346 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

The stereotypes our profile comprises correspond to the concrete classes of our domain
model depicted in Figure 3. Those stereotypes apply to UML 2.0 domain elements as
follows:

– BMSC – Applies to Interactions of Sequence Diagram type.
– NegBMSC Applies to Sequence Diagrams with a CombinedFragment having neg

as its InteractionOperator.
– HMSC – Applies to the Interaction Overview Diagram, which is the structure that

best suits the modeling of an HMSC. Interaction Overview Diagrams focus on the
overview of the flow of control where the nodes are Interactions or InteractionOc-
currences [14]. Also, as a structure to represent the flow of control, the Interaction
Overview Diagram enables the representation of the initial and the final states of the
flow, which are also structures required in our reliability prediction technique [19].
Alternatively, we could use the CombinedFragments structure, but an Interaction
Overview Diagram is semantically closer to HMSCs.

– HTransition – Applies to an Interaction representing an alternative choice of be-
haviour. It is tagged with the value PTS, the probability of transition to the Interac-
tion.

– BComponent – Applies to components participating in Sequence Diagrams to be
analysed by the model processor. The tag BCompRel associated to the BComponent
stereotype represents the reliability of the component, as defined in Section 2.

– BConnector – Applies to messages exchanged between two BComponents in an
Interaction. The tag BConnRel associated to the BConnector represents the relia-
bility of the connector enabling the communication between the components. The
reliability of the connector is regarded as the probability of success of a message
transition, irrespective of the transition execution time.

– Stop – Due to the assumption in our prediction technique that there must be one
final scenario in the scenario specification [19], it is required that no more than one
Interaction connects to the final node of the HMSC Interaction Overview Diagram.
The Stop stereotype applies to the Interaction with that feature.

The following are constraints defined in our Reliability Profile package:

1. Every HMSC and BMSC must be uniquely named.
2. Within an Interaction Overview Diagram stereotyped as an HMSC, every node

must be either a BMSC or another HMSC.
3. Every BMSC is an Interaction of type Sequence Diagram.
4. Every HMSC must have one Activity initial node and one Activity final node.
5. HMSC nodes must have at least one incoming and one outgoing transition, except

the initial node and final node.
6. The PTS values of HTransition-stereotyped nodes connected to the same Decision

node within an HMSC must sum to one.
7. In an HMSC, there must be one (and only one) Interaction stereotyped as Stop and

connecting to the final node.

Each of these constraints can be expressed easily in OCL, but for space reasons we do
not present their OCL rendition.

Reliability Prediction in Model-Driven Development 347

4.2 Mapping from UML to LTSA

Once our profile is applied to a UML model, the translation from UML to LTSA is
carried out. The transformation consists of (1) parsing the XML Metadata Interchange
(XMI) form of the UML model, which is the standard representation of UML models
in XML [12], and (2) generating the XML input format accepted by LTSA.

Current UML tools provide only partial conformance with the UML 2.0 specifi-
cation, which has forced us to make some workarounds in our implementation. The
major problem we encountered was to apply the stereotype HTransition and its PTS
tagged value to the nodes (i.e., Interaction Occurrences) within Combined Fragments
within Interaction Overview Diagrams. To get around this problem, we had to associate
the HTransition stereotype with the transitions between nodes rather than to the nodes
themselves. This solution is temporary, and we will evolve the implementation of our
profile as tool support improves to properly accommodate the UML 2.0 specification.

We implemented the transformation of our UML profile to LTSA in XSLT [24].
XSLT describes rules for transforming a source document in a tree format (such as an
XML file) into a result document described also by a tree. It therefore suits our need
to transform the XMI representation of a UML model into the XML format accepted
by LTSA. The transformation process is rather straightforward as long as the following
conditions are satisfied:

1. An HMSC in LTSA cannot have multiple nodes that correspond to the same BMSC.
In case there are multiple Interaction Occurrences of the same Sequence Diagram
in a UML Interaction Overview Diagram, those multiple occurrences are reduced
to just one node of the LTSA HMSC during the transformation process, keeping
the same set of transitions contained in the Interaction Overview Diagram.

