
1

JavaScript: Bringing Object-Level Security to the
Browser

Charlie Meyer and Maurice Rabb

University of Illinois at Urbana-Champaign, {cemeyer2, m3rabb}@illinois.edu

Abstract – JavaScript has evolved from a simple
language intended to give web browsers basic
interaction into a fully featured dynamic language that
allows the browser to become an application delivery
platform. With innovations such as asynchronous
JavaScript and XML (AJAX) and JavaScript Object
Notation (JSON), JavaScript has become the de facto
standard for creating interactive web applications. With
its new found power and popularity, JavaScript has
been the target of many attacks. In this paper, we
present a framework that allows programmers to define
secure properties of JavaScript objects such that they
are more immune to malicious activity and require a
smaller footprint that existing solutions. We then use our
framework and apply it to an already built JavaScript
system to analyze its properties and effectiveness.

INTRODUCTION

JavaScript is an object-oriented scripting language that is
primarily used in the form of client-side JavaScript,
implemented as an integrated component of the web
browser, allowing the development of enhanced user
interfaces and dynamic websites. JavaScript is a dialect of
the ECMAScript standard and is characterized as a dynamic,
weakly typed, prototype-based language with first-class
functions [1]. JavaScript is one of the world’s most popular
programming languages due primarily to the fact that almost
every modern personal computer has a web browser with a
JavaScript interpreter installed on it. JavaScript's popularity
is due entirely to its role as the scripting language of the
internet [2].

Given JavaScript’s ubiquity and popularity, it has
proven to be a common target for malicious activity.
Modern web browsers provide a Document Object Model
(DOM) API to JavaScript that allows script to interact with
the browser and the pages that it renders to the user, but the
DOM provides the potential for malicious authors to easily
deliver code to clients. Malicious authors can easily deliver
scripts that invoke DOM functionality such as redirecting
the user’s browser, possibly to a malicious web site. Most
web browsers attempt to mitigate this risk using two
restrictions. First, all scripts run in a sandbox environment
where they only have access to the web browser and not the
system itself. Second, scripts are constrained by the same
origin policy, where loaded in one document do not have
access to data and scripts loaded in another document. Most

JavaScript-related security problems are breaches of one of
the two restrictions [1]. In addition, insecure JavaScript
engineering practices often open new attack vectors. In
many cases, security does not receive sufficient attention
due to the complexity of web based applications, the ad hoc
process of development, and the fact that many web
designers do not have the necessary security knowledge on
web development techniques [3]. It comes as no surprise
that website security breaches are common and web-based
applications are more susceptible to attacks than other
traditional applications [4].

One of the main vulnerabilities in web applications is
that one document may load scripts from many different
sources. Each script loaded into a particular document by
default has access to all of the data and functionality of each
of the other scripts loaded into that document. This is often
necessary for activities such as the inclusion of advertising
[5] and analytics tracking [6]. A study of 6,805 popular web
sites in 15 different categories revealed that at least 66.4%
of analyzed sites have insecure practices such as including
scripts from external sources into the top-level documents of
their homepages [3].

 <script type="text/javascript">
var gaJsHost = (("https:" == document.location.prot ocol) ?
"https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHos t + "google-
analytics.com/ga.js' type='text/javascript'%3E%3C/s cript%3E"));
</script>

FIGURE 1

A SINPPET OF JAVASCRIPT BASED ON WWW.CS.UIUC.EDU WHERE A SCRIPT

FROM A DIFFERENT SOURCE IS LOADED INTO THE TOP LEVEL DOCUMENT OF

THE SITE

Another common JavaScript vulnerability is its ability

to dynamically generate and execute source code. The
eval() function is provided by the JavaScript engine and
evaluates a string containing JavaScript code as if it was
part of the source loaded with the document. Malicious
authors often use this ability to deliver code at runtime that
adversely impacts the document. The same study mentioned
above found that over 74.9% of analyzed web sites use one
or more types of JavaScript dynamic generation techniques,
and calls to the eval() function exist in 44.4% of
analyzed web sites. Based on running several popular web
sites and JavaScript tests through an instrumented
JavaScript engine, a study found that changes to live objects
are not uncommon, with adding fields to objects being the
most frequent modification. While deletion of fields was not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4837805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

detected in the tests, it was found to occur on several web
sites [7].

<script type="text/javascript">
eval(“alert(‘Hello, world!”);
</script>

FIGURE 2

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE USE OF THE

EVAL () FUNCTION

To help programmers secure their scripts from attacks,

we present the HotSausage JavaScript framework [8]. The
HotSausage framework contains several modules to allow
JavaScript programmers to richer sets of functionality than
what the environment provides by default, such as privacy,
collections, and templates. For this paper, we focus on the
privacy module, which allows programmers to secure
properties of objects in secure locations and only grant
designated functions of objects access to those protected
properties. By including the HotSausage framework in a
document, an author has the ability to write code that is
more immune to attack than it would be alone.

This paper will explore the functional abilities of the
privacy module, how it interacts under various possible
attacks, performance penalties incurred by using it, and the
next steps that we are taking to enhance the framework.
Lastly, we will investigate a case study where the
HotSausage framework was applied to a working JavaScript
system to demonstrate its abilities in a typical setting. We
aim to show that by being conscientious of security when
writing JavaScript source code, authors can mitigate many
common attack vectors targeted at their applications.

