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ABSTRACT
The JavaScript Blended Analysis Framework is designed to
perform a general-purpose, practical combined static/dynamic
analysis of JavaScript programs, while handling dynamic
features such as run-time generated code and variadic func-
tions. The idea of blended analysis is to focus static anal-
ysis on a dynamic calling structure collected at runtime in
a lightweight manner, and to refine the static analysis us-
ing additional dynamic information. We perform blended
points-to analysis of JavaScript with our framework and
compare results with those computed by a pure static points-
to analysis. Using JavaScript codes from actual webpages
as benchmarks, we show that optimized blended analysis
for JavaScript obtains good coverage (86.6% on average per
website) of the pure static analysis solution and finds ad-
ditional points-to pairs (7.0% on average per website) con-
tributed by dynamically generated/loaded code.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.3.4 [Languages]: Processors

General Terms
Experimentation, Languages, Measurement

Keywords
Program analysis, points-to analysis, JavaScript

1. INTRODUCTION
In the age of SOA and cloud computing, JavaScript has

become the lingua franca of client-side applications. Web
browsers act as virtual machines for JavaScript programs
that provide flexible functionality through their dynamic
features. Recently, it was reported that 98 out of 100 of the
most popular websites1 use JavaScript [11]. Many mobile

1http://www.alexa.com
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devices – smart phones and tablets – use JavaScript to pro-
vide platform-independent functionalities. Unfortunately,
the dynamism and flexibility of JavaScript is a double-edged
sword. The dynamic constructs enable programmers to eas-
ily create client-side functionalities at the cost of rendering
static analysis ineffective in their presence. However, these
constructs often provide opportunities for security exploits.

Given the ubiquity of JavaScript, it is important for re-
searchers to address possible problems in security, code op-
timization, performance diagnosis, debugging, etc. Several
analysis approaches have been proposed to detect/prevent
security vulnerabilities in JavaScript applications, such as
cross-site scripting and code injection [5, 11, 3, 12, 20, 2],
and to improve performance through trace-based, just-in-
time compilation techniques [8, 13]. These methods use ei-
ther static or dynamic analysis or a combination of both.
Nevertheless, the reflective features of JavaScript thwart the
effectiveness of static analysis in addressing these problems,
and dynamic analysis either covers too few possible run-
time situations or is too costly in terms of overhead. All
these approaches have left great room for improvement in
the handling of the dynamism of JavaScript in real-world
applications.

Recent studies [21, 23, 22] reveal that JavaScript programs
are full of dynamic features, and that the dynamic behav-
ior of actual websites confirm this fact. There are several
mechanisms in JavaScript whereby executable code can be
generated at runtime, (e.g., eval). Static reasoning about
dynamically generated code is very difficult; the analysis
has to be very conservative to remain safe, in a data-flow
sense [19]. Richards et.al [22] show that eval and its re-
lated language structures are widely used in real Web ap-
plications. In JavaScript programs, a function can be called
without respecting the declared number of arguments; that
is, functions may have any degree of variadicity so that it is
hard to model them statically. In Richards et.al [23], vari-
adic functions are shown to be common and the occurrence
of functions of high variadicity is confirmed. JavaScript call
sites and constructors are quite polymorphic. All of these
dynamic features make it hard to precisely reason about
JavaScript applications. Richards et.al [23] point out that
existing work tends either to ignore or to make incorrect
assumptions regarding the dynamism of JavaScript codes.

Dealing with dynamic language constructs has been ad-
dressed previously in analyses of Java. For example, in our
own work focused on performance diagnosis of framework-
intensive Java programs, we dynamically collected a prob-
lematic execution and performed a static escape analysis on
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its calling structure [6, 7]. Java features such as reflective
calls and dynamically loaded classes were recorded by the
dynamic analysis, allowing more precise modeling than by
pure static analysis.2 Other researchers defined more precise
string analyses to enable better modeling of some reflective
calls in Java. Livshits et al. [17] designed a static analy-
sis that determined the targets of reflective calls by tracing
the flow of class name strings. In the presence of input-
dependent targets, either user-provided information or ap-
proximations based on type casts were used. Christensen et
al. [4] focused on a static string analysis that improved the
accuracy of Java call graphs containing reflective calls using
Class.forName. But these previous approaches are insuffi-
cient to deal completely with reflection in Java.

In contrast to these analyses, which captured or approxi-
mated reflective call targets, our JavaScript blended analy-
sis captures richer information about dynamic language fea-
tures, including dynamically generated/loaded JavaScript
code (e.g., through evals or interpreted urls) and variadic
function usage. Because of the wide-spread usage of these
dynamic features in JavaScript applications, their capture is
important, because a pure static analysis misses them (e.g.,
when an eval contains a JavaScript code string which con-
tains user inputs) or approximates them in the worst case
(e.g., treating all variadic functions with the same signature
as the same function because they cannot be differentiated
at compile-time).

We have designed a new general-purpose, JavaScript Blended
Analysis Framework that facilitates analysis of the dynamic
features in JavaScript. As such, our framework is an inves-
tigation of how to design a practical analysis for a general-
purpose scripting language while accommodating the dy-
namic features of the language. Our goal is that by judi-
ciously combining dynamic and static analyses in an un-
safe [19] analysis of JavaScript, we can account for the ef-
fects of dynamic features not seen by pure static analysis,
while retaining sufficient accuracy to be useful. Intuitively,
blended analysis focuses a static analysis on a dynamic call-
ing structure collected at runtime, and further refines the
static analysis using additional information collected by a
lightweight dynamic analysis. For our framework, we an-
alyze multiple executions of a JavaScript code with good
program coverage, in order to obtain analysis results for the
entire program.

We have instantiated our JavaScript Blended Analysis
Framework to do points-to analysis, in order to show time
cost and precision differences in empirical comparison to a
pure static analysis. Points-to analysis of JavaScript is an
important enabling analysis, supporting many static clients
(e.g., side-effect and information-flow analyses). Although
pure static points-to analyses for JavaScript [15, 9] have been
presented by researchers focusing on specific language fea-
tures, these analyses miss key dynamic features of the lan-
guage.

