87,573 research outputs found

    Data-dependent jitter and crosstalk-induced bounded uncorrelated jitter in copper interconnects

    Get PDF
    This paper resolves the jitter impairment of non-return-to-zero data in transmission lines. The limited bandwidth of the transmission line introduces data-dependent jitter. Crosstalk between neighbouring lines results in bounded uncorrelated jitter in the data eye. An analytical approach to representing data-dependent jitter and crosstalk-induced bounded uncorrelated jitter is presented. Comparison with jitter measurements of microstrip lines on FR4 board demonstrated accuracy to within 15% of the predictions for deterministic jitter

    Binary phase detector gain in bang-bang phase-locked loops with DCO jitter

    Get PDF
    Bang-bang phase-locked loops (BBPLLs) are hard nonlinear systems due to the nonlinearity introduced by the binary phase detector (BPD). In the presence of jitter, the nonlinear loop is typically analyzed by linearizing the BPD and applying linear transfer functions in the analysis. In contrast to a linear PD, the linearized gain of a BPD depends on the rms jitter and the type of jitter (either non-accumulative or accumulative). Previous works considered the case of nonaccumulative reference clock jitter and showed that the BPD gain is inversely proportional to the rms jitter when the latter is small or large. In this brief we consider the case of accumulative DCO jitter and derive an asymptotic closed-form expression for the BPD gain which becomes exact in the limit of small and large jitter. Contrary to the reference clock jitter case, the BPD gain is constant for small DCO jitter and is inversely proportional to the square of jitter for large DCO jitter; in the latter case, the timing jitter has a normal-Laplace distribution.Science Foundation Irelandti, ke, ab, li - TS 10.04.1

    Cancellation of crosstalk-induced jitter

    Get PDF
    A novel jitter equalization circuit is presented that addresses crosstalk-induced jitter in high-speed serial links. A simple model of electromagnetic coupling demonstrates the generation of crosstalk-induced jitter. The analysis highlights unique aspects of crosstalk-induced jitter that differ from far-end crosstalk. The model is used to predict the crosstalk-induced jitter in 2-PAM and 4-PAM, which is compared to measurement. Furthermore, the model suggests an equalizer that compensates for the data-induced electromagnetic coupling between adjacent links and is suitable for pre- or post-emphasis schemes. The circuits are implemented using 130-nm MOSFETs and operate at 5-10 Gb/s. The results demonstrate reduced deterministic jitter and lower bit-error rate (BER). At 10 Gb/s, the crosstalk-induced jitter equalizer opens the eye at 10^sup-12 BER from 17 to 45 ps and lowers the rms jitter from 8.7 to 6.3 ps

    Timing jitter of passively mode-locked semiconductor lasers subject to optical feedback; a semi-analytic approach

    Get PDF
    We propose a semi-analytical method of calculating the timing fluctuations in mode-locked semiconductor lasers and apply it to study the effect of delayed coherent optical feedback on pulse timing jitter in these lasers. The proposed method greatly reduces computation times and therefore allows for the investigation of the dependence of timing fluctuations over greater parameter domains. We show that resonant feedback leads to a reduction in the timing jitter and that a frequency-pulling region forms about the main resonances, within which a timing jitter reduction is observed. The width of these frequency-pulling regions increases linearly with short feedback delay times. We derive an analytic expression for the timing jitter, which predicts a monotonous decrease in the timing jitter for resonant feedback of increasing delay lengths, when timing jitter effects are fully separated from amplitude jitter effects. For long feedback cavities the decrease in timing jitter scales approximately as 1/τ1/\tau with the increase of the feedback delay time τ\tau

    Phase Statistics of Soliton

    Full text link
    The characteristic function of soliton phase jitter is found analytically when the soliton is perturbed by amplifier noise. In additional to that from amplitude jitter, the nonlinear phase noise due to frequency and timing jitter is also analyzed. Because the nonlinear phase noise is not Gaussian distributed, the overall phase jitter is also non-Gaussian. For a fixed mean nonlinear phase shift, the contribution of nonlinear phase noise from frequency and timing jitter decreases with distance and signal-to-noise ratio.Comment: 8 pages, submitted to JOSA

    Jitter analysis of a superconducting nanowire single photon detector

    Full text link
    Jitter is one of the key parameters for a superconducting nanowire single photon detector (SNSPD). Using an optimized time-correlated single photon counting system for jitter measurement, we extensively studied the dependence of system jitter on the bias current and working temperature. The signal-to-noise ratio of the single-photon-response pulse was proven to be an important factor in system jitter. The final system jitter was reduced to 18 ps by using a high-critical-current SNSPD, which showed an intrinsic SNSPD jitter of 15 ps. A laser ranging experiment using a 15-ps SNSPD achieved a record depth resolution of 3 mm at a wavelength of 1550 nm.Comment: 7 pages, 6 figure

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    Astrophysical Insights into Radial Velocity Jitter from an Analysis of 600 Planet-search Stars

    Get PDF
    Radial velocity (RV) detection of planets is hampered by astrophysical processes on the surfaces of stars that induce a stochastic signal, or "jitter," which can drown out or even mimic planetary signals. Here, we empirically and carefully measure the RV jitter of more than 600 stars from the California Planet Search sample on a star by star basis. As part of this process, we explore the activity–RV correlation of stellar cycles and include appendices listing every ostensibly companion-induced signal we removed and every activity cycle we noted. We then use precise stellar properties from Brewer et al. to separate the sample into bins of stellar mass and examine trends with activity and with evolutionary state. We find that RV jitter tracks stellar evolution and that in general, stars evolve through different stages of RV jitter: the jitter in younger stars is driven by magnetic activity, while the jitter in older stars is convectively driven and dominated by granulation and oscillations. We identify the "jitter minimum"—where activity-driven and convectively driven jitter have similar amplitudes—for stars between 0.7 and 1.7 M⊙ and find that more-massive stars reach this jitter minimum later in their lifetime, in the subgiant or even giant phases. Finally, we comment on how these results can inform future RV efforts, from prioritization of follow-up targets from transit surveys like TESS to target selection of future RV surveys

    A 10Gb/s data-dependent jitter equalizer

    Get PDF
    An equalization circuit is presented that reduces data-dependent jitter by aligning data transition deviations. This paper presents an analytic solution to data-dependent jitter and demonstrates its impact on the phase noise of the recovered clock. A data-dependent jitter equalizer is presented that compensates for impairment of the channel and lowers the phase noise of the recovered clock. The circuit is implemented in a SiGe BiCMOS process and operates at 10 Gb/s. It suppresses phase noise resulting from data-dependent jitter by 10 dB
    corecore