2. LTSA does not support hierarchically nested HMSCs at the moment. In case an
Interaction Overview Diagram is specified in multiple hierarchical levels, it should
be flattened before transformation is carried out.

4.3 Mapping Analysis Results Back to UML

After analysis has been carried out in LTSA following the approach presented in Sec-
tion 2, we have the system reliability prediction and the detection of implied scenarios.
In particular, we can use this analysis to provide answers to the following questions: Do
we have any implied scenarios in our system architecture model? What is the impact
of the implied scenarios on the system reliability? What is the sensitivity of the system
reliability to changes in individual probability values?

If an implied scenario is a positive scenario, which means that the detected trace is to
be included in the scenario specification, then a new Sequence Diagram is constructed
for the trace and annotated with our profile for reliability prediction. This new Interac-
tion is then incorporated appropriately as a node in the Interaction Overview Diagram.
Incoming and outgoing transitions must be manually attached to the new positive sce-
nario. If an implied scenario is a negative scenario, i.e., a trace to be avoided, it needs to
be incorporated into a NegBMSC, with the undesirable message traces specified inside
an Interaction Fragment having InteractionOperator type neg.

348 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

As for the sensitivity analysis, the purpose is to study the impact of components
and usage profiles on system reliability [18]. For this purpose, the analysis reveals how
the system reliability is sensitive to (1) the component reliabilities, and (2) the scenario
transition probabilities. These two analyses can help in identifying components and
scenario transitions that could threaten the reliability of the software system. The results
produced by the sensitivity analysis can then be used by system designers to decide on
mechanisms to use for enhancing the system reliability.

5 Example

We exemplify our approach using a variant of the Boiler Control system presented by
Uchitel et al. [23]. As shown in the Interaction Overview Diagram of Figure 5, the
Boiler Control system composes five Sequence Diagrams Initialise, Register, Analyse,
Terminate and Shutdown, which are are depicted in Figure 6.

ref
Register

ref
Initialize

ref

Analyse

<<HTransition>>
{PTS=0.2}

ref

Initialize

<<HTransition>>

{PTS=0.5}

ref

Terminate

<<HTransition>>

{PTS=0.1}
ref

Register

<<HTransition>>

{PTS=0.7} ref

Shutdown

<<Stop>>

<<HTransition>>
{PTS=0.5}

<<HMSC>>

{HName = Boiler}

Fig. 5. The Interaction Overview Diagram of the Boiler System.

As presented in Section 4, the stereotype HTransition is tagged with the probability
of transition between scenarios, PTS, as shown in Figure 5. The values for the PTS are
based on the assumption that the system executes the scenario Register (which causes
sensor readings to be entered into the database) far more frequently than the scenarios
Analyse and Terminate, and that when it does execute Terminate there is an equal prob-
ability of either reinitialising or shutting down completely. As shown in the figure, it
may be necessary to specify multiple references to the same Sequence Diagram if they
are to be tagged with different scenario transition probabilities.

Inside the BMSC-stereotyped Sequence Diagrams, the components’ reliabilities are
annotated by applying the stereotype BComponent with its tagged value BCompRel, as
depicted in Figure 6. Without loss of generality, we use coarse-grained, single values
for the overall component reliabilities. In general, we can also associate finer-grained
values for reliability through annotation of individual messages and segments of com-
ponent timelines. The BConnector element of our profile suits the use of finer-grained

Reliability Prediction in Model-Driven Development 349

Fig. 6. The Annotated Sequence Diagrams of the Boiler System.

(1) start

(0.333) stop

(0.667) query (0.95) data

(0.05) data

(1) command

(0.5) start

(0.5) shutdown (1) endAction

-1 0 1 2 3 4 5 E

Fig. 7. The Synthesised Label Transition System for Component Control in LTSA.

values where individual messages can also be associated with a communication relia-
bility value; in the example, these values are all set to 1.0. The values in Figure 6 for
the reliability of the components reflect the assumption that the Database is a highly
reliable, mature commercial software product, that the Sensor and Actuator are compo-
nents whose hardware interface to the sensed/actuated phenomena will eventually wear
out and fail, and that Control is a newer, complex software subsystem that still contains
latent faults. Notice that the Shutdown Sequence Diagram is not present in Figure 6, as
it has traces identical to those in the Terminate scenario.