M OTIVATION

Web browsers define the origin of a document to include the
protocol used to load it and the domain name and port that it
was loaded from. Although a document can only be loaded
from one source, there is no such restriction on the origin of
scripts that are included in a document. Under the same-
origin policy, JavaScript cannot access another document
that has a different origin, but it does have full access the
document in which it was included even if its origin is
different from its parent’s document [9].

It is possible then for a document author to
unknowingly include a JavaScript script in his document
that has malicious intent and full access to all other data in
the document. It is common practice for authors to include
scripts for functionality such as libraries and frameworks in
their document from external script hosting sites to reduce
the burden of updating local copies when new versions of
the script are released or to reduce load on their hosting
servers. Providers such as Yahoo! offer scripts in this
manner [10]. Such script hosting sites may become popular
targets of attack, due to the ease of distributing malicious
code to a large user base if the hosting site was
compromised. There are alternative methods to mitigate this
risk, but often times they are not compatible with the
document author’s design intentions or are overlooked [3].

In addition, the eval() function is especially
dangerous. It takes a single string parameter and evaluates it
as JavaScript source without reference to a particular object,
but with the same privileges as the function’s caller [11]. If
the eval() function is present in a script, an attacker could
try to leverage its power to evaluate a string of malicious
code with the privileges of the caller. In addition, since
often times eval() is used to run dynamically generated
scripts, it is near impossible to effectively filter out
malicious code from valid code [3].

We aim to reduce the chances that a malicious script
could alter data of JavaScript objects that have strict security
and integrity requirements. By utilizing our framework,
authors can be confident that their data will remain secure
and immune to attack.

HOTSAUSAGE

The HotSausage JavaScript framework aims to provide
JavaScript programmers with a rich set of functionality that
is not provided by the standard library. The base
HotSausage module contains general settings for the
framework along with setup and structure for all the sub-
modules it contains. One example setting is the ability to
handle errors quietly. If enabled, the framework will not
throw errors on error conditions but rather silently ignore
them. The framework is further decomposed into several
sub-modules, each with its own distinct purpose.

The collections module provides authors with a set of
data structures that can be used to store collections of data.
It features predefined objects such as lists and spans of
elements that feature rich APIs similar to what a
programmer would expect from other languages, such as
Java or C#.

The purpose of the Templates module is to enable
programmers to program using pure prototypal semantics.
While JavaScript inherently prototypal, its inconsistent
object creation syntax obscures its prototypal basis, leading
many programs to try to write programs from a classical
class-based approach. Furthermore, this schizophrenic
nature around object creation creates usability issues for
programmers, which causes some common and serious bugs
which are tricky to debug and are visually difficult to locate
in source code. Using the HotSausage Templates module
enables programmers to avoid these headaches, and use a
pure and consistent approach to object creation and build
object types.

The final module in the HotSausage framework is the
privacy module. Its responsibility is to provide objects with
the capability to store protected properties in a secure
“purse” that is only accessible by author designated
functions. Accesses to the purse of an object are secured
with a one-time session key that is only valid when invoked
in the scope of the framework. In addition, there are several
layers of checks that are performed when accessing
protected properties that ensure that only authorized access
is allowed.

3

I. Getting Started with HotSausage

To use the HotSausage JavaScript framework, script authors
must first include the compiled source file containing the
framework. Currently, we only support loading the
framework from the same host as the origin of the document
where it will be used, but in the future we plan to implement
a script hosting service for the code. To mitigate risk of
malicious authors compromising the script host, we plan to
distribute hash checksums of the code to authors and include
a built-in hashing mechanism in the framework that will
authenticate itself when it is loaded.

As soon as the source code is loaded in the document,
the framework automatically registers itself as a global
object available to all other scripts called HotSausage .
All sub-modules of HotSausage, such as collections,
templates, and privacy automatically register themselves as
HotSausage.Collections ,
HotSausage.Templates , and
HotSausage.Privacy respectively. It is then the
responsibility of the document author to call the
HotSausage.installCoreMethods() function to
finish initializing the framework. This function augments
several of the JavaScript global objects, such as Object and
Function to include extra functionality that the framework
provides. It accomplishes this task by adding fields to the
prototypes of these objects.

<script type="text/javascript">
HotSausage.installCoreMethods();
</script>

FIGURE 3

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE INITIALIZATION

OF THE FRAMEWORK

HOTSAUSAGE PRIVACY M ODULE

The privacy module provides authors the ability to secure
protected properties of JavaScript objects in secure
containers. Once the HotSausage framework is loaded into a
document and is initialized, all of its features are available
to script authors, including privacy, but privacy features are
not extended to any objects unless an author explicitly
enables them for a type of object. This requirement reduces
overhead since only objects requiring privacy features will
require the extra processing demanded by HotSausage when
they are instantiated and evaluated.

II. Getting Started With the Privacy Module

When an object has privacy featured enabled, a container
that we call a purse is attached to it, which is used to store
properties of the object that authors wish to protect. The
purse is only available in the functional block in which
privacy was enabled and in any functions that the author
designates as privileged. We made a design decision to
reveal a direct reference to the purse when privacy is
enabled hoping that script authors will have the foresight not

to leave access to that reference available outside of the
constructor of an object.

