-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

JavaScript: Bringing Object-Level Security to the
Browser

Charlie Meyer and Maurice Rabb
University of lllinois at Urbana-Champaign, {ceme¥em3rabb}@illinois.edu

Abstract — JavaScript has evolved from a simple
language intended to give web browsers basic
interaction into a fully featured dynamic languagethat
allows the browser to become an application delivgr
platform. With innovations such as asynchronous
JavaScript and XML (AJAX) and JavaScript Object
Notation (JSON), JavaScript has become the de facto
standard for creating interactive web applications.With
its new found power and popularity, JavaScript has
been the target of many attacks. In this paper, we
present a framework that allows programmers to defie
secure properties of JavaScript objects such thathey
are more immune to malicious activity and require a
smaller footprint that existing solutions. We thenuse our
framework and apply it to an already built JavaScript
system to analyze its properties and effectiveness.

INTRODUCTION

JavaScript is an object-oriented scripting langutus is
primarily used in the form of client-side JavaStrip

implemented as an integrated component of the we
allowing the development of enhanced use

browser,
interfaces and dynamic websites. JavaScript isakedi of
the ECMAScript standard and is characterized agardic,
weakly typed, prototype-based language with fitass
functions [1]. JavaScript is one of the world’s mpspular
programming languages due primarily to the fact #haost
every modern personal computer has a web browdbrawi
JavaScript interpreter installed on it. JavaSaiptpularity
is due entirely to its role as the scripting langriaf the
internet [2].

Given JavaScript's ubiquity and popularity, it has

JavaScript-related security problems are breaches® of
the two restrictions [1]. In addition, insecure d&eript
engineering practices often open new attack vectrs
many cases, security does not receive sufficietgntbon
due to the complexity of web based applications,ati hoc
process of development, and the fact that many web
designers do not have the necessary security kdgelen
web development techniques [3]. It comes as noriserp
that website security breaches are common and \aséeb
applications are more susceptible to attacks thdrero
traditional applications [4].

One of the main vulnerabilities in web applicatidas
that one document may load scripts from many dfier
sources. Each script loaded into a particular deaunby
default has access to all of the data and fundityraf each
of the other scripts loaded into that documentsTigioften
necessary for activities such as the inclusiondsfedising
[5] and analytics tracking [6]. A study of 6,805pubar web
sites in 15 different categories revealed thatast 66.4%
of analyzed sites have insecure practices suchcisding

cripts from external sources into the top-levelwtoents of
Q‘neir homepages [3].

<script type="text/javascript">

var gaJsHost = (("https:" == document.location.prot ocol) ?
"https://ssl." : "http:/Awvww.");

document.write(unescape("%3Cscript src=" + gaJsHos t + "google-
analytics.com/ga.js' type="text/javascript %3E%3C/s cript%3E"));

</script>

FIGURE 1
A SINPPET ORJAVA SCRIPT BASED ON WWWCS.UIUC.EDU WHERE A SCRIPT
FROM A DIFFERENT SOURCE IS LOADED INTO THE TOP LEVEDOCUMENT OF
THE SITE

Another common JavaScript vulnerability is its dil

proven to be a common target for malicious activityto dynamically generate and execute source code Th

Modern web browsers provide a Document Object Modegya]()

(DOM) API to JavaScript that allows script to irdet with
the browser and the pages that it renders to tee bat the
DOM provides the potential for malicious authorsetsily
deliver code to clients. Malicious authors can lgadgliver
scripts that invoke DOM functionality such as rediing
the user’'s browser, possibly to a malicious web. dilost
web browsers attempt to mitigate this risk usingo tw
restrictions. First, all scripts run in a sandbowisonment
where they only have access to the web browsenanthe
system itself. Second, scripts are constrainedheysame
origin policy, where loaded in one document do hate
access to data and scripts loaded in another datumidest

function is provided by the JavaScript engine and
evaluates a string containing JavaScript code as \ifas
part of the source loaded with the document. Malisi
authors often use this ability to deliver codelattime that
adversely impacts the document. The same studyiomeait
above found that over 74.9% of analyzed web sisesane

or more types of JavaScript dynamic generationrtiegles,
and calls to theeval() function exist in 44.4% of
analyzed web sites. Based on running several popgh
sites and JavaScript tests through an instrumented
JavaScript engine, a study found that changeweaolbjects
are not uncommon, with adding fields to objectsbehe
most frequent modification. While deletion of fisldvias not

https://core.ac.uk/display/4837805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

detected in the tests, it was found to occur oreisgweb
sites [7].