Following the steps of our reliability prediction technique [19], the LTS model for
each component participating in the scenarios is generated; for instance, the LTS for
component Control is depicted in Figure 7. Then, the Architecture Model of the sys-
tem is synthesised as the parallel composition of the component LTSs. Using Cheung’s

350 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

approach to compute a prediction for the system reliability for the synthesised Archi-
tecture Model, we obtain a 64.9% probability of successful completion of the whole
system execution, irrespective of time duration.

5.1 Validating for Implied Scenarios

The Boiler Control System specification of Figures 5 and 6, has implied scenarios, and
Figure 8(a) depicts one of them. From the specification we see that the Boiler Con-
trol system architecture may exhibit the trace start–pressure–query–data–command,
and that component Control interacts with Database only through messages query and
data. However, in the implied scenario of Figure 8(a), a query is performed immedi-
ately after start but before a pressure reading is provided by the Sensor to the Control.
In other words, the Architecture Model produces a trace that reveals a mismatch be-
tween behaviour and architecture, and we view this particular trace as being undesir-
able. This trace thus represents a negative scenario, and so a set of constraints preventing
the occurrence of the negative scenario is expressed in FSP, the modeling notation of
LTSA [7], and then composed with the Architecture Model. Following the steps of our

ActuatorControlDatabaseSensor

start

pressure

query

stop

start

(a) Detected in LTSA

neg

<<BComponent>>

Sensor
{BCompRel=0.99}

<<BComponent>>

Control

{BCompRel=0.95}

<<BComponent>>

Database
{BCompRel=0.999}

1:start

3:stop

4:start

2:pressure

5:query

<<NegBMSC>>

{BName=NegBoiler}

(b) Mapped to the UML Profile

Fig. 8. An Implied Scenario.

reliability prediction technique, a Constrained Model of the system is then synthesised
as the parallel composition of the constraints with the Architecture model previously
obtained. Calculating the reliability of the resulting Constrained Model, we obtain the
value of 86.2% probability of successful completion of the whole system execution,
irrespective of time duration. Figure 8(b) depicts the implied scenario detected in LTSA
as it would be mapped back to UML as a NegBMSC.

Reliability Prediction in Model-Driven Development 351

5.2 Sensitivity Analysis

Sensitivity analysis consists of determining how the system reliability varies as a func-
tion of the components’ reliabilities and scenario transition probabilities, with the pur-
pose of identifying probabilities that have the greatest impact on the reliability of the
software system [18]. For component reliabilities, the method consists of varying the
reliability of one component at a time and fixing the others to 1. Then, computing the
system reliability, we obtain the results presented in Figure 9.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 70 75 80 85 90 95 100

S
ys

te
m

 R
el

ia
bi

lit
y

(%
)

Component Reliability(%)

Constrained Model

Control
Sensor

Actuator
Database

Fig. 9. The System Reliability as a Function of the Component Reliabilities.

The graph shows the system reliability of the Constrained Model as a function of
the component reliabilities. The analysis shows that the reliability of the Boiler System
is most sensitive to component Database, followed by components Sensor, Control and
Actuator. Note that the Control and the Actuator curves coincide, meaning that they
have an identical impact on system reliability.

6 Related Work

Using UML profiles to support modeling of non-functional aspects of software systems
following a model-driven approach is not a new idea. The approaches for model-driven
non-functional analysis are distinguished mostly by the way they support analysis of
annotated UML models.

Majzik et.al. provide a profile for modeling fault-tolerant mechanisms, particularly
redundancy, in UML diagrams [8]. Transformations are done in a sound manner through
graph transformation, from UML to their analysis platform. Approaches in this category

352 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

do not follow a standardised MDA approach. As a result, the key benefit of a standards-
based approach is lost, i.e., interoperability of applications enabling a market in robust
industrial tools that support the approach.

