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Binary Phase Detector Gain in Bang-Bang
Phase-Locked Loops with DCO Jitter

Stefan Tertinek, James P. Gleeson, and Orla Feely, Fellow, IEEE

Abstract—Bang-bang phase-locked loops (BBPLLs) are hard
nonlinear systems due to the nonlinearity introduced by the
binary phase detector (BPD). In the presence of jitter, the
nonlinear loop is typically analyzed by linearizing the BPD and
applying linear transfer functions in the analysis. In contrast
to a linear PD, the linearized gain of a BPD depends on
the rms jitter and the type of jitter (either non-accumulative
or accumulative). Previous works considered the case of non-
accumulative reference clock jitter and showed that the BPD
gain is inversely proportional to the rms jitter when the latter is
small or large. In this brief we consider the case of accumulative
DCO jitter and derive an asymptotic closed-form expression for
the BPD gain which becomes exact in the limit of small and large
jitter. Contrary to the reference clock jitter case, the BPD gain
is constant for small DCO jitter and is inversely proportional to
the square of jitter for large DCO jitter; in the latter case, the
timing jitter has a normal-Laplace distribution.

Index Terms—Bang-bang phase-locked loop, timing jitter, bi-
nary phase detector gain, asymptotic analysis.

I. INTRODUCTION

Bang-bang phase-locked loops (BBPLLs) are widely used
for clock and data recovery in communication systems, mainly
because of their high-frequency capabilities [1]. While they
are typically implemented based on the charge-pump PLL
architecture [2], [3], recent progress in the development of
low-noise digitally-controlled oscillators (DCOs) has resulted
in several digital BBPLL (DBBPLL) implementations suitable
for high-bandwidth digital frequency synthesis [4], [5].

The distinct feature of BBPLLs is the binary phase detector
(BPD) which binary-quantizes the timing jitter seen at its
input. The hard nonlinearity introduced by the BPD makes
the loop behavior inevitably nonlinear and thus complicates
the analysis. In the absence of noise and jitter, the loop
exhibits periodic (limit cycle) or quasiperiodic behavior, and a
nonlinear analysis is required to investigate the loop stability
[6]. In practice, phase noise on the clock sources causes jitter
on the clock edges, mainly in the form of non-accumulative
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Fig. 1. Second-order DBBPLL architecture [6].

jitter (white phase noise) and accumulative jitter (random-walk
and flicker phase noise); a discussion on their physical origin
can be found in [7]. Although the effect of jitter on the loop
behavior can be accurately analyzed using Markov models
[8]–[12], the more common approach is to linearize the BPD
nonlinearity and apply linear transfer functions in the analysis
[13]–[15]. Unlike a linear PD [16], the linearized gain of a
BPD depends on the rms jitter and the type of jitter (either non-
accumulative or accumulative). The gain expression known
in the literature has been obtained for the case of non-
accumulative reference clock jitter [8], [9], [16] and used
in the linear analysis of a second-order loop with dominant
reference clock jitter [14]. A recent paper [15] extended this
linear analysis to the case of dominant accumulative DCO jitter
due to random-walk phase noise, which typically occurs in
frequency synthesis; however, since a gain expression for the
accumulative DCO jitter case has not appeared previously, the
authors of [15] used a gain expression based on a hypothesis,
lacking any analytical investigation.

The goal of this brief is to analytically study the BPD gain
in BBPLLs with accumulative DCO jitter1, thereby improving
on the gain expression used in [15]. As in [8], [9] we confine
ourselves to a first-order loop or to a second-order loop where
the gain of the proportional path in the digital loop filter (DLF)
is much bigger than the gain of the integral path. Building on
our recent work in this area [12] we derive an asymptotic
closed-form expression for the BPD gain which becomes
exact in the limit of small and large jitter. Compared to the
non-accumulative reference clock jitter case, the gain shows
a fundamentally different dependence on accumulative DCO
jitter. In particular, the gain is constant for small jitter and is
inversely proportional to the square of jitter for large jitter—

1Although accumulative jitter of both the reference clock and the DCO
leads to the same gain expression, we emphasize the DCO jitter case to be
consistent with [15]. Furthermore, we neglect jitter due to flicker phase noise.
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this stands in marked contrast to the inversely proportional
dependence on reference clock jitter in these regimes [8]. The
analysis also shows that for large DCO jitter, the timing jitter
(and hence the output jitter) is normal-Laplacian distributed.