<script type="text/javascript">
eval(“alert(‘Hello, world!");
</script>

FIGURE 2
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE USE OF THE
EVAL () FUNCTION

To help programmers secure their scripts from kstac
we present the HotSausage JavaScript frameworKTfa3.
HotSausage framework contains several modules|doav al
JavaScript programmers to richer sets of functipn#han
what the environment provides by default, suchrasapy,
collections, and templates. For this paper, we $oon the

In addition, the eval() function is especially
dangerous. It takes a single string parameter saldi&es it
as JavaScript source without reference to a péatiabject,
but with the same privileges as the function’serglL1]. If
theeval() function is present in a script, an attacker could
try to leverage its power to evaluate a string @liaous
code with the privileges of the caller. In additiasince
often timeseval() is used to run dynamically generated
scripts, it is near impossible to effectively filteout
malicious code from valid code [3].

We aim to reduce the chances that a malicious tscrip
could alter data of JavaScript objects that hanet stecurity
and integrity requirements. By utilizing our framank,
authors can be confident that their data will remsécure
and immune to attack.

privacy module, which allows programmers to secure

properties of objects in secure locations and aggnt
designated functions of objects access to thoseeqisa
properties. By including the HotSausage framewarkai
document, an author has the ability to write collat tis
more immune to attack than it would be alone.

This paper will explore the functional abilities tfe
privacy module, how it interacts under various fass
attacks, performance penalties incurred by usingnit the
next steps that we are taking to enhance the framew
Lastly, we will
HotSausage framework was applied to a working JavatS
system to demonstrate its abilities in a typicdtisg. We
aim to show that by being conscientious of secusibhen
writing JavaScript source code, authors can mgigaany
common attack vectors targeted at their application

M OTIVATION

Web browsers define the origin of a document téuihe the

protocol used to load it and the domain name amtltpat it

was loaded from. Although a document can only laeléal

from one source, there is no such restriction enattigin of

scripts that are included in a document. Under same-
origin policy, JavaScript cannot access anothemuchent

that has a different origin, but it does have fadtess the
document in which it was included even if its omigs

different from its parent’s document [9].

investigate a case study where th

HOTSAUSAGE

The HotSausage JavaScript framework aims to provide
JavaScript programmers with a rich set of functiijpshat
is not provided by the standard library. The base
HotSausage module contains general settings for the
framework along with setup and structure for ak tub-
modules it contains. One example setting is thdityho
handle errors quietly. If enabled, the frameworkl wbt

ghrow errors on error conditions but rather silgrignore

them. The framework is further decomposed into sdve
sub-modules, each with its own distinct purpose.

The collections module provides authors with adfet
data structures that can be used to store collectib data.

It features predefined objects such as lists arahspof
elements that feature rich APIs similar to what a
programmer would expect from other languages, sagh
Java or C#.

The purpose of the Templates module is to enable
programmers to program using pure prototypal seicgnt
While JavaScript inherently prototypal, its incaent
object creation syntax obscures its prototypalddeading
many programs to try to write programs from a cdtzds
class-based approach. Furthermore, this schizojghre
nature around object creation creates usabilityeissfor
programmers, which causes some common and senmss b
which are tricky to debug and are visually diffictd locate

It is possible then for a document author tojn source code. Using the HotSausage Templatesilmod

unknowingly include a JavaScript script in his doeunt
that has malicious intent and full access to dleotdata in
the document. It is common practice for authorgntbude
scripts for functionality such as libraries andnfieworks in
their document from external script hosting sitesaduce
the burden of updating local copies when new vessiof
the script are released or to reduce load on thesting
servers. Providers such as Yahoo! offer scriptsthis
manner [10]. Such script hosting sites may becoomilar
targets of attack, due to the ease of distributimgicious

enables programmers to avoid these headaches,sand u
pure and consistent approach to object creation barid
object types.