The major contributions of this paper are:
JavaScript Blended Analysis Framework. Our frame-

work is designed to better analyze the language’s dynamism
and to allow a general-purpose data-flow analysis as a mod-
ule of the infrastructure. The blended algorithm is opti-
mized by selection of a cover set from among the executions
observed to reduce total analysis time. The data-flow safety

2We use the term pure static analysis to refer to an analysis
based on monotone data-flow frameworks [19].

Figure 1: JavaScript example

of solutions obtained also is discussed.
Implementation of a blended points-to analysis for

JavaScript. The framework is instantiated for points-to
analysis of JavaScript codes from popular websites. By ob-
taining the dynamically generated code online as well as call
target and object creation information, we are able to an-
alyze several dynamic features of JavaScript including code
within an eval, function variadicity, and dynamic type de-
pendent object creation. The framework is implemented us-
ing TracingSafari [23], and the IBM T.J. Watson Libraries
for Analysis (WALA) open-source framework.3

Experimental evaluation. The empirical results of the
blended points-to analysis have been compared with those
from a pure static points-to analysis for JavaScript already
available in WALA. The comparison shows that optimized
blended analysis for JavaScript can obtain good coverage of
the static analysis solution (i.e., 78.0%-93.0% of static analy-
sis results on average per website) and finds additional (i.e.,
missed) points-to pairs resulting from dynamically gener-
ated/loaded code which comprise 1.4%-9.9% of the final so-
lution on average per website, quite significant for some web-
sites. The cost of the optimized blended analysis is shown to
exceed the cost of static analysis by only 31.6% on average
per website.

Overview. The rest of this paper is organized as fol-
lows: Section 2 uses an example to illustrate the dynamism
of JavaScript. Sections 3 and 4 introduce the JavaScript
Blended Analysis Framework instantiated for blended points-
to analysis. Section 5 presents our experimental results.
Section 6 discusses work related ours, and Section 7 offers
conclusions and future work.

2. MOTIVATING EXAMPLE
In Figure 1 we present a sample JavaScript program con-

taining dynamic characteristics to illustrate the challenges of
analyzing dynamic languages. Similar coding style appears
in real websites.

Line 1 in Figure 1 is a link to JavaScript source. A state-
ment like this is widely used in websites to link external
widgets or to provide additional interactions. This piece of
JavaScript code may be loaded at runtime when some event
is triggered. It is important to analyze this code because it
can affect the behavior of the webpage. The rest of the ex-
ample declares a JavaScript function. In line 3, the function

3http://wala.sourceforge.net/



signature is given without any arity; however, it is designed
to be called with different arguments. The function body
illustrates that this function can behave with totally differ-
ent functionality, depending on the number of arguments.
Lines 5 to 8 execute if arguments.length is 1. The creation
of arry(line 7) depends on the actual type of the argument
a provided, which only can be decided at runtime. Lines
10 to 14 demonstrate another case when less than 5 argu-
ments are provided. Line 12 uses the eval construct to eval-
uate the string associated with the value of arguments[c].
Whether or not this code is actually executed can be de-
cided only at runtime since statically we cannot learn the
value of arguments[c]. It is important to analyze this code
because malware can use eval as an obfuscation mechanism;
for example, the user input arguments[c] can load malicious
JavaScript code which then will be run by the eval.

This small example contains dynamically loaded code,
variadic functions, the eval construct, and dynamic type
dependent object creation, which all contribute to the dy-
namism of JavaScript. These features cannot be precisely
modeled via pure static analysis. These constructs are the
focus of our JavaScript Blended Analysis Framework.

3. FRAMEWORK OVERVIEW
In this section, we present an overview of the design of

the JavaScript Blended Analysis Framework and explain
the underlying new, general-purpose blended analysis for
JavaScript. In Section 4 we give details of how we instan-
tiated this framework for points-to analysis of JavaScript
programs.

Our design goal for the JavaScript Blended Analysis Frame-
work is to have a practical, general-purpose combination of
dynamic and static analyses capable of capturing the effects
of the dynamic features of JavaScript, especially those that
lead to run-time code generation. Specifically, the frame-
work should offer an efficient methodology to obtain a better
analysis solution than a pure static analysis of a scripting
language with dynamic types and many late-binding con-
structs. Figure 2 illustrates the three components of the
framework: the Dynamic Analyzer collects run-time infor-
mation about the applications; the Selector is an optional
component designed to keep the analysis cost practical; the
Static Analyzer analyzes the program representation that
incorporates information obtained from the Dynamic Ana-
lyzer.

In our framework, JavaScript applications are instrumented
and dynamic analysis produces run-time information for each
execution. This information is used to construct a dynamic
calling structure for the execution so that inter-procedural
static analysis can use it as a program representation for
analysis. In addition, other dynamic information that helps
to improve static analysis accuracy can also be collected. As
shown in Figure 2, the Dynamic Analyzer outputs data for
multiple executions.

Optional use of the Selector may reduce the number of
executions used as inputs to the Static Analyzer. Although
each execution represents a different path in a JavaScript ap-
plication, multiple executions can contain some of the same
methods of the program. The Selector chooses executions
that may have significant positive impact on the results of
JavaScript blended analysis; by using fewer than all execu-
tions collected, the Selector lowers the overall analysis cost,
while maximizing code coverage.

The Static Analyzer consists of a pure static analysis algo-
rithm augmented by dynamic information about the execu-
tions as well as the application source code for the methods
executed as input. Because our JavaScript blended analy-
sis aims to handle the dynamism of the language, this may
include dynamic information that would be very hard (or
impossible) for a pure static analysis to approximate well.
The Static Analyzer analyzes each execution separately and
then combines the results of these analyses into a solution.

Two goals of our research are to study how well the new
JavaScript Blended Analysis Framework can analyze pro-
grams written in a heavily dynamic, late binding language,
and to better understand the tradeoffs between safety and
practicality represented by blended analysis.

4. BLENDED POINTS-TO ANALYSIS
This section describes our instantiation of the JavaScript

Blended Analysis Framework for points-to analysis. We
present both the design and implementation details for each
component in Figure 2. Each component of the framework
is designed to handle some of the challenges of analyzing
JavaScript applications. We also discuss analysis safety.

4.1 Dynamic Analyzer
Our focus is on JavaScript code found on many webpages.

We will refer to the JavaScript code on a single webpage as a
JavaScript program. Our framework is targeted to analyze
such JavaScript programs which have been shown to have
attributes different from some standard JavaScript bench-
marks such as SunSpider4 and V85 [23, 21].