<script type="text/javascript">
var Person = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
 //it is the author’s responsibility to not dis close the
 //the reference to the purse here
};
</script>

FIGURE 4

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING HOW TO ENABLE

PRIVACY ON AN OBJECT AND STORE PROPERTIES IN ITS PURSE

As seen in (4) and steps p1-p2 in (19), once privacy is

enabled, the programmer gets direct access to the purse for
that object where he can store whatever properties he would
like. The reference to the purse is only valid inside of the
functional block in which privacy is enabled, which in this
case is the constructor of the object. The security and
integrity of the privacy for the Person object would be
compromised if the author assigned the purse reference to a
variable declared in a different scope than the constructor or
defined a function that returned the purse reference inside
the constructor. As stated earlier, we will count on script
authors to be mindful of these restrictions and write their
scripts accordingly. We also to plan to include these
restrictions in the documentation that is shipped with the
framework and in the wiki for the project to raise awareness
of this potential attack vector to users of the framework.

The reference to the purse that is received when calling
enablePrivacy() is the only direct reference that
objects will have to their purses. Any other accesses to the
purse can only come from functions which the script author
as designated as privileged.

Lastly, after enablePrivacy() is called, a new
function called _purse() is added to that object as seen in
p5 in (19). This function takes a session key and if the key
provided is correct, stores the purse for that object in a
location that is only accessible by the framework. The use of
this function will be described below.

III. Adding Privileged Methods to Objects

When installCoreMethods() is called to initialize
the framework, several methods are added to global
JavaScript objects. The two methods that the privacy
module installs are
Object.prototype.privilegedMethod and
Function.prototype.privilegedMethod . Both
of these functions have the same purpose, but act slightly
different. Since Function inherits from Object , objects
of type Function will inherit Function ’s version of
privilegedMethod while all other JavaScript objects
will inherit Object ’s version.

Both of these functions serve the same purpose, to
install a function on the object on which it was called that
has access to the purse of that object. Function ’s version
of privilegedMethod adds a privileged method to the

4

prototype of the object on which it was called, while
Object ’s version adds the privileged method to the object
itself that it was called on.

The function privilegedMethod takes two
parameters, a string containing the name that the author
wishes the new function to have and a function containing
the implementation of the new method as seen m1 in (19).
When writing the implementation of the new privileged
method, the author must make a special consideration. The
reference to this in the implementation will refer not to
the object that the method is being added to, but rather to the
purse of that object. By default, the purse is populated with
two properties:
• owner – a reference to the object which owns the

purse
• _hspv – which is reserved for future use by the

framework

Any other properties that the programmer added to the purse
at any other time are also available.

<script type="text/javascript">
Peron.privilegedMethod(“getSSN”, function () {
 return this.ssn;
});
var personImpl = new Person(“123-45-6789”);
personImpl.getSSN(); //returns “123-45-6789”
</script>

FIGURE 5

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING HOW TO PROPERLY

ADD A PRIVILEGED METHOD TO AN OBJECT

IV. Locking the Framework

After the script author has defined all of the objects that are
required for his script, it is necessary to lock the framework
to prevent an attacker from simply adding a new privileged
method to an object at run time and accessing an object’s
purse. To accomplish this task, HotSausage provides a
lock() function that prevents this from happening. By
calling HotSausage.lock() , the author prevents any
further addition of privileged methods to objects, but the
functions to enable privacy on an object remain so that
objects constructed after the framework was locked will still
succeed.

<script type="text/javascript">
HotSausage.lock();
</script>

FIGURE 6

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING HOW TO PROPERLY

LOCK THE FRAMEWORK

After HotSausage.lock() is called, the properties
Object.prototype.privilegedMethod and
Function.prototype.privilegedMethod are
deleted. Any attempts to add them back by an attacker will
not have access to any object’s purse because the new
functions will not be defined within the scope of the
framework, which is necessary to access purses. A potential

problem with our approach is that if an attacker does in fact
redefine these functions, they will appear to work properly
for the script author with no warning given, but the worst
possible outcome is that the functions that are added to the
object requested will not work as expected; there will be no
accesses to the purse of that object.

V. Privileged Method Internals

When an author calls the privilegedMethod function,
the framework does much more than simply adding the
implementation function as a property of the object it was
called on.

First, the implementation function is wrapped in
another function that gains access to the purse of the object
to which the method is being added as seen in m2 and m3 in
(19). The details of this access will be described below.
After the wrapper function has successfully gained access to
a reference to the purse, it uses JavaScript’s
Function.prototype.apply method to execute the
implementation function, passing the reference to the purse
as the context to which the implementation function is
evaluated in as seen in m4 in (19). This is how the reference
in the implementation function references the purse and not
the behavior object to which the implementation function
belongs. The result of evaluating the implementation
function is stored in the wrapper and is compared to the
purse. If the result of the implementation function is not the
purse, that result is returned, otherwise the purse’s owner is
returned. This last check mitigates the attack where a
malicious author could write a privileged method using the
framework to try to expose a reference to an object’s purse
by returning it.

A current limitation is that an attacker could create an
additional privileged method that assigns its own reference
to the purse to a variable declared in a larger scope. We
currently have no defense against this type of attack, so it is
imperative that programmers write their privileged method
implementations carefully and lock the framework once
they have finished.

VI. Purse Access Internals

As mentioned earlier, when adding privileged methods to
objects, the framework wraps their implementation with
another function that is responsible for mediating the
execution of the implementation function, including gaining
it a reference to the purse of the object that it is attached to.