There has been work following the MDA approach for non-functional requirements
modeling by extending the SPT Profile with regard to performance [6, 20]. Gu et.al.
implement a transformation by parsing the XMI output of profile-mapped UML dia-
grams [6]. The approach of Skene et.al. resembles that of Gu et.al. but provides a more
formal elaboration of the profile via OCL constraints [20]. Our approach follows in the
same standards-based spirit, but with regard to reliability modeling. At the end of the
day, any standards-compliant UML tool is capable of storing these models.

Recently, Cortellessa et.al. [4] proposed an amendment to the QoS Profile [15] with
the purpose of addressing issues related to the reliability modeling of component-based
systems. Our profile follows a similar structure as their extension for the QoS Profile,
but we differ in the way we compose scenarios. In particular, we consider it important
to provide more structure to a scenario specification and thus to model the interaction
between scenarios through the HMSC structure of our profile. This feature allows us
to model larger systems, as a greater number of scenarios can be analysed more easily
through the HMSC structure. Therefore, we believe that our profile provides gains in
modularity for modeling large systems and their reliability issues.

In our profile, we use of UML 2.0 constructs to support reliability analysis for
component-based software systems. Constructs in UML 2.0 make easier the task of
modeling non-functional requirements due to its richer expressiveness compared to pre-
vious UML versions. Reliability modeling using new concepts introduced in UML 2.0
are not commonly found in the literature. We believe that wider availability of mod-
elling tools supporting UML 2.0 will stimulate new work in this area.

7 Conclusion

We present in this paper a UML profile to aid reliability prediction and analysis of soft-
ware systems. We define a framework based on the UML 2.0 specification and the SPT
Profile to support a reliability prediction technique that takes into account component
structure exhibited in scenarios and the concurrent nature of component-based systems.

Following a compliant MDA process, a UML model specified using the profile is
translated to a labelled transition system, which is model-checked by the LTSA tool to
identify implied scenarios and is used to compute a reliability prediction according to
the method of Cheung. Sensitivity analysis is also used to highlight components and
scenario transitions that have a high impact on system reliability. The analysis results
are integrated back with the UML modeling environment to support system reliability
enhancement. Our purpose with the profile is to contribute towards a more comprehen-
sive profile for reliability modeling consistent with the direction of the OMG [15].

We may acknowledge some shortcomings of our UML profile. We have imple-
mented our profile using the MagicDraw UML tool version 9.0 Community Edition [10],
and the XSLT stylesheet we implemented was based on the XMI version 1.2 the tool
generates for the UML diagrams. The problem is that Magic Draw provides just partial

Reliability Prediction in Model-Driven Development 353

support to UML 2.0, and the XMI output is out of date. Future versions of the tool are
expected to be fully compliant with UML 2.0, as well as the XMI counterpart.

Future directions of our work include extending the profile to support modelling of
fault-tolerance mechanisms. The first steps towards this goal were initiated in previous
work [17] and by others in the literature, including the OMG itself [15]. By doing
this, we intend to support code generation with assessed reliability, enhanced via fault-
tolerance mechanisms present in current distributed component platforms. Additional
work is also needed to explore methods and techniques that can fully reveal the impact
of implied scenarios on system reliability. Finally, we plan to apply our approach on
case studies of larger, more realistic systems to evaluate its scalability and the accuracy
of the predictions it produces.

Acknowledgments

David Rosenblum holds a Wolfson Research Merit Award from the Royal Society. Se-
bastian Uchitel was partially funded by EPSRC grant READS GR/S03270/01. Genaı́na
Rodrigues was funded by CAPES, grant 108201-9. Vittorio Cortellessa provided sev-
eral valuable comments that improved our understanding of reliability modeling in
UML and the state of current efforts with relevant UML profiles. We also thank the
anonymous referees for their helpful suggestions on improving the manuscript.

References

[1] A. Avižienis, J. Laprie, and B. Randell. Fundamental Concepts of Dependability. In Proc.
IARP/IEEE-RAS Workshop on Robot Dependability, May 2001.