We believe that an instrumented web browser is capa-
ble of capturing the dynamic executions needed by blended
analysis through daily usage, without affecting website per-
formance. For a practical analysis, we require that the Dy-
namic Analyzer be lightweight, although it has to collect
sufficient run-time information to reason about the dynamic
constructs captured in support of the subsequent static anal-
ysis.

Our Dynamic Analyzer instrumentation infrastructure re-
lies on a specialized version of the WebKit module of Apple’s
Safari web browser. TracingSafari, an instrumented version
of WebKit6 JavaScript engine, was developed for charac-
terizing the dynamic behavior of JavaScript programs [23].
This tool records operations performed by the JavaScript
interpreter in Safari including reads, writes, field deletes,
field adds, calls, etc. It also collects events such as garbage
collection and source file loads. Since our dynamic analy-
sis infrastructure needs to be very lightweight, we modified
TracingSafari to collect only the information required by
blended analysis.

In blended analysis, the Dynamic Analyzer builds a graph
representation of a JavaScript program. An execution can
be precisely represented by recording all the instructions;
however, that approach is too costly. Dynamic analysis can
provide the exact call tree of each execution by collecting
all the function calls at runtime. For each execution, we
constructed a call graph that contains the functions actually
executed.

Because JavaScript is a dynamically typed programming

4http://www.webkit.org/perf/sunspider/sunspider.html
5http://v8.googlecode.com/svn/data/benchmarks/v6/run.html
6webkit.org



Figure 2: JavaScript Blended Analysis Framework

language, static reasoning about JavaScript types may not
be very precise in situations where actual object types are
determined by run-time assignments, for example. Pure
static analysis approximates object types which can intro-
duce imprecision in situations such as lines 5-7 in Figure
1. In blended analysis, our Dynamic Analyzer records the
exact types of the objects created within each method in
the call graph. With this additional information, blended
analysis can more precisely model executions, both inter-
procedurally and intra-procedurally.

Pure static analysis of JavaScript can extract JavaScript
source code from webpages. During execution, however, in-
vocations to reflective constructs such as eval may gener-
ate new JavaScript code. Recall that this generated code
may be difficult to model statically because the evaluated
string parameter of eval may contain variables whose val-
ues are not knowable until runtime. In addition, webpages
often download JavaScript codes and load them dynami-
cally. Pure static analysis has no access to this downloaded
code whereas our Dynamic Analyzer is able to capture all
the source code file loads, capturing all code generated or
loaded. This dynamic code is traced in the same manner
as the other parts of the program, with instrumentation of
both functions and object allocation sites.

Function variadicity is another dynamic feature of the
JavaScript language. A function can be called with an arbi-
trary number of arguments, regardless of the function decla-
ration. If fewer arguments are provided than in the declara-
tion, the values of the rest of the declared arguments are set
to be undefined. If more arguments are provided than in
the declaration, the arguments can be accessed through an
arguments variable associated with each function. Some-
times, the actual behavior within a function can be differen-
tiated by its number of arguments as in the example of Fig-
ure 1. Existing pure static analyses for JavaScript normally
ignore this feature because the actual arguments provided
during the call can only be known at runtime. In contrast,
our Dynamic Analyzer captures the actual number of ar-
guments for each call site and builds separate nodes in the
call graph for instances of the same signature function with
different numbers of arguments.

In summary, the Dynamic Analyzer used for blended points-
to analysis instruments function calls (and captures their
number of arguments), object allocations, and dynamically
generated/loaded source code. This results in a relatively
lightweight dynamic analysis.

4.2 Selector
The combined cost of the Dynamic Analyzer and the Static

Analyzer contributes to the overhead of blended analysis
over a pure static analysis. Since we use a lightweight dy-

namic analysis, the choice of static analysis algorithm to
use on each of the multiple executions dominates the overall
analysis performance. In this section, we present an optional
optimization which selects a subset of observed executions
to serve as input to the Static Analyzer.

Our JavaScript Blended Analysis Framework requires mul-
tiple executions because we would like to analyze as much
of the JavaScript program as possible, certainly more than
can be explored by just a single execution. However, since a
static analysis must be performed on each execution, using
more executions increases the cost of blended analysis. Mul-
tiple executions may overlap in the methods they execute,
because different executions can run over the same areas of
the program. The Selector tries to minimize the number of
executions used by the analysis to cover the JavaScript pro-
gram while covering as much program behavior as possible.
We hypothesize that there is a subset of the executions that
can be used as the program representation without much
loss of precision in the analysis solution. Our goal is to
achieve a static analyses result on the subset of executions
that is the same as or close to the solution obtained using all
executions, while reducing the overall overhead of blended
analysis.

Figure 3 presents the execution selection algorithm. The
set of all the collected executions from the Dynamic Ana-
lyzer is input to this selection algorithm. The heuristic used
in function dist in line 8 will be explained below. It calcu-
lates a linear combination of factors which emphasize using
executions that cover more methods, explore more differ-
ent object types and contain dynamically generated/loaded
code. The threshold T , a value between 0 and 1, is an in-
put to the algorithm that can be adjusted by the user of
the framework. The threshold maintains the balance be-
tween blended analysis performance (i.e., fewer executions)
and accuracy (i.e., more executions). The set of executions
selected is an input to the Static Analyzer.

The algorithm in Figure 3 works as follows. At line 1, an
execution ei is randomly chosen to be the first selected from
all the executions. Line 2 initializes the variable Dist used
as a criterion to select executions. During the algorithm,
Dist is a score of what a particular execution will add to
those executions already in the selected set Exbest. Lines
3-13 describe the selection process which continues until the
threshold T is reached or there are no longer any executions
to add. Lines 4 and 5 process the sets by removing the
selected execution from Ex and adding it to Exbest. Lines
7 to 12 comprise a loop to select the best next candidate
execution to add. The dist function compares a candidate
execution with those in the already selected set Exbest to
calculate the corresponding Dist value. The execution with
the largest Dist value is chosen as the next candidate to



Input: Ex(All executions collected by dynamic analysis);
T (Threshold of the selection algorithm)

Output: Exbest(Executions selected to do static analysis)
1: ei ← random(Ex)
2: Dist← T
3: while Dist ≥ T and Ex is not empty do
4: Ex− {ei}
5: Exbest ← Exbest

⋃
{ei}

6: Dist← −1
7: for each e in Ex do
8: if dist(Exbest, e) > Dist then
9: Dist← dist(Exbest, e)

10: ei ← e
11: end if
12: end for
13: end while

Figure 3: Selector algorithm
add.