The final module in the HotSausage framework is the
privacy module. Its responsibility is to providejedis with
the capability to store protected properties in exuse
“purse” that is only accessible by author desighate
functions. Accesses to the purse of an object aceirsd
with a one-time session key that is only valid wireroked
in the scope of the framework. In addition, there several

code to a large user base if the hosting site Wagyers of checks that are performed when accessing

compromised. There are alternative methods to atéithis
risk, but often times they are not compatible witie
document author’s design intentions or are oveladds].

protected properties that ensure that only authdrizccess
is allowed.

I. Getting Started with HotSausage

To use the HotSausage JavaScript framework, sauijiors
must first include the compiled source file coniagnthe
framework. Currently, we only support
framework from the same host as the origin of theudhent
where it will be used, but in the future we planrtgplement
a script hosting service for the code. To mitigagk of
malicious authors compromising the script host,plan to
distribute hash checksums of the code to authatsrentude
a built-in hashing mechanism in the framework thait

authenticate itself when it is loaded.

As soon as the source code is loaded in the dodyumen

the framework automatically registers itself as labgl
object available to all other scripts calletbtSausage .

to leave access to that reference available outsfdihe
constructor of an object.

<script type="text/javascript">

Ioading the var Person = function (ssn) {

var purse = this.enablePrivacy();
purse.ssn = ssn;

Ilitis the author's responsibility to not dis close the

Ilthe reference to the purse here
h
</script>
FIGURE 4

A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING HOW TO ENABLE
PRIVACY ON AN OBJECT AND STORE PROPERTIES IN ITS RBE

As seen in (4) and steps pl-p2 in (19), once pyivac
enabled, the programmer gets direct access toutse for
that object where he can store whatever propemtesould

All sub-modules of HotSausage, such as collectiong;e The reference to the purse is only valid desof the

templates, and privacy automatically register thedwes as
HotSausage.Collections ,

HotSausage.Templates and

HotSausage.Privacy respectively. It is then the

functional block in which privacy is enabled, whichthis
case is the constructor of the object. The secuaity
integrity of the privacy for thd®erson object would be
compromised if the author assigned the purse meferéo a

responsibility of the document author to call theyariable declared in a different scope than thestrantor or

HotSausage.installCoreMethods() function to
finish initializing the framework. This function gments
several of the JavaScript global objects, such lgeddand
Function to include extra functionality that therfrework
provides. It accomplishes this task by adding fietd the
prototypes of these objects.

<script type="text/javascript">
HotSausage.installCoreMethods();
</script>

FIGURE 3
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE INITIALIZATION
OF THE FRAMEWORK

HOTSAUSAGE PRIVACY M ODULE

The privacy module provides authors the abilitysezure
protected properties of JavaScript objects
containers. Once the HotSausage framework is loeded
document and is initialized, all of its featureg available
to script authors, including privacy, but priva@afures are
not extended to any objects unless an author etplic
enables them for a type of object. This requirermedtices
overhead since only objects requiring privacy fesguwill
require the extra processing demanded by HotSauwgage
they are instantiated and evaluated.

I1. Getting Sarted With the Privacy Module

When an object has privacy featured enabled, aaguent
that we call a purse is attached to it, which isduto store
properties of the object that authors wish to pbtdhe
purse is only available in the functional block which
privacy was enabled and in any functions that théhar
designates as privileged. We made a design decision
reveal a direct reference to the purse when priviscy
enabled hoping that script authors will have thedaght not

defined a function that returned the purse referenside
the constructor. As stated earlier, we will count sript
authors to be mindful of these restrictions andtevtheir
scripts accordingly. We also to plan to include sthe
restrictions in the documentation that is shippéth wthe
framework and in the wiki for the project to ras&areness
of this potential attack vector to users of therfeavork.

The reference to the purse that is received whiimnga
enablePrivacy() is the only direct reference that
objects will have to their purses. Any other acess® the
purse can only come from functions which the scaighor
as designated as privileged.