The framework internally has a function defined called
__purseOf() which takes a single parameter, an object,
and returns the purse of that object as seen in (19). The
wrapper function mentioned above calls this function to
retrieve a reference to an object’s purse. It does this by first
generating a one-time session key. This key is only visible
within the framework and is only valid for the time in which
__purseOf() is executing. Inside of the privacy module,
there exists an object that is simply a holder for properties
called the _activeTransporter as seen in (19)
labeled aHashMap. The __purseOf() function stores a

5

dummy reference in the slot of the
_activeTransporter designated by the generated key,
then calls the object’s _purse() method, supplying it the
session key as seen in e4 in (19). The _purse() function
takes the reference to the purse of its object and stores it in
the _activeTransporter in the slot where the dummy
reference was as seen in e5 in (19).

If an attacker was to call the _purse() function with
an invalid session key, all that would happen is that the
_purse() function would store a reference to the purse
inside the framework’s _activeTransporter where it
will never be read.

Once the _purse() function terminates, the
_purseOf() function retrieves the reference to the purse
from the _activeTransporter and returns it back to
the privileged method’s wrapper function as seen in e6 in
(19).

VII. Privacy Module Security Checks

Earlier, we mentioned that the HotSausage framework made
several security checks during execution and threw errors if
the checks resulted in a condition that violated the security
policy. A programmer can write JavaScript code that
monitors for these errors and take action depending on
which errors are thrown. Below we will describe several
potential attacks against the framework and how the
framework responds.

Given that an attacker knew that there were two types
of objects, both with privacy enabled and both with a purse
property of the same name. If the attacker knew that object
A had a privileged method that returned the protected
property of the name he was looking for in object B, but
object B did not have a privileged method that revealed that
property, he might try to reassign the privileged method
from object A to object B.

<script type="text/javascript">
var Employee1 = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

Employee1.privilegedMethod(“getLastFourOfSSN”, func tion () {
 return this.ssn.substring(this.ssn.length-4, 4);
});

var Employee2 = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

HotSausage.lock();

var e1 = new Employee1(“123-45-6789”);
var e2 = new Employee2(“987-65-4321”);

var e1ssn = e1.getLastFourOfSSN() //returns “6789”

e2.prototype.getLastFourSSN = e1.prototype.getLastF ourOfSSN
var e2ssn = e2.getLastFourOfSSN(); //throws error
</script>

FIGURE 7

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE PRIVILEGED

METHOD REASSIGNING ATTACK

In this case, the framework would cause a JavaScript

error to be thrown that would indicate that the privileged

method had been moved. This check is performed inside the
function that wraps the privileged method’s implementation,
and compares the object that it was originally attached to to
the current value of this .

Another attack exists where two objects both have
privacy enabled on them and with private properties of the
same name, but one object has privileged methods to access
all of its private properties which the second object does not.
An attacker may try to reassign the _purse() function of the
inaccessible object to the accessible object so that accessing
privileged methods of the accessible object would actually
reference the purse of the inaccessible object.

<script type="text/javascript">
var Employee1 = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

Employee1.privilegedMethod(“getLastFourOfSSN”, func tion () {
 return this.ssn.substring(this.ssn.length-4, 4);
});

var Employee2 = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

HotSausage.lock();

var e1 = new Employee1(“123-45-6789”);
var e2 = new Employee2(“987-65-4321”);

var e1._purse = e2._purse;

var e1ssn = e1.getLastFourOfSSN(); //throws error
</script>

FIGURE 8

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE PURSE ACCESSOR

METHOD REASSIGNING ATTACK

This attack will cause an error to be thrown because the

__purseOf() function mentioned earlier will
successfully execute the _purse() function that was
transplanted, but it then checks that the owner property of
the retrieved purse matches the object on which the
privileged method was called. When that check fails, an
error will be thrown.

Third, an attacker might try to redefine the _purse()
function of an object that had security enabled on it to either
try to reveal the purse or break the object. Although the
purse will still be secure if the _purse() function is
redefined improperly, privileged methods will no longer
function properly as the actual purse will not be accessible.
The framework will detect that the invalid _purse()
function did not properly modify the
_activeTransporter object since it did not have
access to it, so a counterfeit _purse() function must have
existed and an error will be throw.

<script type="text/javascript">
var Employee = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

Employee.privilegedMethod(“getLastFourOfSSN”, funct ion () {
 return this.ssn.substring(this.ssn.length-4, 4);
});

HotSausage.lock();

6

var e1 = new Employee(“123-45-6789”);

//attacker code
e1._purse = function (key) {
 var purse = {};
 purse.ssn = “987-65-4321”;
 return purse;
};

e1.getLastFourOfSSN(); //throws error
</script>

FIGURE 9

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE PURSE ACCESSOR

METHOD REDEFINING ATTACK

Fourth, a malicious author might try to call the

_purse() function of an object with privacy enabled
many times to guess the session key. Although guessing the
correct session key while that key is alive will only give the
framework access to the purse, it may give the attacker the
ability to guess the next keys that are generated. A valid
_purse() function will detect invalid session keys and
cause an error to be thrown if errors are not set to be
handled quietly.