Heuristic. To explain the heuristic used by the dist func-
tion, we need to explain three factors: method coverage, cre-
ated object type coverage and dynamically generated/loaded
code coverage. For each execution e there is a set of associ-
ated functions Me and dynamically generated/loaded code
Ce. Within each method mi(e) ∈ Me, there is a set of ob-
served allocated types Tmi(e). The set of executions S can
be represented by an aggregated set of methods MS and dy-
namically generated/loaded code CS ; method mi(S) ∈ MS

contains a set of those types Tmi(S) allocated on some exe-
cution in S.

During the selection process, we need to ensure that most
observed functions and object creation sites are covered by
the selected execution set, in order to get the best points-
to information possible. If a function is not analyzed, we
cannot obtain any point-to pairs resulting from its execu-
tion. Because our analysis framework is particularly aimed
at dealing with dynamically loaded code, we wish to select
executions with this property with a high priority.

Function coverage. With a set of selected executions
S, we would like the next execution to be chosen to add a
maximal number of new functions. The number of functions
in both S and e is |MS ∩Me|, so that |MS ∪Me|−|MS ∩Me|
calculates the number of new functions that will be added
to MS , if e is added to S. We normalize this measurement
thusly:

distfunc =
|MS ∪Me| − |MS ∩Me|

|MS ∪Me|
Object type coverage. We observe that if different

types of objects are allocated in the same function on dif-
ferent executions, then (i.) different intra-procedural paths
may be executed, and/or (ii.) there may be invocations
with different targets that result in different inter-procedural
paths. So, if additional object types would result from
adding e to S, then the Selector may explore more program
paths. Since all object allocation information is associated
with the corresponding function in which the creation takes
place, we measure the difference in number of object types
in the context of each function. The set of functions occur-
ring both in S and e is MS∩e = MS ∩Me. For each such
function mi ∈MS∩e, the sets of types created in S and e are
Tmi(S) and Tmi(e), respectively. We calculate the number of
additional types added if e is added to S as:

distTmi
=
∣∣Tmi(S) ∪ Tmi(e)

∣∣− ∣∣Tmi(S) ∩ Tmi(e)

∣∣

The aggregate difference of object type allocations be-
tween S and e is measured through the aggregation of all
methods MS∩e in common

distobj =

∑|MS∩e|
i=1 distTmi∑|MS∩e|

i=1

∣∣TS(mi) ∪ Te(mi)

∣∣
Dynamic code generation/loading. To find addi-

tional points-to pairs due to dynamically generated/loaded
code, the framework must analyze executions on which this
occurs. If the dynamic code loaded during execution e, Ce,
is different from the code loaded in S, CS , then we set
distdyn = 1; otherwise, distdyn = 0.

Combining factors. The Selector considers all three fac-
tors when deciding the next execution to add. We hypothe-
size that dynamic code produces some points-to results that
pure static analysis cannot obtain and that function cov-
erage affects program coverage more than the object types
allocated. In our current implementation, the weights for
dynamic code, function, and object allocations are 0.5, 0.4,
and 0.1, respectively. The dist(Sex, e) function returns the
value of:

0.5× distdyn + 0.4× distfunc + 0.1× distobj

These weights can be adjusted based on analysis require-
ments.

4.3 Static Analyzer
The Static Analyzer of our JavaScript Blended Analysis

Framework applies a pure static algorithm to each execution,
and then combines the results of multiple executions into the
final blended analysis solution. The Static Analyzer takes as
input the compile-time visible JavaScript source code, dy-
namic call structure, and dynamically created/loaded code
recorded by an execution. The source code for the functions
observed during execution is contained either in the compile-
time available source or in the recorded dynamically gener-
ated/loaded code. The Static Analyzer also prunes function
bodies based on the dynamic information gathered, in order
to improve the analysis precision and performance.

Recall that we built our static infrastructure for analyzing
JavaScript on the IBM T.J. Watson Libraries for Analysis
(WALA) open-source framework.7 WALA is a static anal-
ysis framework for Java that includes a JavaScript front-
end. WALA parses JavaScript source code from a web-
page producing an abstract syntax tree (AST), and trans-
lates the AST into WALA intermediate form. Several chal-
lenges of analyzing JavaScript, including prototype-chain
property lookups and reflective property accesses, are ad-
dressed in WALA; however, WALA does not model reflective
calls such as eval or with constructs [11]. WALA provides an
Andersen-style flow- and context-insensitive points-to anal-
ysis for JavaScript which performs on-the-fly call graph con-
struction.

In order to implement blended points-to analysis based
on the static points-to algorithm in WALA, we modified the
WALA implementation by removing the call graph construc-
tion and substituted use of our dynamic call graph represen-
tation derived from run-time information. Thus, in blended
analysis the call graph is built from dynamic information and
then input to subsequent static analysis, while in pure static

7http://wala.sourceforge.net



Figure 4: Relation between solutions obtained through
pure static analysis vs. blended analysis

analysis, call graph construction interleaves with points-to
analysis. Nodes in the dynamic call graph can originate
from the dynamically generated code by an eval construct
or JavaScript code downloaded during the execution. Since
WALA does not model eval and static analysis does not ex-
tract code dynamically generated/loaded, the source code of
some executed functions will not be available to WALA.

In addition, we had to extend the WALA intermediate
representation in order to better deal with variadic func-
tions in the call graph. In the Dynamic Analyzer for each
function we record its actual number of arguments, so that
the same function signature called with different numbers
of arguments will result in multiple nodes in the dynamic
call graph. In WALA, JavaScript functions are identified
through source code declarations so that variadic functions
cannot be distinguished statically. In our implementation,
the WALA call graph representation is extended to include
a context, the number of arguments (i.e., arguments.length).
Therefore, variadic functions seem to have duplicate nodes
in our WALA call graph, but each node context is different.