II. DBBPLL ARCHITECTURE AND MODEL

A block diagram of a second-order DBBPLL architecture is
shown in Fig. 1 [6]. The BPD compares the rising edges of the
reference clock with those of the divided clock and produces
binary phase-error information at its output, with a logical
value high if the reference clock leads the divided clock, and
a logical value low if the reference clock lags the divided
clock. The BPD output is fed into the DLF, which consists of
a proportional branch with gain coefficient KP and an integral
branch with gain coefficient KI . The DLF output changes the
frequency of the DCO clock, which is divided by N and is
fed back as divided clock to the BPD and the DLF.

The BPD gain depends on the timing jitter between the
reference clock and the divided clock, also called untracked
jitter [8]. Because updating the BPD output and clocking the
DLF occurs only every divided clock cycle (see Fig. 1), the
loop behavior can be described at discrete time instants n =
0, 1, . . .. Hence it suffices to consider the time instants of the
rising reference clock and divided clock edges, denoted by tr,n
and td,n, respectively. Defining the timing jitter by Δtn =
tr,n − td,n and denoting the integrator state in the DLF by
ψn, the second-order DBBPLL is described by the following
first-order difference equations [6]:

Δtn+1 = Δtn + Tr,n −NTv0 −NKIKTψn

−NKPKT sgnΔtn (1)

ψn+1 = ψn + sgnΔtn+1 (2)

where Tr,n is the nth reference clock period. The BPD is mod-
eled as the signum function, which is defined as sgn x = 1
for x ≥ 0, and sgn x = − 1 for x < 0. The DCO is
considered as a linear block, with free-running clock period
Tv0 and period gain constant KT .

To study the effect of DCO jitter on the BPD gain, we
assume noise-free PLL blocks and a jitter-free reference clock,
with nominal clock period Tr0 equal to NTv0 (locked loop).
The accumulative DCO jitter is modeled by replacing Tv0

in (1) by Tv0+ξn, where the random variable (RV) ξn accounts
for the jitter on the nth DCO period, and the jitter sequence
{ξn} is assumed to be a sequence of independent, identically
distributed Gaussian RVs with zero mean and variance σ2

v [7].
Under these assumptions, the statistical time evolution of the
timing jitter is described by

Δtn+1 = Δtn −NKIKTψn −NKPKT sgnΔtn + ξn (3)

ψn+1 = ψn + sgnΔtn+1 (4)

where the DCO jitter RV ξn now has the scaled variance σ2 =
N2σ2

v . As in [8], [9] we confine our study to a first-order loop
or to a second-order loop satisfying KP � KI ; the latter
assumption corresponds to an overdamped loop and is usually
satisfied in practice [2], [17], [18]. Thus we approximate (3)–
(4) by the first-order stochastic difference equation

Δtn+1 = Δtn −K sgnΔtn + ξn (5)

where K = NKPKT is the bang-bang step size. In our recent
work [12] we studied the statistical timing jitter properties of
a first-order BBPLL when the reference clock is subject to
accumulative jitter, assuming the nth reference clock period
to be Tr,n = Tr0 + ξn. It can be seen that both accumulative
jitter cases lead to the stochastic difference equation (5) and
thus to the same gain expression, with the difference that the
variance of ξn is scaled by N2 in case of DCO jitter. This
observation is crucial in that it allows us to apply our results
from [12] to the analysis of the BPD gain.

III. BPD GAIN EXPRESSION FOR DCO JITTER

In this section we analytically study the BPD gain Kbpd in
the presence of accumulative DCO jitter. Based on our recent
work [12] we derive an exact integral representation of Kbpd,
from which we obtain an asymptotic closed-form expression
and the asymptotes for small and large jitter. Since linearizing
the nonlinear loop has already been considered elsewhere [8],
[14], [15], we provide here only the definition of Kbpd, which
is given by [8]

Kbpd = 2pΔt(0) (6)

where pΔt(t) is the steady-state timing-jitter probability den-
sity function (pdf).

In [12] we used a sign-dependent random-walk model to
analyze the limiting behavior of (5). A main result of that work
is that the steady-state timing jitter Δt can be decomposed into
the sum of statistically independent RVs

Δt = η + ξ + o (7)

where the RV ξ models the DCO jitter in steady-state. The
hunting jitter RV η and the overload jitter RV o model,
respectively, static and dynamic jitter components caused by
the binary phase-error quantization. More specifically, hunting
jitter is introduced by the coarseness of the binary PD char-
acteristic, and accounts for the DCO phase hunting randomly
around the reference clock phase. Overload jitter is introduced
by DCO phase updates that are larger than the bang-bang step
size K . As we shall see, these jitter components reflect the
dependence of the BPD gain on the DCO jitter.