Lastly, after enablePrivacy() is called, a new
function called purse() is added to that object as seen in
p5 in (19). This function takes a session key drttie key
provided is correct, stores the purse for that adbjp a

in securlocation that is only accessible by the framewditke use of

this function will be described below.
I11. Adding Privileged Methods to Objects

When installCoreMethods() is called to initialize
the framework, several methods are added to global
JavaScript objects. The two methods that the pyivac

module installs are
Object.prototype.privilegedMethod and
Function.prototype.privilegedMethod Both

of these functions have the same purpose, butligtitly
different. Since~unction inherits fromObject , objects

of type Function will inherit Function ’s version of
privilegedMethod while all other JavaScript objects
will inherit Object ’s version.

Both of these functions serve the same purpose, to

install a function on the object on which it wagdlex that

has access to the purse of that objeanction ’'s version

of privilegedMethod adds a privileged method to the

prototype of the object on which it was called, Mhi

problem with our approach is that if an attackeeslin fact

Object ’s version adds the privileged method to the objectedefine these functions, they will appear to wpriperly

itself that it was called on.

The function privilegedMethod takes two
parameters, a string containing the name that tlikoa
wishes the new function to have and a function aoirig
the implementation of the new method as seen m19n
When writing the implementation of the new priviéeh
method, the author must make a special considerafioe
reference tahis in the implementation will refer not to
the object that the method is being added to, dther to the
purse of that object. By default, the purse is paiea with
two properties:

for the script author with no warning given, bug ttvorst
possible outcome is that the functions that areeddd the
object requested will not work as expected; theiteb& no
accesses to the purse of that object.

V. Privileged Method Internals

When an author calls thgrivilegedMethod function,

the framework does much more than simply adding the
implementation function as a property of the objéstas
called on.

First, the implementation function is wrapped in

« owner — a reference to the object which owns theanother function that gains access to the purdkeobbject

purse
e _hspv
framework

Any other properties that the programmer addet¢qurse
at any other time are also available.

<script type="text/javascript">
Peron.privilegedMethod(“getSSN”, function () {
return this.ssn;

)i

var personimpl = new Person(“123-45-6789");
personimpl.getSSN(); //returns “123-45-6789”
</script>

FIGURE 5
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING HOW TO PROPERLY
ADD A PRIVILEGED METHOD TO AN OBJECT

IV. Locking the Framework

After the script author has defined all of the chjethat are
required for his script, it is necessary to lock framework
to prevent an attacker from simply adding a newilaged
method to an object at run time and accessing fectd

to which the method is being added as seen in rd2rghin

— which is reserved for future use by the (19). The details of this access will be descrilibedow.

After the wrapper function has successfully gaiaedess to
a reference to the purse, it uses JavaScript's
Function.prototype.apply method to execute the
implementation function, passing the referencehtopurse
as the context to which the implementation functien
evaluated in as seen in m4 in (19). This is howdference
in the implementation function references the panseé not
the behavior object to which the implementationction
belongs. The result of evaluating the implemeniatio
function is stored in the wrapper and is compam@dhe
purse. If the result of the implementation functismot the
purse, that result is returned, otherwise the psisener is
returned. This last check mitigates the attack whar
malicious author could write a privileged methodhgsthe
framework to try to expose a reference to an olgjqmirse
by returning it.

A current limitation is that an attacker could ¢eean
additional privileged method that assigns its oeference
to the purse to a variable declared in a largepscaVe
currently have no defense against this type othtso it is

purse. To accomplish this task, HotSausage provales jmnerative that programmers write their privilegegthod

lock()
calling HotSausage.lock()
further addition of privileged methods to objedbsit the
functions to enable privacy on an object remainttsat
objects constructed after the framework was loak#idstill
succeed.

<script type="text/javascript">
HotSausage.lock();
</script>

FIGURE 6
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING HOW TO PROPERLY
LOCK THE FRAMEWORK

After HotSausage.lock()
Object.prototype.privilegedMethod and
Function.prototype.privilegedMethod are
deleted. Any attempts to add them back by an attaei|

is called, the properties

function that prevents this from happening. Byijmplementations carefully and lock the frameworkcen
, the author prevents any they have finished.