Pruning. Pruning is an optimization technique applied
in our blended analysis for Java. It was very effective re-
moving approximately 30% of basic blocks from Java func-
tions [7]. JavaScript blended analysis applies this same
pruning technique and also prunes based on additional dy-
namic information, namely arguments.length, to provide an
accurate control flow graph for a variadic function. Some-
times branches of variadic functions are determined by the
value of arguments.length (see example in Figure 1). In
this case, that value can be used to prune the blocks on
unexecuted branches. Thus, with pruning we are able to
provide a more accurate approximation of the code within a
variadic function. A future goal of our research is to study
the effect of pruning on analysis of JavaScript, especially to
see if precision is increased for such variadic functions.

4.4 Blended Analysis Safety
A pure static algorithm conservatively approximates an

input JavaScript program that is constructed from the sub-
set of the JavaScript language modeled. In blended analysis,
the program input to the Static Analyzer is a conservative
approximation of the actually executed JavaScript code, in-
cluding source code for the executed methods observed. In-
tuitively speaking, blended analysis reasons only about those
program executions being statically analyzed, rather than
reasoning over all possible executions, producing a safe data-
flow solution [19] for those executions. The term safe is used
here to mean no false negatives for the part of the program
covered by these executions. In this section we discuss the
safety of blended analysis for JavaScript and contrast the
program representations used and solutions found by pure
static and blended analyses.

Analysis safety. Pure static analysis of JavaScript uses

a call graph Gsta, a representation of a set of functions Fsta

and their possible calling relations recognized from the stat-
ically accessible source code. The call graph, Gsta, repre-
senting a set of possible execution trees, is a conservative
approximation of possible calling relations between the Fsta

in the program. Recall that pure static analysis can not
always model dynamic JavaScript constructs such as eval
because there might be variables in the evaluated string ex-
pression whose value cannot be decided until runtime, such
as the variable arguments[c] in Figure 1, line 12.

Blended analysis, on the other hand, captures profiling in-
formation needed to model dynamic features, but may not
be able to explore all executable paths in a JavaScript pro-
gram. JavaScript blended analysis of an execution e analyzes
a call graph representation of the set of observed functions,
Fe. Fe consists of two subsets: (i.) Fe(sta), a set of stati-
cally visible functions, Fe(sta) ⊆ Fsta, and (ii.) Fe(dyn), a set
of functions profiled in dynamically generated/loaded code
during execution of e. The output of the Dynamic Ana-
lyzer is a call graph representation of e, Ge, which is then
input to the Static Analyzer. Therefore, Ge contains all the
inter-procedural invocations that occur when e is executed.
Ge also is a conservative approximation of possible calling
relations between the Fe(sta) and Fe(dyn) in the program.

Both Gsta and Ge may possibly introduce unexecuted
inter- and intra-procedural paths in the JavaScript program.
Therefore, both blended and pure static analysis construct
conservative approximations of the possible program calling
structure they analyze, (i.e., Gsta and Ge). Note that Ge is
not necessarily a subgraph of Gsta because of the nodes and
edges introduced by Fe(dyn). Also, blended analysis may not
execute all functions in Fsta.

Static analysis is a component of both pure static and
blended analysis; in both cases, the static analysis produces
a safe solution on the corresponding program representa-
tion, with no false negatives. The pure static analysis is
safe with respect to the statically accessible JavaScript code.
The blended analysis is safe with respect to the code corre-
sponding to the observed execution. In some sense, blended
analysis treats an execution as an entire program, building
a conservative approximation of the calling structure and
applying a safe static analysis to this representation. There-
fore, blended analysis of a single execution is safe, in the
data-flow sense of having no false negatives for the portion
of the program it analyzes; in other words, blended analysis
does not miss any true positives in the solution which occur
due to the semantic effects of code in the execution being
analyzed. Since our blended analysis unions the solutions on
several executions to form the entire analysis solution, and
each component solution is safe, therefore the entire solution
is safe.8

The above argument ignores the pruning performed in
blended analysis. The Static Analyzer analyzes the pruned
program so that it is important to ensure that the pruned
functions still conservatively approximate the sequence of in-
structions executed by e. If a function call site or object al-
location site is not executed, we know this from the profiling
by the Dynamic Analyzer. We prune all the basic blocks that
contain unexecuted call sites and unexecuted object alloca-
tion sites; the statements that are post-dominated by these
basic blocks are pruned as well. We also prune the branches

8Note: this argument holds whether all executions are used
or a selection of executions is used.



that are not executed in variadic functions by knowing the
value of arguments.length. Given these rules, it is obvious
that we only prune code that is not executed, so that the
code left after pruning is a conservative approximation of
all the instructions executed on e. Therefore, the arguments
given above hold, and the blended analysis solution is safe.

Comparison of solutions. There is a complicated rela-
tionship between the blended analysis solution and the pure
static analysis solution for a particular program. The di-
agram in Figure 4 reflects the relationship between a pure
static analysis and a blended analysis for JavaScript. The
ellipses represent the solutions obtained for each analysis.
Their intersection includes the part of the solution due to
code within the static analysis program model and within
those executions observed by blended analysis. In Ge, Ge(sta)

represents the statically discernible code executed by e and
Ge(dyn) represents the dynamic code executed by e. Ge(sta) ⊆
Gsta because Ee(sta) ⊆ Esta and Ve(sta) ⊆ Vsta. Therefore,
there may be parts of the blended analysis solution that also
are contained in a pure static analysis solution.

The left part of the diagram shows that there may be a set
of results that blended analysis does not calculate, which are
covered by pure static analysis. This occurs when there is an
unexecuted part of the program that contributes to the anal-
ysis solution (i.e., from Gsta − ∪eiGei(sta)). Clearly, it may
be difficult for blended analysis to explore sufficiently many
executable paths to prevent this from happening. However,
pure static analysis may introduce false positives by over-
approximating the program and including results due to in-
feasible paths. These false positives may be (or may not
be) avoided by blended analysis by its exclusive use of inter-
procedural paths actually executed and by avoiding some
unexecuted intra-procedural paths (as we explained in Sec-
tion 4.3).