A. Exact Integral Representation of the BPD Gain

Let z be a real variable, and let φ(z) denote the character-
istic function (CF) of a RV with pdf p(t). It follows from [12,
(27)] that the CF of Δt is given by the product

φΔt(z) = φη(z)φξ(z)φo(z) (8)

where

φη(z) =
sin(Kz)
Kz

(9)

is the CF of η which is uniformly distributed on [−K,K], and

φξ(z) = e−σ2z2/2 (10)

is the CF of ξ which is Gaussian distributed with variance σ2.
The CF [12]

φo(z) = exp

(
2

∞∑
n=1

1
n

∫ ∞

0

(
cos(zx) − 1

)
fn(x;−K,σ2) dx

)
(11)
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where
fn(x;μ, σ2) ≡ f(x;nμ, nσ2) (12)

and f(x;μ, σ2) denotes the Gaussian pdf with mean μ and
variance σ2, corresponds to the overload jitter RV o; its
distribution is not known in closed form, but we will shortly
obtain a closed-form expression valid in the large-σ regime.

Since p(t) is related to φ(z) by the inverse Fourier transform
formula [19, p. 482]

p(t) =
1
2π

∫ ∞

−∞
e−iztφ(z) dz (13)

we obtain, after substituting (8)–(11) into (13) and the result
into (6), the expression

Kbpd =
1
π

∫ ∞

−∞

sin(Kz)
Kz

exp
(
−σ2z2/2 − I(z)

)
dz (14)

with

I(z) = 2
∞∑

n=1

1
n

∫ ∞

0

(
1 − cos(zx)

)
fn(x;−K,σ2) dx. (15)

Equation (14) is an exact integral representation of the BPD
gain as a function of the DCO jitter σ and the bang-bang step
size K . To simplify this integral, it is natural to perform an
asymptotic analysis by allowing the parameter of interest, σ,
to become small and large. As will be shown next, the result
is an asymptotic closed-form expression for Kbpd.

B. Asymptotic Closed-Form Expression for the BPD Gain

To begin the asymptotic analysis, let us simplify the integral
in (15) by first letting σ → 0 and then letting σ → ∞. Since
the integrand is non-negative for all z, we may change the
order of summation and integration, and consider the sum
term

∑∞
n=1(1/n)fn(x;−K,σ2). Substitution of (12) and the

Gaussian pdf gives
∞∑

n=1

1√
2πσn3/2

exp
(
− (x+Kn)2

2σ2n

)
. (16)

By partitioning the interval (0,∞) as 0 < σ < 2σ < · · ·
and making the change of variable σ2n = y, we can con-
sider (16), in the asymptotic limit σ → 0, as a Riemann sum
for the integral∫ ∞

0

1√
2πy3/2

exp

(
−
(
x+Ky/σ2

)2
2y

)
dy. (17)

Similarly, by choosing the partition 0 < 1/σ < 2/σ <
· · · and making the change of variable n/σ2 = y, we can
consider (16), in the asymptotic limit σ → ∞, as a Riemann
sum for the integral∫ ∞

0

1√
2πσ2y3/2

exp

(
−
(
x+Kσ2y

)2
2σ4y

)
dy. (18)

Using formula 3.471.12 in [20, p. 368], both the inte-
grals (17) and (18) can be evaluated explicitly to yield

1
x

exp
(
−2Kx

σ2

)
. (19)

Plugging (19) into (15) and employing formula 3.943 in
[20, p. 497] gives the asymptotic expression2

I(z) ∼ 2
∫ ∞

0

(
1 − cos(zx)

) 1
x

exp
(
−2Kx

σ2

)
dx

= log
(

1 +
σ4

4K2
z2

)
(20)

as σ → 0 or σ → ∞. In words, (15) is asymptotically
equivalent to the (simple) expression (20) as σ tends to zero
or infinity.