VI. Purse Access Internals

As mentioned earlier, when adding privileged methtal
objects, the framework wraps their implementatioithw
another function that is responsible for mediatitige
execution of the implementation function, includiggining
it a reference to the purse of the object that dttached to.
The framework internally has a function definedezl
__purseOf() which takes a single parameter, an object,
and returns the purse of that object as seen ih ({i¢e
wrapper function mentioned above calls this functio
retrieve a reference to an object’s purse. It dbissby first
generating a one-time session key. This key is @idiple
within the framework and is only valid for the tirmewhich
__purseOf() is executing. Inside of the privacy module,

not have access to any object's purse because éhe Nthere exists an object that is simply a holderfmperties

functions will not be defined within the scope dfet
framework, which is necessary to access pursesaténpal

called the activeTransporter
labeled aHashMap. The purseOf()

as seen in (19)
function stores a

dummy reference in the slot of
_activeTransporter
then calls the object’spurse() method, supplying it the
session key as seen in e4 in (19). Tharse() function
takes the reference to the purse of its objectshoibs it in
the _activeTransporter in the slot where the dummy
reference was as seen in e5in (19).

If an attacker was to call thepurse() function with
an invalid session key, all that would happen iat tthe
_burse()
inside the framework’s activeTransporter
will never be read.

Once the _purse()
_purseOf()
from the activeTransporter and returns it back to
the privileged method’s wrapper function as seem@nin

(29).
VII. Privacy Module Security Checks

Earlier, we mentioned that the HotSausage framewwmée
several security checks during execution and treewars if
the checks resulted in a condition that violatesl $bcurity

where it

function terminates, the

function would store a reference to the pursé

the method had been moved. This check is performedaerisie
designated by the generated key,function that wraps the privileged method’s impleration,

and compares the object that it was originallycit¢al to to
the current value dhis

Another attack exists where two objects both have
privacy enabled on them and with private propertiethe
same name, but one object has privileged methodsdess
all of its private properties which the second obppes not.
An attacker may try to reassign the _purse() fumctf the
inaccessible object to the accessible object soatt@essing
privileged methods of the accessible object wouthially
reference the purse of the inaccessible object.

<script type="text/javascript">

function retrieves the reference to the purse? Employeel = function (ssm{

var purse = this.enablePrivacy();
purse.ssn = ssn;

Employeel.privilegedMethod(“getLastFourOfSSN", func
return this.ssn.substring(this.ssn.length-4, 4
b8

var Employee2 = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

tion () {
)

h

HotSausage.lock();

policy. A programmer can write JavaScript code thatare1 = new Employee1(“123-45-6789");

monitors for these errors and take action depending
which errors are thrown. Below we will describe ey

var e2 = new Employee2(“987-65-4321");

var el._purse = e2._purse;

potential attacks against the framework and how theareissn= el getLastFourofSSN(; ithrows error

framework responds.

Given that an attacker knew that there were twasyp
of objects, both with privacy enabled and both vétpurse
property of the same name. If the attacker knew dbgect
A had a privileged method that returned the pretbct
property of the name he was looking for in objegtbBit
object B did not have a privileged method that ede® that
property, he might try to reassign the privilegeétmod
from object A to object B.

<script type="text/javascript">

var Employeel = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

h

Employeel.privilegedMethod(“getLastFourOfSSN”, func
return this.ssn.substring(this.ssn.length-4, 4

Py

var Employee2 = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

tion () {
)

HotSausage.lock();

var el = new Employeel(*123-45-6789");
var e2 = new Employee2(“987-65-4321");

var elssn = el.getLastFourOfSSN() //returns “6789"

e2.prototype.getLastFourSSN = el.prototype.getLastF ourOfSSN

var e2ssn = e2.getLastFourOfSSN(); //throws error
</script>

FIGURE 7
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE PRIVILEGED
METHOD REASSIGNING ATTACK

</script>

FIGURE 8
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE PURSE ACCESSOR
METHOD REASSIGNING ATTACK

This attack will cause an error to be thrown beeatse
__purseOf() function mentioned earlier will
successfully execute thepurse() function that was
transplanted, but it then checks that tivener property of
the retrieved purse matches the object on which
privileged method was called. When that check fadls
error will be thrown.