The right part of the diagram shows that the blended anal-
ysis solution may obtain results that a pure static analysis
may not produce, because they correspond to program con-
structs difficult (or impossible) for static analysis to model
due to the dynamism of JavaScript. For example, constructs
such as an eval whose argument is not a string constant re-
quiring run-time interpretation or JavaScript program seg-
ments loaded during execution (e.g., through an interpreted
url) can hardly be modeled well by static analysis. Fe(dyn)

is the part of code on execution e unavailable to pure static
analysis, so it cannot be analyzed. Blended analysis uses
Ge(dyn) as part of its call graph; thus, analysis of Ge(dyn)

may produce additional results not found by static analysis,
as shown in the diagram.

5. EVALUATION

5.1 Experiment Design
Our blended points-to analysis for JavaScript has been

tested with JavaScript code from eight of the most popular
web sites in Alexa (www.alexa.com). The author who man-
ually performed these instrumented explorations of websites
in order to generate input for the analysis, had no knowl-
edge of the underlying JavaScript code at the website, and
tried to explore as much of the functionality of each web-
page as possible. Each sequence of JavaScript instructions
so obtained was then decomposed into a set of consecu-
tive sequences of instructions from the same webpage called

traces.9 One input-generating session might explore several
webpages, but it results in at least one trace for each page
executed. Traces for the same webpage are inputs to the
Selector and the Static Analyzer.

In the experiment, we compare blended points-to analysis
with a pure static points-to analysis. Because blended analy-
sis and pure static analysis treat each webpage as a separate
JavaScript program, we are able to compare their points-
to solutions. Our goal is to empirically evaluate blended
points-to analysis for JavaScript in terms of its accuracy
and performance.

Pure static analysis produces points-to results for the stat-
ically accessible program. The results contain actual points-
to pairs (true positives) and false positives. In our experi-
ment, we measure the difference between the points-to pairs
produced by blended analysis versus those produced by a
pure static analysis. With the goal of obtaining good cover-
age of the statically accessible program by our executions,
we hope to achieve good coverage of the true positives in the
pure static solution.

Points-to information due to dynamically generated/loaded
code can only be found by blended analysis. We measure the
number of extra points-to pairs produced by blended anal-
ysis to show the effect of dynamic code on analysis results.
Since blended analysis applies a more accurate model for
variadic functions through pruning, we would like to explore
the analysis accuracy in future work.

Blended analysis is practical if the Dynamic Analyzer is
lightweight and the Static Analyzer has acceptable overhead.
The overhead of the original blended analysis consists of
dynamic analysis and static analysis. Optimized blended
analysis reduces the overhead of Static Analyzer and adds
the extra overhead of Selector. We compare the performance
of pure static analysis with optimized blended analysis to
show that blended analysis has practical performance.

The experimental results are obtained on a 2.53 GHz Intel
Core 2 Duo machine with 4 GB memory running the Mac
OS X 10.5 operating system. The dynamic statistics for the
input are given in Table 1.

Here page count is the number of pages executed at each
website and then analyzed. Of course, it is not feasible
to exhaustively explore all pages manually. Trace count is
the total number of traces collected for each website. Note
the number of traces on a webpage determines the num-
ber of separate static analyses required by our unoptimized
blended analysis for JavaScript. The last two columns in
Table 1 show the number of pages on which we observed
eval calls and variadic functions, respectively.

5.2 Experimental Results
Algorithm Comparison. Table 2 shows how well our

blended points-to solution compares to a baseline static points-
to analysis of all the JavaScript code on a webpage, averaged
across the pages explored at each website. The columns la-
belled blended coverage present the blended solution cover-
age of the static analysis solution as a percentage. More
formally, assume there are n pages explored in a website.
For each page i, the static analysis solution points-to pairs
comprise set Si and the blended analysis solution points-to
pairs are set Bi. Then the percentages shown in columns 2

9The term execution used in the description of blended anal-
ysis in Section 2 thus refers to a trace in our experiments.
A webpage is analyzed on the basis of several traces.



Website Abbr. Page count Trace count eval page variadic functions
google.com GOGL 203 2104 52 177

facebook.com FBOK 138 1098 23 65
youtube.com YTUB 122 579 19 29
yahoo.com YHOO 52 265 21 13
baidu.com BAID 49 147 6 16

wikipedia.org WIKI 67 130 0 3
live.com LIVE 54 226 10 44

blogger.com BLOG 24 146 6 7
totals 709 4695 137 354

Table 1: Benchmarks. Each benchmark is formed from an user interaction with a website that may explore one or more
webpages. A profiled interaction consists of individual traces, each containing a sequence of JavaScript instructions from one
webpage. The set of traces corresponding to the same webpage comprises a JavaScript program analyzed by our framework.

Site Blended coverage(%) Additional blended(%)
of static results results

original optimized original optimized
average min. page average average max. page average

GOGL 90.5 15.1 89.7 5.9 60.3 5.9
FBOK 88.9 11.0 85.3 7.7 30.2 7.5
YTUB 89.4 20.9 89.1 9.9 52.0 9.9
YHOO 80.8 23.5 78.0 10.3 42.7 9.8
BADU 93.5 53.4 93.0 6.7 23.7 6.7
WIKI 92.2 70.2 92.1 - - -
LIVE 84.1 30.8 81.8 8.5 38.6 7.5
BLOG 85.2 34.3 83.8 1.4 2.3 1.4

geom. mean 88.1 32.4 86.6 7.2 35.7 7.0

Table 2: Original and optimized blended points-to analysis results for JavaScript

and 4 in table 2 are∑n
1
|Si∩Bi|
|Si|

n
× 100%

The coverage of the static solution achieved by the origi-
nal blended analysis (column 2) varies from 80.8% to 93.5%,
with a range of standard deviations from 10.1% (wikipedia.org)
to 21.5% (blogger.com). The overall average (i.e., 88.1%) in-
dicates that a large number of the programs are modeled well
by our blended analyses. For 64 of the 709 webpages ana-
lyzed, blended analysis obtained 100% of the static points-to
solution. For 37.3% of the pages, blended analysis covered at
least 95% of the static points-to solution. Nevertheless, for
some individual webpages, the coverage was low. Column 3
shows the lowest coverage of a webpage in each of these web-
sites. For example, for in one page of facebook.com, blended
analysis produced only 11% of the points-to pairs found by
static analysis. The low coverage was caused by low method
coverage. We only explored two traces of this webpage and
the method coverage was 21.2% while the average method
coverage over the 138 facebook.com pages was 92.5%.