Consequently, after substitution of (20) into (14), the BPD
gain Kbpd may be written as the single integral

Kbpd ∼ 1
π

∫ ∞

−∞

sin(Kz)
Kz

e−σ2z2/2 1
1 + σ4

4K2 z2
dz (21)

as σ tends to the above limits. This integral can be simpli-
fied further. With the help of the partial fraction expansion
1/(z(1 + cz2)) = 1/z − cz/(1 + cz2), where c = σ4/(4K2),
we may rewrite (21) as

Kbpd ∼ 1
Kπ

∫ ∞

−∞

sin(Kz)
z

e−σ2z2/2dz

− 1
Kπ

∫ ∞

−∞
sin(Kz)e−σ2z2/2 z

4K2

σ4 + z2
dz. (22)

Both these integrals can be evaluated in closed form by
using formula 3.954.1 in [20, p. 504]. After integration and
some algebra we get the final expression

Kbpd ∼ 1
K

+
1

2K
e4K2/σ2

erfc
(

3K√
2σ

)
− 3

2K
erfc

(
K√
2σ

)
(23)

where erfc denotes the complementary error function. Equa-
tion (23) is an asymptotic closed-form expression for Kbpd

which becomes exact in the limits σ → 0 or σ → ∞. A
comparison of this expression with simulation results will be
presented in Sec. IV.

C. Small-σ and Large-σ Asymptotes

Let us now determine the asymptotes for the BPD gain. In
the limit σ → 0, the second and third term in (23) tend to
zero, and we immediately obtain the asymptote

Kbpd → 1
K

as σ → 0. (24)

Note that this result may also be deduced from the decom-
position (7). Clearly, because the overload jitter o depends
on σ, whereas the hunting jitter η is independent of it, the
distribution of Δt in the small-σ regime will be dominated
by η; the latter has a uniform distribution on [−K,K] from
which (24) follows.

The asymptote in the limit σ → ∞ requires a more careful
analysis. However, by expanding the exponential term in (23)
into a Taylor series about zero and retaining only the first two
terms, we have

Kbpd ∼ 2K
σ2

erfc
(

3K√
2σ

)
. (25)

2Two functions f(x) and g(x) are asymptotically equivalent, denoted by
f(x) ∼ g(x), as x → x0 if limx→x0 f(x)/g(x) = 1 [21, p. 78].
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Fig. 2. BPD gain Kbpd vs. rms DCO jitter σ for varying K .

The leading-order asymptotic behavior of this expression
gives the asymptote

Kbpd → 2K
σ2

as σ → ∞. (26)

As a corollary to this asymptotic analysis we obtain the
distribution law of Δt for large σ. Due to (13), the integrand
in (21) is a CF consisting of a product of three terms: The
first two terms are the CFs of a uniform and a Gaussian
distribution; the third term is the CF of a Laplace distribu-
tion with mean zero and variance σ4/(2K2) [22, p. 930],
corresponding to an asymptotic approximation for the CF
φo. For sufficiently large σ, the term sin(Kz)/(Kz) in (21)
can be replaced by its value at z = 0, which yields the
limiting distribution of Δt to be the convolution of a Gaussian
distribution with variance σ2 and a Laplace distribution with
variance σ4/(2K2), both having zero mean. Put differently,
the timing jitter is distributed as the sum of two independent
RVs, one Gaussian and the other Laplacian. The distribution
law of this sum, called the normal-Laplace distribution, has
only recently been introduced [23]. It follows from [23, (4.2)]
that the pdf of Δt for large σ is given by

pΔt(t) =
K

2σ2
e2K2/σ2

[
e−2Kt/σ2

erfc
(

2K − t√
2σ

)

+ e2Kt/σ2
erfc

(
2K + t√

2σ

)]
. (27)

The importance of this result is that the pdf is clearly
non-Gaussian, a result that contradicts the intuitive idea of
large jitter linearizing the BPD and leading to a linear system
behavior, in which case the pdf would be Gaussian. The same
conclusion was drawn in [12] by computing the kurtosis,
but we now have an explicit expression for the pdf in this
regime. Note that by evaluating 2pΔt(0) and expanding the
first exponential term into a Taylor series about zero, we
recover the large-σ asymptote in (26).

IV. SIMULATION RESULTS AND DISCUSSION

The BPD gain expression will now be compared against
Monte Carlo simulation results and the expression used in the
linear analysis in [15]. For each simulation we generated a
realization of the stochastic difference equation (5) of length
107, discarding the first 100 values. To obtain pΔt(0) we

10
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Analytical (13) in [8]
Asymptotes in [8]

Fig. 3. Comparison of Kbpd and its asymptotes for accumulative DCO jitter
and non-accumulative reference clock jitter [8] (K = 1).

estimated the timing-jitter pdf by computing the histogram
of this realization, and took the value of the bin at zero.
Although this method gives a good approximation for the
value of pΔt(0), a more accurate value can be obtained by
the numerical method described in [10].