<script type="text/javascript">
var Employee = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

Employee.privilegedMethod(“getLastFourOfSSN”, funct ion () {
 return this.ssn.substring(this.ssn.length-4, 4);
});

HotSausage.lock();

var e1 = new Employee(“123-45-6789”);

//attacker code
e1._purse(Math.random()); //throws error
</script>

FIGURE 10

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE BRUTE FORCE

SESSION KEY ATTACK

Lastly, an attacker might try to access the purse of an
object by trying to call enablePrivacy() on that object
again. The framework will detect the duplicate call and will
throw an error.

<script type="text/javascript">
var Employee = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};

HotSausage.lock();

var e1 = new Employee(“123-45-6789”);

//attacker code
var purse = HotSausage.Privacy.enableOn(e1); //thro ws error
</script>

FIGURE 11

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE DUPLICATE

PRIVACY ENABLEMENT ATTACK

VIII. Privacy Module Vulnerabilities

Earlier we discussed several weaknesses of the privacy
module. In this section, we will expand on those weaknesses
and demonstrate possible attack vectors that exploit them.

The primary weakness of the framework is its
dependence on script authors to be security conscientious
when writing their scripts with HotSausage. We rely on
them to ensure that any references to purses are not leaked
to areas of code where they could potentially be exploited
by an attacker.

<script type="text/javascript">
var currentPurse;

var Employee1 = function (ssn) {
 currentPurse = this.enablePrivacy();
 purse.ssn = ssn;
};

var Employee2 = function (ssn) {
 var purse = this.enablePrivacy();

 this.getPurse = function () {
 return purse;
 };
};

HotSausage.lock();

var e1 = new Employee(“123-45-6789”);
var e2 = new Employee2(“987-65-4321”);

</script>

FIGURE 12

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING A LEAK OF PRIVATE

DATA

In both of the examples given in the previous figure, an

attacker would have access to the private ssn property of
both objects. In the case of e1, the attacker would be able to
read currentPurse.ssn and in the case of e2, the
attacker could read e2.getPurse().ssn . By being
prudent of the limitations of the framework, an author can
eliminate any attacks of this nature.

Another vulnerability exists in the reassigning of a
purse to an object after it is constructed. When
enablePrivacy() or
HotSausage.Privacy.enableOn() is used to attach
a purse to an object, the framework first checks to ensure
that privacy has not already been enabled on the target
object as discussed earlier. Internally, the framework does
this by checking for the existence of the _purse() method
on the target. If an attacker removes the _purse() method
from the target and enables privacy on that object again, he
then has full access to a blank purse where he can put
whatever properties he would like. The owning object has
no knowledge of this attack.

7

<script type="text/javascript">
//valid code
var Employee = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;
};
Employee.privilegedMethod(“getLastFourOfSSN”, funct ion () {
 return this.ssn.substring(this.ssn.length-4, 4);
});
HotSausage.lock();
var e1 = new Employee(“123-45-6789”);

//attacker code
delete e1._purse;
var newPurse = HotSausage.Privacy.enableOn(e1);
newPurse.ssn = “ATTACKEDSSN”;
e1.getLastFourOfSSN(); //returns “DSSN”
</script>

FIGURE 13

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING THE PURSE ACCESS

ATTACK

We are currently implementing a solution to mitigate

this attack, which will require a script author to register his
objects with the framework and be supplied a unique key.
When enabling privacy on those registered objects, the
proper key will need to be supplied back to the framework
in order for the operation to complete successfully. This
strategy still is vulnerable to the primary weakness of the
framework, information leaks due to author negligence. If a
script author accidently makes the key for an object
available, the above mentioned attack is still possible.

HOTSAUSAGE PERFORMANCE

The HotSausage framework necessarily creates overhead on
objects that have privacy enabled on them. This is due to the
extra function calls and data initializations required for
ensuring privacy and secure generation of session keys. We
created a suite of benchmarks that test the privacy module
compared with several other traditional methods that have
been used to protect private properties in JavaScript objects.

I. Traditional Privacy Mechanisms

There are two main ways which JavaScript programmers
traditionally secure private properties of objects, closure
based protection and naming convention based protection.

Closure based protection revolves around the concept
of functional scope in JavaScript. Properties declared in
JavaScript are only readable within the functional scope that
they are declared, including in any functional blocks
declared within that scope. Programmers use this property to
declare variables in the constructor of an object, and then
define functions within that constructor that access those
variables. Since the defined functions are in the functional
scope of the constructor, they have access to any variables
declared in the constructor. This effectively ensures privacy
for those variables, but incurs a high overhead for each
object since functions declared in the constructor of an
object are bound to each instance of the object created rather
than to the prototype of the object itself.

<script type="text/javascript">

var Employee = function (ssn) {
 this.getLastFourOfSSN = function () {
 return ssn.substring(this.ssn.length-4, 4);
);

};

</script>

FIGURE 14

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING CLOSURE BASED

PRIVACY

As seen in the above figure, an attacker would have

only the allowed read access and no write access to the
variable ssn .

A second traditional way of securing private properties
is by using a naming convention that conveys that properties
are supposed to be private. Although this is a widely used
technique, it is insecure since properties that are named as
private are still accessible to an attacker. Commonly,
JavaScript programmers will use an underscore before the
name of a property that they wish to designate as private.
This method has the benefit of incurring a low overhead
since functions of objects that need to access private
properties can be bound to that object’s prototype rather
than to the object itself.