Column 4 presents a comparison of the optimized blended
analysis points-to solution with the static analysis solution.
Recall that the goal of the optimization is to reduce the
overhead of blended analysis, while preserving as much of
the points-to solution as possible (see Section 4.2). For the
experimental results given in this section we used an op-
timization threshold of 0.02. The coverage results suggest
that the optimization is effective in that little reduction in
coverage is observed. On average for each website, the op-
timized blended analysis covered 1.6% fewer points-to pairs
than the original blended analysis.

Effects of Dynamically Loaded Code. Columns 5 to 7
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Figure 5: blended additional histogram

in Table 2 illustrate the effect of dynamically loaded code on
the points-to solution. The data in columns 5 and 7 present
the average per webpage of the number of additional points-
to pairs reported by blended analysis for each website, as a
percentage of the entire program solution (i.e., Si ∪ Bi for
page i). Assume that k pages in a website contain dynamic
code. Then the results shown correspond to:∑k

1
|Bi−Si|
|Si∪Bi|

k
× 100%

There are 137 pages (19% of total pages) containing dy-
namically generated code by eval and 383 pages (more than
50%) containing new JavaScript code dynamically loaded at
runtime.10

10We observed that often for initialization the same piece of
dynamic code may be loaded across all the webpages in a
website. In order to avoid the parts of the points-to solution
due to this shared code dominating our results or when the
corresponding code is lengthy, dominating the algorithm’s
performance, we analyzed such code for only one webpage
in the website. This website behavior was observed only for
facebook.com, and is reflected in the data reported here.



The distribution of dynamic pages differs across websites.
For wikipedia.org, we are not able to observe any calls to eval
or run-time loaded code; therefore, no additional points-to
pairs are found by blended analysis. For other sites, blended
analysis adds between 1.4% (blogger.com) and 9.8% (ya-
hoo.com) points-to pairs not found by pure static analysis.

Figure 5 presents the histogram of those pages that pro-
duce extra points-to pairs found by blended analysis. The
two leftmost bars show that 68.7% of these pages add fewer
than 4% of the points-to pairs to the entire program so-
lution; however, 22.6% of the pages add more than 8% of
the points-to pairs. The results suggest that dynamically
loaded code can not be ignored when analyzing the behav-
ior of JavaScript programs, a result which concurs with the
observation of dynamic code loading in [22].

We have averaged these results over all the pages in each
website. Though these averages do not imply that use of
eval in JavaScript affects the points-to solution dramatically,
there are some cases where the size of the string literal within
the eval dominates the size of the program. Among the top
17 websites in Alexa, sina.com.cn contains a page with code
size of 6KB in which there are 4KB Strings to be evaluated
dynamically. For this page, the number of points-to pairs in
the entire program solution increases by 60.1% by handling
eval.

There is little difference in the ability to find extra points-
to pairs between the original and optimized blended analy-
ses; this is because the optimization criteria weights coverage
of dynamic code heavily. The results in column 5 of Table 2
show that the two blended analyses agree in 4 out of 8 cases
(shown in boldface), and their maximum average difference
is 1% of the solution.

Pruning. Pruning was applied over all the 4695 traces
we collected. On average over all traces, 23.9% of the ba-
sic blocks were pruned. Removing these basic blocks means
the Static Analyzer has less code to analyze for each trace
so that it can run faster. We found 354 variadic func-
tions in total (Table 1). We observe that in these functions
arguments.length is often used in a branch or loop con-
dition. Among all the variadic functions we observed, we
were able to prune 34 of them because of branch conditions
containing arguments.length.

Timings. Table 3 presents the time performance of
blended analysis on average over the pages on each website.
We compare the analysis time of the pure static, original
blended, and optimized blended analyses. The analysis time
of blended analysis includes the time for collecting dynamic
information, (optional) optimization, and the combined time
of static analysis on each execution. Pure static analysis is
54.1% faster than the original blended analysis on average
across all websites. (Recall that pure static analysis only
analyzes statically accessible JavaScript code.) In a blended
analysis, the static analysis phase is more costly than exe-
cution of the lightweight instrumentation. The main reason
for the comparative slowness of the blended analysis ver-
sus the static is that some traces on a page may overlap
in method coverage, causing those methods to be statically
analyzed multiple times. The heuristic criterion in the op-
timized blended algorithm is designed, in part, to prevent
this situation.

Summary. The timing results show that the optimized
blended analysis is 25.7% faster than the original blended
analysis, adding on average an overhead of 31.6% to static

analysis, while accounting for missing points-to pairs from
dynamically generated code and not significantly degrading
accuracy on the statically accessible code.

Threats to validity The results of blended analysis heav-
ily depend on the static analysis algorithm used. We have
used the built-in Andersen-like points-to analysis algorithm
in WALA. Therefore, the accuracy of our implemented frame-
work is determined by limitations of the WALA analysis of
JavaScript. We found that there were some parsing prob-
lems with some JavaScript code in the websites, and some
structures of JavaScript were ignored.

Because we collected the execution traces of websites our-
selves, there is a threat to validity of biasing the pages ex-
plored to find more dynamic features. Therefore, in the
experiment, one author collected executions without knowl-
edge of the website implementation.

6. RELATED WORK
In this section, we present work related to our JavaScript

blended analysis. First, we discuss the relation between
blended analysis for JavaScript and a previous blended anal-
ysis for Java. Second, we present related research in dy-
namic, static, and hybrid analyses for JavaScript. Due to
space limitations, we focus only on the most relevant re-
search: (i) studies of JavaScript dynamic behavior; (ii) static
analyses that try to facilitate the handling of some dynamic
language features of JavaScript; (iii) hybrid analyses of JavaScript.

Blended analysis of Java. Blended analysis of Java [6,
7] performed an interprocedural static analysis on an anno-
tated program calling structure obtained by lightweight pro-
filing of a Java application, focusing on one execution that
exhibited poor performance. The annotations recorded the
observed call targets and allocated types for each executed
method, information that enabled pruning of a significant
number of unexecuted instructions.