Figure 2 plots the BPD gain Kbpd as a function of the rms
DCO jitter σ, the parameter being the bang-bang step size K .
The agreement between the closed-form analytical expression
(23), the asymptotes (24) and (26), and the simulation results
confirms our analysis. For comparison, the figure also plots the
BPD gain expression used by Zanuso et. al. [15, (1)]. Based
on the hypothesis of Gaussian distributed timing jitter Δt, the
BPD gain was defined as Kbpd =

√
2/π/σΔt, where the rms

timing jitter σΔt is replaced by the approximate expression
given in [15, (13)]. The deviation betwen simulation and
theory seen in the figure is due to the incorrect assumption of
Gaussian distributed timing jitter. In fact, it follows from the
decomposition (7) that there is only one value of σ for which
the timing jitter is Gaussian, as discussed in [12]. Clearly,
for small jitter, the dominance of the hunting jitter implies
that Δt is uniformly distributed; for large jitter, the increasing
contribution of the overload jitter implies that Δt is normal-
Laplacian distributed with the pdf given in (27).

The peculiarity of the BPD is that the linearized gain
depends not only on the rms jitter but also on the type of
jitter, as the following comparison with the non-accumulative
reference clock jitter case illustrates [8]. Figure 3 plots Kbpd

for both jitter cases and a normalized loop (K = 1), where σ
denotes the rms value of both the DCO jitter and the reference
clock jitter. The asymptotes shown for the reference clock jitter
case are given by 1/(

√
2πσ) for small σ and by 2/(

√
2πσ)

for large σ [8].
In the small-σ regime3, the BPD gain is inversely propor-

tional to reference clock jitter, but it shows no dependence on
DCO jitter. This different behavior has practical significance.
For PLL design, an important parameter is the loop bandwidth,
which depends on the loop gain and thus, when linearizing the
BPD, on Kbpd. Since Kbpd depends on the reference clock

3Strictly speaking, for sufficiently small DCO jitter, the loop dynamics will
be nonlinear, and a linear analysis (BPD gain, loop bandwidth etc.) cannot
be applied [14], [15]. The BPD gain comparison in this regime is included to
be consistent with previous work [8], [9].
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jitter, so does the loop bandwidth, so that variations of the
clock jitter will affect the loop characteristic. By contrast, the
constant Kbpd in case of DCO jitter may suggest that the loop
bandwidth is not affected by jitter in this regime.

A strikingly different behavior is observed in the large-
σ regime. The BPD gain is again inversely proportional to
reference clock jitter, but now it is inversely proportional to
the square of DCO jitter. Thus, variations of the clock jitter
will affect the loop bandwidth in either jitter case, but the
effect is more pronounced for DCO jitter.

We conclude this section with a practical example. Consider
a second-order DBBPLL with parameters as in [15]. The DCO
has a free-running clock period of Tv0 = 1/(320 MHz) and
an rms accumulative jitter of σv = 1.74 ps, corresponding to
a −100 dBc/Hz (random-walk) phase noise at 1 MHz offset
from the carrier. The divider value is N = 8 which gives
σ = Nσv = 13.92 ps. The gain coefficients of the proportional
path and integral path in the DLF are given by KP = 8
and KI = 0.5, respectively, and the DCO gain is taken to
be KT = 55 fs. The steady-state timing-jitter pdf obtained
from Monte Carlo simulation of (3)–(4) is shown in Fig. 4,
along with the analytical prediction (27) and a Gaussian pdf of
equal variance. The agreement between simulation and theory
confirms the validity of the normal-Laplace distribution law
also for an overdamped loop. The BPD gain for this example
is Kbpd = 2.52 ·1010. Note that because the reference clock is
assumed to be jitter free, the timing jitter equals the DBBPLL
output jitter (scaled by N ), and so the pdf in (27) is also that
of the output jitter.

V. CONCLUSION

We have studied the BPD gain in BBPLLs subject to
accumulative DCO jitter, which has not been considered
previously. Our main result is (23), an asymptotic closed-
form expression for the gain, yielding the exact asymptotes
(24) and (26) for small and large jitter, respectively. Unlike
the gain expression known for the non-accumulative reference
clock jitter case [8], the gain for the DCO jitter case shows
a different dependence on jitter: It is constant for small jitter
and is inversely proportional to the square of jitter for large

jitter. The closed-form expression (27) for the timing-jitter pdf
corresponds to a normal-Laplace distribution law, proving the
non-Gaussianity of the timing jitter for large jitter.
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