Third, an attacker might try to redefine theurse()
function of an object that had security enabledt oo either
try to reveal the purse or break the object. Algtouhe
purse will still be secure if thepurse() function is
redefined improperly, privileged methods will nongger
function properly as the actual purse will not lceessible.
The framework will detect that the invalidpurse()
function did not properly modify the
_activeTransporter object since it did not have
access to it, so a counterfefpurse() function must have
existed and an error will be throw.

the

<script type="text/javascript">

var Employee = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

h

Employee.privilegedMethod(“getLastFourOfSSN”, funct
return this.ssn.substring(this.ssn.length-4, 4

ion () {
)

In this case, the framework would cause a JavasScrip”

error to be thrown that would indicate that thevibeped

HotSausage.lock();

var el = new Employee(*123-45-6789");

/lattacker code
el._purse = function (key) {
var purse = {};
purse.ssn = “987-65-4321";
return purse;
h
el.getLastFourOfSSN(); //throws error
</script>

FIGURE 9
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE PURSE ACCESSOR
METHOD REDEFINING ATTACK

The primary weakness of the framework is its
dependence on script authors to be security comtsmies
when writing their scripts with HotSausage. We rely
them to ensure that any references to purses areaied
to areas of code where they could potentially belated

by an attacker.

<script type="text/javascript">
var currentPurse;

var Employeel = function (ssn) {
currentPurse = this.enablePrivacy();
purse.ssn = ssn;

Fourth, a malicious author might try to call the varempioyee = function ssn) {

_burse()
many times to guess the session key. Although gqugesse
correct session key while that key is alive willyogive the
framework access to the purse, it may give theclkdtathe
ability to guess the next keys that are generatedalid
_purse()
cause an error to be thrown if errors are not eebe
handled quietly.

<script type="text/javascript">

var Employee = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

Employee.privilegedMethod(“getLastFourOfSSN”, funct
return this.ssn.substring(this.ssn.length-4, 4
W

HotSausage.lock();

ion () {
);

var el = new Employee(*123-45-6789");

/lattacker code
el._purse(Math.random()); //throws error
</script>

FIGURE 10
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE BRUTE FORCE
SESSION KEY ATTACK

Lastly, an attacker might try to access the puifsano
object by trying to calenablePrivacy() on that object
again. The framework will detect the duplicate eadd will
throw an error.

<script type="text/javascript">

var Employee = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

h

HotSausage.lock();

var el = new Employee(*123-45-6789");
/lattacker code

var purse = HotSausage.Privacy.enableOn(el); //thro
</script>

WS error

FIGURE 11
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE DUPLICATE
PRIVACY ENABLEMENT ATTACK

VIII. Privacy Module Vulnerabilities

Earlier we discussed several weaknesses of theagyriv

module. In this section, we will expand on thosakvesses
and demonstrate possible attack vectors that explein.

function of an object with privacy enabled

var purse = this.enablePrivacy();

this.getPurse = function () {
return purse;
K

h

HotSausage.lock();

function will detect invalid session keys and var el =new Employee('123-45-6789");

var e2 = new Employee2(“987-65-4321");

</script>
FIGURE 12
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING A LEAK OF PRIVATE
DATA

In both of the examples given in the previous figuan
attacker would have access to the privege property of
both objects. In the case of el, the attacker wbaldble to
read currentPurse.ssn and in the case o&2, the
attacker could reack2.getPurse().ssn By being
prudent of the limitations of the framework, anteutcan
eliminate any attacks of this nature.

Another vulnerability exists in the reassigning af
purse to an object after it is constructed. When
enablePrivacy() or
HotSausage.Privacy.enableOn() is used to attach
a purse to an object, the framework first checkereure
that privacy has not already been enabled on thgetta
object as discussed earlier. Internally, the fraoréwdoes
this by checking for the existence of theurse() method
on the target. If an attacker removes tperse() method
from the target and enables privacy on that okagetin, he
then has full access to a blank purse where hepcén
whatever properties he would like. The owning obje&s
no knowledge of this attack.

<script type="text/javascript">

/Ivalid code

var Employee = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

émployee.priviIegedMethod(“getLastFourOfSSN“, funct ion () {
return this.ssn.substring(this.ssn.length-4, 4);

Iy

HotSausage.lock();

var el = new Employee(*123-45-6789");

/lattacker code

delete el._purse;

var newPurse = HotSausage.Privacy.enableOn(el);
newPurse.ssn = “ATTACKEDSSN";
el.getLastFourOfSSN(); //returns “DSSN”

</script>

FIGURE 13
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING THE PURSE ACCESS
ATTACK

h

</script>
FIGURE 14
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING CLOSURE BASED
PRIVACY

As seen in the above figure, an attacker would have

only the allowed read access and no write accegheto
variablessn .