<script type="text/javascript">

var Employee = function (ssn) {
 this._ssn = ssn;
};

Employee.prototype.getLastFourOfSSN = function () {
 return this._ssn.substring(this._ssn.length-4, 4);
);

</script>

FIGURE 15

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING NAMING CONVENTION

BASED PRIVACY

II. Benchmarking Procedure

We wrote a series of benchmarks that test the privacy
module against traditional techniques both for object
construction and private property access. We measured the
processing time required for many iterations of both
instances. The benchmarks were run using the Rhino
JavaScript engine using a variety of optimization levels [12,
13]. The Rhino engine was chosen to eliminate as many
variables as possible that browser-based engines may
introduce and allow for tuning the engine optimization
settings.

III. Benchmark Results

For each of the tests, 1,000 iterations of 10,000 object
constructions and property accesses were performed. The
times listed below reflect the mean and standard deviation
of the processing time for all of the 1,000 iterations. The
benchmarks were run on an Intel Core 2 Duo T9600 at 2.80
GHz with 4 GB of main memory.

8

TABLE I
BENCHMARK RESULTS FOR OBJECT CONSTRUCTION

Engine
Optimization
Level

Privacy Technique Mean (ms) Standard
Deviation (ms)

Interpreted
Interpreted
Interpreted
None
None
None
Full
Full
Full

HotSausage
Closure
Naming Convention
HotSausage
Closure
Naming Convention
HotSausage
Closure
Naming Convention

81.50
43.82
22.65
32.45
23.69
8.16
33.60
22.91
7.95

17.80
5.25
0.87
17.91
2.68
1.47
19.93
1.81
1.39

TABLE 2

BENCHMARK RESULTS FOR PROTECTED PROPERTY ACCESS
Engine
Optimization
Level

Privacy Technique Mean (ms) Standard
Deviation (ms)

Interpreted
Interpreted
Interpreted
None
None
None
Full
Full
Full

HotSausage
Closure
Naming Convention
HotSausage
Closure
Naming Convention
HotSausage
Closure
Naming Convention

144.61
13.55
14.61
59.42
3.55
7.55
61.49
3.59
3.09

53.82
1.19
0.75
52.00
26.98
1.39
49.47
26.98
0.89

As can be seen by the above results, HotSausage incurs

a severe performance penalty for both object construction
and protected property access versus traditional methods.
Even given these penalties, we still believe that HotSausage
is a better solution than the traditional techniques. An object
with HotSausage privacy enabled on it has a smaller
memory footprint than a comparable object with closure
based privacy and is more secure than a comparable object
using naming convention based privacy.

It is important to note that these processing times are
for many iterations of object construction and private
property access, and when performing each of these tasks a
small number of times, the differences in the compute times
required are not measurable.

TESTING

To ensure that our framework performs as expected all
throughout development, we employed an extensive testing
strategy based upon the behavior driven development
philosophy. Behavior driven development focuses on using
natural language to describe the behavior of units of code
rather than the technical details that power them. It
minimizes translation between the technical language in
which the code is written and the domain language spoken
by the end users [14].

I. Testing Framework

To aid us in our testing, we employed an existing behavior
driven development testing framework called Jasmine [15].
Jasmine allowed us to cleanly express the behavior of our
units of code and easily write expressive tests to ensure that

each unit behaved as expected. In addition, Jasmine allowed
us to write a custom renderer to render the testing output, so
we were able to more easily determine test results and locate
problems when tests failed.

<script type="text/javascript">

describe('Priviledged test suite', function () {
 describe('When HotSausage.Privacy is loaded', function () {
 it('should be able to add a privileged me thod to an
object', function () {
 var pp;

 var Person = function (ssn) {
 var purse = this.enablePrivacy();
 purse.ssn = ssn;

 //bad practice, but needed for testing
 pp = this;
 };

 Person.privilegedMethod("getSSN", function () {
 expect(this).toEqual(pp); expect(this.ssn).toBeDefined();
 return this.ssn;
 });

 var ssn = "123-45-6789";
 var p = new Person(ssn);

 expect(p.getSSN).toBeDefined();
 expect(p.getSSN()).toEqual(ssn);
 });
 });
});

</script>

FIGURE 16

A SINPPET OF JAVASCRIPT SOURCE DEMONSTRATING AN EXAMPLE JASMINE

TEST

We wrote extensive test suites for all modules of the
framework, including privacy. We used these test suites to
ensure that the framework functioned as we intended. We
ran the test suite after any major edits to the source code to
verify that the changes that we made did not adversely
impact the functionality of the framework. If a test
happened to fail, we investigated the cause of the failure and
implemented a fix before moving on to the next step in
development.

FIGURE 17
OUR CUSTOM JASMINE TEST OUTPUT

HOTSAUSAGE CASE STUDY

To demonstrate our framework in action, we applied it to an
already existing JavaScript application. This case study of
the privacy module allowed us to verify the practicality of
our work and see its overhead in a real world scenario.

As part of our research, we also work on the Medical
Device Plug and Play (MDPnP) project [16]. The Medical

Device Plug and Play project aims to improve patient safety
by developing standards for the safe operation and
communication between medical devices.
of the requirements of the project and developed a mock
system that demonstrated the possibilities of having medical
devices function in coordination with each other. From
initial design to final testing, we utilized a variety of
technologies, including JavaScript, to implement a
successful mock environment that integrated actual
hardware in several scenarios to demonstrate the potential of
the system [17].