Blended analyses for Java and for JavaScript both apply
a dynamic analysis followed by a static analysis on the col-
lected calling structure and both use pruning based on dy-
namic information. However, Java blended analysis focuses
on one problematic execution, while JavaScript blended anal-
ysis aims to obtain a ’good enough’ whole-program solution,
by analyzing a set of executions. The complexity of dynamic
analysis for JavaScript far exceeds that in the Java analysis.
The latter merely records all calls, including reflective ones.
The former captures dynamically generated and/or loaded
code and records all calls therein, a more difficult task es-
pecially with nested reflective constructs (e.g., evals). The
JavaScript pruning uses a richer set of dynamic information
than is used in Java pruning. Thus, while the blended algo-
rithms are related as to overall high-level structure, there are
many differences between them and the dynamic language
constructs analyzed are very different.

Dynamic behavior. The dynamic behavior of JavaScript
applications reflects the actual uses of dynamic features.
Richards, et al. conducted an empirical experiment on real-
world JavaScript applications, (i.e., websites), to study their
dynamic behavior [23]. The behaviors studied include call
site dynamism, function variadicity, object protocol dynamism,
etc. The authors concluded that common static analysis as-
sumptions about the dynamic behavior of JavaScript are
not valid. Our work is motivated by their study. Studies
of the uses of eval in JavaScript applications [22] show that
the eval construct, which can generate code at runtime, is



Site Static Original blended Optimized blended
dynamic static total dynamic optimization static total overhead

GOGL 78.4 4.7 163.1 167.8 4.7 8.4 92.0 105.1 34.1%
FBOK 116.8 8.2 314.3 322.5 8.2 3.5 120.6 132.3 13.3%
YTUB 49.3 6.1 88.2 94.3 6.1 2.7 67.2 76.0 54.2%
YHOO 41.0 4.2 68.9 73.1 4.2 2.4 50.1 56.7 38.3%
BADU 28.4 2.3 38.1 40.4 2.3 1.3 32.2 35.8 26.0%
WIKI 20.3 2.5 24.2 26.7 2.5 1.2 22.2 25.9 27.6%
LIVE 32.8 3.8 51.9 55.7 3.8 1.0 31.3 36.1 10.1%
BLOG 10.2 3.0 15.4 18.4 3.0 0.6 11.6 15.2 49.0%

Table 3: Analysis time comparison (in minutes)

widely used. This result justifies our emphasis on eval in
blended analysis.

Ratanaworabhan, et al. also presented a related study
on comparing the behavior of JavaScript benchmarks, (e.g.,
SunSpider and V8), with real Web applications [21]. Their
results showed numerous differences in program size, com-
plexity and behavior which suggest that the benchmarks are
not representative of JavaScript usage. This study moti-
vated us to evaluate our JavaScript blended points-to anal-
ysis on website codes.

Static analysis. Various static analyses have been ap-
plied to JavaScript. Guarnieri, et al. [11] presented AC-
TARUS, a pure static taint analysis for JavaScript. Lan-
guage constructs, including object creations, reflective prop-
erty accesses, and prototype-chain property lookups were
modeled, but reflective calls like eval could not be modeled.
Our Static Analyzer uses the same WALA infrastructure so
that we share some models for JavaScript constructs in com-
mon with this work.

Jang and Choe [15] presented a static points-to analy-
sis for JavaScript. This context- and flow-insensitive analy-
sis works on SimpleScript, a restricted subset of JavaScript,
(e.g., prototyping not allowed). Guarnieri and Livshits pre-
sented another static points-to analysis to detect security
and reliability issues and experiment with JavaScript wid-
gets [9]. JavaScriptSAFE is a subset of JavaScript that static
analysis can safely approximate, even with reflective calls
such as Function.call and Function.apply. Other forms
such as eval are not handled. None of the above JavaScript
static analyses can model all of the language’s dynamic fea-
tures, (e.g., eval), whereas our analysis framework can han-
dle most of the more common dynamic features used by real
websites.

Several type analyses have been proposed [16, 14, 1, 18];
however, JavaScript’s dynamism makes it hard to achieve
good precision. These approaches work on subsets of JavaScript
(e.g., JavaScript= [18] and JS0 [1]) and were evaluated on
JavaScript benchmarks, (e.g., Google V8 and SunSpider),
rather than website code. Blended analysis, on the other
hand, analyzes real website codes.

Hybrid analysis of JavaScript. Several staged anal-
yses of JavaScript, analyze the statically visible code first
and then incrementally analyze the dynamically generated
code. Chugh, et al. [5] presented an information flow anal-
ysis for JavaScript. Guarnieri and Livshits [10] provided
GULFSTREAM as a staged points-to analysis for stream-
ing JavaScript applications. JavaScript blended analysis
differs from their approaches in two ways. Instead of an
incremental analysis, blended analysis collects dynamically
generated/loaded code during profiling and it facilitates po-
tentially more precise modeling of other dynamic features

whose semantics depend on run-time information.
Vogt, et al. presented a hybrid approach to prevent cross-

site scripting [20]. In this work, dynamic taint analysis
tracks data dependencies precisely and static analysis is trig-
gered to track control dependencies if necessary. Trace-
based compilation for JavaScript [8, 13] focused on perfor-
mance issues. It is a hybrid approach in terms of dynamic
trace recording and applying simple static analyses on spe-
cialized traces. Blended analysis is different from these ap-
proaches as a general-purpose analysis framework on which
we can build all kinds of client applications (e.g., for security
and optimization).

7. CONCLUSION
JavaScript is widely used as a programming language for

client-side Web applications. Analyzing JavaScript programs
statically is difficult because its dynamic features cannot be
precisely modeled. The JavaScript Blended Analysis Frame-
work is designed to address these challenges. We have de-
fined the blended analysis algorithm and discussed the safety
of its solution. We have implemented blended points-to
analysis of JavaScript to evaluate our framework. Blended
points-to analysis covers 86.6% of the pure static points-
to solution on average and adds an average of 7.0% of the
points-to pairs to the actual points-to solution, at a cost of
31.8% overhead over pure static analysis. Thus, the experi-
mental results show that blended analysis is a practical ap-
proach for analyzing JavaScript programs, even those which
use dynamic constructs such as eval.

In future work, we plan to improve our blended analysis
by providing more precise models for other JavaScript fea-
tures, such as prototyping. We also want to apply blended
analysis to a points-to client problem such as finding security
vulnerabilities or doing performance diagnosis.
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