4,800 research outputs found

    Actin Dynamics Associated with Focal Adhesions

    Get PDF
    Cell-matrix adhesion plays a major role during cell migration. Proteins from adhesion structures connect the extracellular matrix to the actin cytoskeleton, allowing the growing actin network to push the plasma membrane and the contractile cables (stress fibers) to pull the cell body. Force transmission to the extracellular matrix depends on several parameters including the regulation of actin dynamics in adhesion structures, the contractility of stress fibers, and the mechanosensitive response of adhesion structures. Here we highlight recent findings on the molecular mechanisms by which actin assembly is regulated in adhesion structures and the molecular basis of the mechanosensitivity of focal adhesions

    TRPV4-A Missing Link Between Mechanosensation and Immunity

    Get PDF
    Transient receptor potential vanilloid-type 4 (TRPV4) cation channel is widely expressed in all tissues as well as in immune cells and its function as mechanosensitive Ca2+ channel seems to be conserved throughout all mammalian species. Of late, emerging evidence has implicated TRPV4 in the activation and differentiation of innate immune cells, especially in neutrophils, monocytes, and macrophages. As such, TRPV4 has been shown to mediate neutrophil adhesion and chemotaxis, as well as production of reactive oxygen species in response to pro-inflammatory stimuli. In macrophages, TRPV4 mediates formation of both reactive oxygen and nitrogen species, and regulates phagocytosis, thus facilitating bacterial clearance and resolution of infection. Importantly, TRPV4 may present a missing link between mechanical forces and immune responses. This connection has been exemplary highlighted by the demonstrated role of TRPV4 in macrophage activation and subsequent induction of lung injury following mechanical overventilation. Mechanosensation via TRPV4 is also expected to activate innate immune cells and establish a pro-inflammatory loop in fibrotic diseases with increased deposition of extracellular matrix (ECM) and substrate stiffness. Likewise, TRPV4 may be activated by cell migration through the endothelium or the extracellular matrix, or even by circulating immune cells squeezing through the narrow passages of the pulmonary or systemic capillary bed, a process that has recently been linked to neutrophil priming and depriming. Here, we provide an overview over the emerging role of TRPV4 in innate immune responses and highlight two distinct modes for the activation of TRPV4 by either mechanical forces (“mechanoTRPV4”) or by pathogens (“immunoTRPV4”)

    Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

    Get PDF
    The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression

    Application and Development of Mechanoresponsive Polymer Structures

    Get PDF
    Mechanoresponsive Systeme antworten auf mechanische Reize mit einer Eigenschaftsänderung. Diese Dissertation umfasst die Arbeiten mit zwei mechanoresponsiven Systemen, die optisch auf mechanische Reize antworten. Sie basieren auf polymeren Strukturen, einer Polymerbürste und einem Hydrogelnetzwerk. Ihr optischer Antwortmechanismus ermöglicht die Beobachtung wirkender Kräfte als ein Ansatz zur in situ-Kraftmessung. Im ersten Teil wird ein existierendes, mechanoresponsives System zur Anwendung gebracht, das auf einer mit Fluoreszenzfarbstoff markierten Polyelektrolytbürste basiert. Die Ladungen des Polyelektrolyts können die Fluoreszenz des Farbstoffs unterdrücken, sodass lokale Kompression und Zugspannung über die Fluoreszenzintensität unterschieden werden können. Die mechanoresponsive Polymerbürste wurde als mechanosensitive Oberflächenbeschichtung angewandt, um Unterschiede in der Kontaktspannungsverteilung von Gecko-inspirierten adhäsiven Mikrostempelstrukturen aufzuklären. Die erarbeiteten Ergebnisse und daraus abgeleiteten Ablösemechanismen der Mikrostempeltypen deckten sich qualitativ mit Vorhersagen aus theoretischen Ansätzen. Aufgrund geometrischer Einschränkungen einer planaren Oberflächenbeschichtung zielt der zweite Teil darauf ab, dieses mechanoresponsive Prinzip in ein dreidimensionales Netzwerk zu überführen und ein mechanoresponsives Hydrogelnetzwerk als Plattform zur Kraftmessung zu entwickeln. Konzeptionell besitzt ein homogenes Netzwerk vorhersagbare mechanische Eigenschaften, sodass lokale optische Antworten auf mechanische Kräfte ermöglichen könnten, die wirkenden Kräfte zu lokalisieren und quantifizieren. Basierend auf einer Gestaltung nach der Flory-Rehner-Theorie wurden Präkursoren mit vordefinierter Größe und Architektur für die Hydrogelherstellung eingesetzt, um auf ein homogenes Netzwerk abzuzielen. Zu diesem Zweck wurde das Mischungsvolumen durch Tropfenmikrofluidik reduziert. Für den optischen Antwortmechanismus wurden die Hydrogelnetzwerk-Präkursoren mit zwei verschiedenen Fluorophoren markiert, die sich durch abstandsabhängige Emission über Förster-Resonanzenergietransfer auszeichnen. Die Funktionalität des optischen Antwortmechanismus wurde auf globaler Ebene durch Kollabieren und kontrolliertes Quellen des Netzwerks, dann auf lokalisierter Ebene durch definierte mechanische Belastung mit Rasterkraftmikroskopie gezeigt. Durch ihre Anpassbarkeit könnte die Hydrogelplattform zukünftig verschiedenste Anwendungen im Bereich intrisischer Kraftmessung weicher Materie bedienen.Mechanoresponsive systems respond to mechanical triggers by changes in a certain property. This thesis covers the work conducted with two mechanoresponsive systems that respond optically to mechanical triggers. These two systems are based on polymer structures, a polymer brush and a hydrogel network. Thus, the optical response mechanism allows observing acting forces as an approach to force sensing in situ. In the first part, an existing mechanoresponsive system based on a polyelectrolyte brush labeled with a fluorescent dye is engaged in application. The charges of the polyelectrolyte are able to quench the fluorescence of the dye so that local compression or tension can be distinguished from the local fluorescence intensity. The mechanoresponsive polymer brush was applied as mechanosensitive surface coating to elucidate differences in the contact stress distributions of gecko-inspired adhesive micropillar structures. The determined results and the derived detachment mechanisms of the micropillar types were in qualitative accordance with predictions from theoretical approaches. Overcoming the geometrical limitations of a planar surface coating, the second part aims at translating the mechanoresponse principle to a three-dimensional network and developing a mechanoresponsive hydrogel as a platform for force sensing. Conceptually, a homogeneous network allows to predict mechanical properties so that localized optical mechanoresponses could enable locating and quantifying acting forces. Based on network design principles from the Flory-Rehner theory, precursors with predefined size and architecture were utilized in hydrogel preparation, aiming for a homogeneous network. Further in this regard, the mixing volume was reduced by employing droplet microfluidics. As optical response mechanism, the hydrogel network precursors were labeled with two kinds of fluorophore, featuring distance-dependent emission from Förster Resonance Energy Transfer. The functionality of the optical response mechanism was demonstrated on global level by collapsing and controlled swelling of the network, and on a localized level by defined mechanical stress, applied with Atomic Force Microscopy. Owing to its adjustability, the hydrogel platform might be employed in various applications that require intrinsic force sensing of soft matter in future

    Influence of mechanical forces on the self-organisation of biomolecular systems

    Get PDF
    Mechanical forces play a crucial role in shaping the development of tissues and organisms. Nature has evolved intricate ways of utilising mechanical cues in order to achieve various objectives. In this dissertation, we examine the role played by mechanical forces in regulating the function of biological systems at the level of many molecules. We employ computational simulations, using minimal coarse-grained models. This allows us to capture the essential information about the investigated systems as well as to derive general phenomenological insights. We begin with the study of mechanosensitive protein channels, which are a class of transmembrane proteins responsible for sensing the osmotic pressure on cells and protecting them against lysis. Recent experiments suggest that such channels separate into liquid-like clusters, but the functional role of this aggregation is still unknown. We examine the collective behaviour of such proteins and we reveal that a dynamic self-assembly of channels, driven by changes in membrane tension, can control the osmotic pressure equilibration and the volume of the whole cell. We then focus on the growth of membrane protrusions, or tubes, which are thin elongated structures used by cells to sense mechanical stimuli. We investigate the influence of proteins linking the membrane to cytoskeletal components on pulling membrane tubes. We find that the force required to extrude a tube has an intriguing non-linear dependence on the concentration of cortex attachments. Subsequently, we turn our attention to the study of the mechanically-induced self-assembly of fibronectin, a structural protein constituent of the extracellular matrix. We examine the emergent fibrillar architectures and show how the morphologies of these networks change depending on various mechanical parameters. Finally, we explore how a nanoparticle adsorbed on a deformable elastic membrane senses the substrate’s mechanical properties through gradients in the membrane’s bending rigidity. We hope that the results presented in this dissertation will spur further discussions and experimental studies related to the functional role played by mechanical forces in regulating the collective macromolecular behaviour at the nanoscale
    corecore