The system is composed using mostly JavaScript based
software models, but also contains hardware interfaces
written in Java and a user interface written with JavaScript,
HTML, and Flash [18, 10]. Other tools, such as XML and
JSON are also used as communications carriers for data
between components of the system.

I. Framework Application

Specifically, we incorporated the HotSausage
framework in the modules of our system that handled
creation and storage of patient vital sign data. In our system,
sensor devices send signals containing data payloads
through the network to be stored in a repository of data. By
modifying the output of each sensor device and the accessor
methods of the storage component, we were able to easily
integrate the privacy features of HotSausage into the system.
We chose the vital sign creation and storage code to te
framework since its data should by nature be secure,
immutable, and private.

FIGURE 18

AN OVERVIEW OF THE ARCHITECTURE OF OUR ME

SIMULATION

Applying the framework to our system
straightforward process requiring minimal rewr
existing code. The only major changes that were required
were in the declaration of functions that had access to

9

Device Plug and Play project aims to improve patient safety
by developing standards for the safe operation and
communication between medical devices. We gathered all
of the requirements of the project and developed a mock
system that demonstrated the possibilities of having medical
devices function in coordination with each other. From
initial design to final testing, we utilized a variety of

ies, including JavaScript, to implement a
successful mock environment that integrated actual
hardware in several scenarios to demonstrate the potential of

The system is composed using mostly JavaScript based
ins hardware interfaces

terface written with JavaScript,
. Other tools, such as XML and

JSON are also used as communications carriers for data

pecifically, we incorporated the HotSausage
framework in the modules of our system that handled the

storage of patient vital sign data. In our system,
sensor devices send signals containing data payloads

epository of data. By
modifying the output of each sensor device and the accessor
methods of the storage component, we were able to easily
integrate the privacy features of HotSausage into the system.
We chose the vital sign creation and storage code to test our
framework since its data should by nature be secure,

CHITECTURE OF OUR MEDICAL DEVICE

Applying the framework to our system was a
straightforward process requiring minimal rewriting of
existing code. The only major changes that were required
were in the declaration of functions that had access to

private data as well as enabling privacy on vital sign objects
as they were created by sensor devices.

II. Results and Analysis

After HotSausage was applied to our MDPnP system, we
were able to analyze the effectiveness, performance, and
usability of the modified system.

The framework behaved exactly as expected when
applied to an actual application. Since the application was
previously using closure-based privacy features, the
conversion to HotSausage-based privacy had no change on
the interface of the objects or on their functionality. We
noted that the privacy of the data stored in each object was
still subject to the same effective pr
but without the overhead that is attached to closure
privacy.

Although we did not instrument the MDPnP system
before and after HotSausage application to get firm data, we
did not notice any major performance impacts on the
operation of the system. We decided not to instrument the
system because the number of vital sign objects that are
created and accessed per second in the system is relatively
low (<100), and based on previous benchmarks of the
framework, this low number of
measureable using the finite clocks that JavaScript provides.
The bottlenecks in the application remained the same as
before the application of the
interactive components of the user interface.

III. Conclusions

The framework behaved exactly as expected when applied
to a real-world JavaScript application. All functionality that
we had guaranteed through unit testing worked as expected.
At first, we were wary that the performance penalties that
we noted during our benchmarking would be a hindrance in
real-world use, but that proved not to be the case.
mentioned earlier, the number of instantiations of privacy
enabled objects and accesses to private data were too small
to be measureable by the techniques that we ha
disposal and no human
responsiveness was detected. This small case study provided
evidence that our framework is practical, usable, and
provides the security features that it intends.

CONCLUSIONS AND

Although HotSausage is not
advantages are already apparent.
templates modules are not quite mature, the privacy module
is almost ready for deployment into actual applications.

Our analysis of the privacy module h
identify several weaknesses and vulnerabilities, but we feel
that we have addressed them to the best of our abilities. We
have checks in place already to prevent the majority of
vulnerabilities found, and have an implementation in
progress for the attack that was discovered during our
analysis. Although we have also discovered several
vulnerabilities that cannot be addressed with our current

private data as well as enabling privacy on vital sign objects
as they were created by sensor devices.

HotSausage was applied to our MDPnP system, we
were able to analyze the effectiveness, performance, and
usability of the modified system.

The framework behaved exactly as expected when
applied to an actual application. Since the application was

based privacy features, the
based privacy had no change on

the interface of the objects or on their functionality. We
noted that the privacy of the data stored in each object was
still subject to the same effective privacy that it had earlier,
but without the overhead that is attached to closure-based

Although we did not instrument the MDPnP system
before and after HotSausage application to get firm data, we
did not notice any major performance impacts on the
operation of the system. We decided not to instrument the
system because the number of vital sign objects that are
created and accessed per second in the system is relatively
low (<100), and based on previous benchmarks of the
framework, this low number of operations is not
measureable using the finite clocks that JavaScript provides.
The bottlenecks in the application remained the same as
before the application of the framework, mostly in the
interactive components of the user interface.

he framework behaved exactly as expected when applied
world JavaScript application. All functionality that

we had guaranteed through unit testing worked as expected.
At first, we were wary that the performance penalties that

enchmarking would be a hindrance in
world use, but that proved not to be the case. As

mentioned earlier, the number of instantiations of privacy-
enabled objects and accesses to private data were too small
to be measureable by the techniques that we had at our

and no human-noticeable difference in
responsiveness was detected. This small case study provided
evidence that our framework is practical, usable, and
provides the security features that it intends.