[2] T. Ayles, A. Field, J. Magee, and A. Bennett. Adding Performance Evaluation to the LTSA
Tool (Tool Demonstration). In Proc. 13th Performance Tools, September 2003.

[3] R. C. Cheung. A User-Oriented Software Reliability Model. In IEEE Transactions on
Software Engineering, volume 6(2), pages 118–125. IEEE, Mar. 1980.

[4] V. Cortellessa and A. Pompei. Towards a UML profile for QoS: a contribution in the
reliability domain. In Proc. of the 4th WOSP, pages 197–206. ACM Press, 2004.

[5] P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. On Generative Parallel Composition. In
Electronic Notes in Theoretical Computer Science, volume 22. Elsevier, 2000.

[6] G. P. Gu and D. C. Petriu. Early Evaluation of Software Performance Based on the UML
Performance Profile. In Proc. of the 2003 CASCON, pages 66–79. IBM Press, 2003.

[7] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley, NY, 1999.
[8] I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic Dependability Analysis of System

Architecture Based on UML Models. In Architecting Dependable Systems, LNCS–2667,
pages 219–244. Springer, 2003.

[9] J. D. Musa. Operational profiles in software-reliability engineering. IEEE Software,
10(2):14–32, 1993.

[10] NoMagic Inc. MagicDraw UML. http://www.magicdraw.com/.
[11] OMG. Model Driven Architecture. http://www.omg.org/mda/, July 2001.
[12] OMG. XMI Specification. http://www.omg.org/cgi-bin/doc?formal/2002-01-01, Jan 2002.
[13] OMG. MOF 2.0 Specification. http://www.omg.org/cgi-bin/doc?ptc/2003-10-04, Oct 2003.
[14] OMG. UML 2.0 Superstructure. http://www.omg.org/cgi-bin/doc?ptc/2004-10-02, 2003.
[15] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

and Mechanisms. http://www.omg.org/docs/ptc/04-09-01.pdf, Sep 2004.

354 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

[16] OMG. UML Profile for Schedulability, Performance and Time Specification.
http://www.omg.org/technology/documents/formal/schedulability.htm, Jan 2005.

[17] G. Rodrigues, G. Roberts, and W. Emmerich. Reliability Support for the Model Driven
Architecture. In Architecting Dependable Systems II. Springer, LNCS 3069, 2004.

[18] G. Rodrigues, D. Rosenblum, and S. Uchitel. Sensitivity Analysis for a Scenario-Based
Reliability Prediction Model. In Proc. ICSE 2005 Workshop on Architecting Dependable
Systems, pages 73–77, May 2005.

[19] G. Rodrigues, D. Rosenblum, and S. Uchitel. Using Scenarios to Predict the Reliability
of Concurrent Component-Based Software Systems. In Proc. ETAPS 2005 Conference on
Formal Approaches to Software Engineering, pages 111–126. Springer, LNCS 3442, 2005.

[20] J. Skene and W. Emmerich. A Model Driven Architecture Approach to Analysis of Non-
Functional Properties of Software Architecture. In Proc. of the 18th ASE. Toronto, CA.
IEEE Computer Society, Oct. 2001.

[21] S. Uchitel, R. Chatley, J. Kramer, and J.Magee. LTSA-MSC: Tool Support for Behaviour
Model Elaboration Using Implied Scenarios. In Proc. of 9th TACAS, Warsaw, Apr. 2003.

[22] S. Uchitel, J. Kramer, and J.Magee. Synthesis of Behavioral Models from Scenarios. IEEE
Transactions on Software Engineering, 29(2):99–115, Feb. 2003.

[23] S. Uchitel, J. Kramer, and J.Magee. Incremental Elaboration of Scenario-Based Specifi-
cations and Behavior Models Using Implied Scenarios. ACM Transactions on Software
Engineering and Methodologies, 13(1):37–85, Jan. 2004.

[24] W3C. XSL Transformations (XSLT). http://www.w3.org/TR/xslt, November 1999.

	Introduction
	Background
	The Reliability Prediction Domain
	Our Reliability Prediction Profile
	Example
	Related Work
	Conclusion

