128,922 research outputs found

    JavaScript: Bringing Object-Level Security to the Browser

    Get PDF
    JavaScript has evolved from a simple language intended to give web browsers basic hinteraction into a fully featured dynamic language that allows the browser to become an application delivery platform. With innovations such as asynchronous JavaScript and XML (AJAX) and JavaScript Object Notation (JSON), JavaScript has become the de facto standard for creating interactive web applications. With its new found power and popularity, JavaScript has been the target of many attacks. In this paper, we present a framework that allows programmers to define secure properties of JavaScript objects such that they are more immune to malicious activity and require a smaller footprint that existing solutions. We then use our framework and apply it to an already built JavaScript system to analyze its properties and effectiveness.unpublishednot peer reviewe

    JSClassFinder: A Tool to Detect Class-like Structures in JavaScript

    Get PDF
    With the increasing usage of JavaScript in web applications, there is a great demand to write JavaScript code that is reliable and maintainable. To achieve these goals, classes can be emulated in the current JavaScript standard version. In this paper, we propose a reengineering tool to identify such class-like structures and to create an object-oriented model based on JavaScript source code. The tool has a parser that loads the AST (Abstract Syntax Tree) of a JavaScript application to model its structure. It is also integrated with the Moose platform to provide powerful visualization, e.g., UML diagram and Distribution Maps, and well-known metric values for software analysis. We also provide some examples with real JavaScript applications to evaluate the tool.Comment: VI Brazilian Conference on Software: Theory and Practice (Tools Track), p. 1-8, 201

    Semantics and Security Issues in JavaScript

    Get PDF
    There is a plethora of research articles describing the deep semantics of JavaScript. Nevertheless, such articles are often difficult to grasp for readers not familiar with formal semantics. In this report, we propose a digest of the semantics of JavaScript centered around security concerns. This document proposes an overview of the JavaScript language and the misleading semantic points in its design. The first part of the document describes the main characteristics of the language itself. The second part presents how those characteristics can lead to problems. It finishes by showing some coding patterns to avoid certain traps and presents some ECMAScript 5 new features.Comment: Deliverable Resilience FUI 12: 7.3.2.1 Failles de s\'ecurit\'e en JavaScript / JavaScript security issue

    Information Flow Control in WebKit's JavaScript Bytecode

    Get PDF
    Websites today routinely combine JavaScript from multiple sources, both trusted and untrusted. Hence, JavaScript security is of paramount importance. A specific interesting problem is information flow control (IFC) for JavaScript. In this paper, we develop, formalize and implement a dynamic IFC mechanism for the JavaScript engine of a production Web browser (specifically, Safari's WebKit engine). Our IFC mechanism works at the level of JavaScript bytecode and hence leverages years of industrial effort on optimizing both the source to bytecode compiler and the bytecode interpreter. We track both explicit and implicit flows and observe only moderate overhead. Working with bytecode results in new challenges including the extensive use of unstructured control flow in bytecode (which complicates lowering of program context taints), unstructured exceptions (which complicate the matter further) and the need to make IFC analysis permissive. We explain how we address these challenges, formally model the JavaScript bytecode semantics and our instrumentation, prove the standard property of termination-insensitive non-interference, and present experimental results on an optimized prototype

    A Practical Blended Analysis for Dynamic Features in JavaScript

    Get PDF
    The JavaScript Blended Analysis Framework is designed to perform a general-purpose, practical combined static/dynamic analysis of JavaScript programs, while handling dynamic features such as run-time generated code and variadic func- tions. The idea of blended analysis is to focus static anal- ysis on a dynamic calling structure collected at runtime in a lightweight manner, and to rene the static analysis us- ing additional dynamic information. We perform blended points-to analysis of JavaScript with our framework and compare results with those computed by a pure static points- to analysis. Using JavaScript codes from actual webpages as benchmarks, we show that optimized blended analysis for JavaScript obtains good coverage (86.6% on average per website) of the pure static analysis solution and nds ad- ditional points-to pairs (7.0% on average per website) con- tributed by dynamically generated/loaded code

    Refactoring Legacy JavaScript Code to Use Classes: The Good, The Bad and The Ugly

    Full text link
    JavaScript systems are becoming increasingly complex and large. To tackle the challenges involved in implementing these systems, the language is evolving to include several constructions for programming- in-the-large. For example, although the language is prototype-based, the latest JavaScript standard, named ECMAScript 6 (ES6), provides native support for implementing classes. Even though most modern web browsers support ES6, only a very few applications use the class syntax. In this paper, we analyze the process of migrating structures that emulate classes in legacy JavaScript code to adopt the new syntax for classes introduced by ES6. We apply a set of migration rules on eight legacy JavaScript systems. In our study, we document: (a) cases that are straightforward to migrate (the good parts); (b) cases that require manual and ad-hoc migration (the bad parts); and (c) cases that cannot be migrated due to limitations and restrictions of ES6 (the ugly parts). Six out of eight systems (75%) contain instances of bad and/or ugly cases. We also collect the perceptions of JavaScript developers about migrating their code to use the new syntax for classes.Comment: Paper accepted at 16th International Conference on Software Reuse (ICSR), 2017; 16 page

    ADsafety: Type-Based Verification of JavaScript Sandboxing

    Full text link
    Web sites routinely incorporate JavaScript programs from several sources into a single page. These sources must be protected from one another, which requires robust sandboxing. The many entry-points of sandboxes and the subtleties of JavaScript demand robust verification of the actual sandbox source. We use a novel type system for JavaScript to encode and verify sandboxing properties. The resulting verifier is lightweight and efficient, and operates on actual source. We demonstrate the effectiveness of our technique by applying it to ADsafe, which revealed several bugs and other weaknesses.Comment: in Proceedings of the USENIX Security Symposium (2011
    • …
    corecore