ONCLUSIONS AND FURTHER WORK

is not yet production ready, its
advantages are already apparent. While the collections and
templates modules are not quite mature, the privacy module
is almost ready for deployment into actual applications.

Our analysis of the privacy module has led us to
identify several weaknesses and vulnerabilities, but we feel
that we have addressed them to the best of our abilities. We
have checks in place already to prevent the majority of
vulnerabilities found, and have an implementation in

the attack that was discovered during our
analysis. Although we have also discovered several
vulnerabilities that cannot be addressed with our current

10

solution, such as programmer negligence, we hope that by
providing adequate documentation we will reduce or
eliminate any attacks that take advantage of this weakness in
our framework.

The most significant obstacle that we encountered
during our implementation and analysis was performance.
The additional processing overhead introduced by
HotSausage is quite significant, although we contend that
this additional work required is worth the functionality that
the framework provides. Its advantages over both traditional
types of JavaScript privacy are considerable and should be
taken into account when authors choose which type of
privacy strategy to employ in their applications. Our case
study on our medical device simulation proved that our
framework not only functions as it was designed to, but also
is practical in real world applications.

In the future, we plan to continue to develop
HotSausage and release it as open source software for
inclusion in real world applications. The majority of work in
the privacy module will be directed towards addressing the
vulnerability discussed earlier and reducing the processing
footprint of enabling privacy on an object and accessing
private properties of an object. Lastly, we are considering
aligning our codebase with the standards of CommonJS to
facilitate its use as a library in both client and server-side
applications [19]. We hope that by completing and releasing
this framework to the community, we will be able to allow
developers to write safer, more tamper resistant code with
minimal effort.

ACKNOWLEDGEMENT

We would like to thank Steven Moser, Yun Young Lee,
Nicholas Chen, Ralph Johnson, and the MDPnP project
group – with special thanks to Mu Sun, Cheolgi Kim, Lui
Sha, and Mary Flesner.

REFERENCES

[1] JavaScript. http://en.wikipedia.org/wiki/JavaScript

[2] JavaScript: The World's Most Misunderstood Programming
Language. D. Crockford.
http://www.crockford.com/javascript/javascript.html

[3] C. Ye and H. Wang. "Characterizing Insecure JavaScript
Practices on the Web", In Proc. of the WWW 2009, pages 961-
970, 2009

[4] W. S. (Editor). “Web Engineering: Principles and Techniques”
IGI Publishing, ISBN 1-591-40433-9, 2005

[5] Google AdSense. https://www.google.com/adsense/

[6] Google Analytics. http://www.google.com/analytics/

[7] S. Lebresne et al. “Understanding the Dynamics of JavaScript”
In Proc. for the 1st workshop on Script to Program Evolution,
pages 30-33, 2009

[8] m3rabb / HotSausage / Overview – bitbucket.org.
http://bitbucket.org/m3rabb/hotsausage/

[9] D. Flanagan. “JavaScript: The Definitive Guide” O’Reilly
Media, ISBN 0-596-10199-6, 2006

[10] YUI Library. http://developer.yahoo.com/yui/

[11] eval – MDC.
https://developer.mozilla.org/En/Core_JavaScript_1.5_Referenc
e/Global_Functions/Eval

[12] Rhino – JavaScript for Java. http://www.mozilla.org/rhino/

[13] Rhino optimization – MDC.
https://developer.mozilla.org/en/Rhino_Optimization

[14] Behavior Driven Development – Wikipedia.
http://en.wikipedia.org/wiki/Behavior_Driven_Development

[15] pivotal's jasmine at master – GitHub.
http://github.com/pivotal/jasmine

[16] MDPnP. https://agora.cs.illinois.edu/display/mdpnp/Home

[17] C. Meyer. “Mocking an Integrated Clinical Environment with
JavaScript”, 2009

[18] Adobe – Flash Player.
http://www.adobe.com/software/flash/about/

[19] CommonJS: JavaScript Standard Library. http://commonjs.org/

T

SING

DOUBLE BLACK A

DOUBLE WHITE ARR

DOUBLE OPEN

R
SQUARE LA

STEPS P1 THROUGH P6 REFE

STEPS M1 THROUG

STEPS E1 THRO

11

FIGURE 19

THE LIFECYCLE OF THE PURSE AND PRIVILEGED METHODS

GLE BLACK ARROWHEADS REPRESENT DIRECT RELATIONSHIPS
ARROWHEADS REPRESENT DIRECT REFERENCES TO FUNCTIONS TO EX

ROWHEADS REPRESENT REFERENCES TO FUNCTIONS VIA DELEGATE O

 ARROWHEADS WITH DASHED LINES REPRESENT A FLOW OF EXECUT

ROUND LABELS REPRESENT A STEP IN A SEQUENCE OF STEPS

ABELS REPRESENT ASSIGNMENTS AS PART OF A SEQUENCE OF STEPS

ER TO THE PROCESS OF ENABLING PRIVACY AND ATTACHING A PURS

GH M5 REFER TO PROCESS OF ADDING A PRIVILEGED METHOD TO AN

OUGH E5 REFER TO THE PROCESS OF EXECUTING A PRIVILEGED METH

XECUTE
OBJECTS

TION

S

SE TO AN OBJECT
 OBJECT
HOD