A second traditional way of securing private praoigsr
is by using a naming convention that conveys thapgrties
are supposed to be private. Although this is a hyidsed
technique, it is insecure since properties thatrammed as
private are still accessible to an attacker. Conlyon
JavaScript programmers will use an underscore betoe

We are currently implementing a solution to mit®at name of a property that they wish to designate raste.

this attack, which will require a script authorragister his
objects with the framework and be supplied a unikeg
When enabling privacy on those registered objetts,
proper key will need to be supplied back to thenfeaork
in order for the operation to complete successfullkis
strategy still is vulnerable to the primary wealned the
framework, information leaks due to author negligenlif a

This method has the benefit of incurring a low tveed
since functions of objects that need to accessafmiv
properties can be bound to that object’s prototygder
than to the object itself.

<script type="text/javascript">

var Employee = function (ssn) {

script author accidently makes the key for an dbjec, this._ssn = ssi;

available, the above mentioned attack is still fibes
HOTSAUSAGE PERFORMANCE

The HotSausage framework necessarily creates caerbre
objects that have privacy enabled on them. Thikigsto the
extra function calls and data initializations reeqdi for
ensuring privacy and secure generation of sessga. RWe
created a suite of benchmarks that test the privagogiule
compared with several other traditional methods tave
been used to protect private properties in JavaSabiects.

I. Traditional Privacy Mechanisms

Employee.prototype.getLastFourOfSSN = function () {
return this._ssn.substring(this._ssn.length-4, 4);
)i

</script>

FIGURE 15
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING NAMING CONVENTION
BASED PRIVACY

I1. Benchmarking Procedure

We wrote a series of benchmarks that test the gyiva
module against traditional techniques both for obje
construction and private property access. We medstine

There are two main ways which JavaScript prograremerygcessing time required for many iterations of hbot

traditionally secure private properties of objeatiysure
based protection and naming convention based piatec

instances. The benchmarks were run using the Rhino

JavaScript engine using a variety of optimizatievels [12,

Closure based protection revolves around the cmnceg_S]' The Rhino engine was chosen to eliminate asyma

of functional scope in JavaScript. Properties dedain

JavaScript are only readable within the functics@lpe that
they are declared, including in any functional k®c
declared within that scope. Programmers use tligguty to

declare variables in the constructor of an objand then
define functions within that constructor that acscéisose
variables. Since the defined functions are in thecfional

scope of the constructor, they have access to arighles

declared in the constructor. This effectively eesuprivacy
for those variables, but incurs a high overhead dach

object since functions declared in the construabran

object are bound to each instance of the objeetederather
than to the prototype of the object itself.

<script type="text/javascript">

var Employee = function (ssn) {
this.getLastFourOfSSN = function () {
return ssn.substring(this.ssn.length-4, 4)
)

variables as possible that browser-based engineg ma

introduce and allow for tuning the engine optimiaat
settings.

I11. Benchmark Results

For each of the tests, 1,000 iterations of 10,00{:=ct
constructions and property accesses were perforiied.
times listed below reflect the mean and standaxdatien
of the processing time for all of the 1,000 iteyat. The
benchmarks were run on an Intel Core 2 Duo T9600840
GHz with 4 GB of main memory.

TABLE |
BENCHMARK RESULTSFOR OBJECTCONSTRUCTION

Engine Privacy Technique Mean (ms) Standard
Optimization Deviation (ms)
Level
Interpreted HotSausage 81.50 17.80
Interpreted Closure 43.82 5.25
Interpreted Naming Convention 22.65 0.87
None HotSausage 32.45 17.91
None Closure 23.69 2.68
None Naming Convention 8.16 1.47
Full HotSausage 33.60 19.93
Full Closure 22.91 1.81
Full Naming Convention 7.95 1.39
TABLE 2

BENCHMARK RESULTSFOR PROTECTEDPROPERTYACCESS
Engine Privacy Technique Mean (ms) Standard
Optimization Deviation (ms)
Level
Interpreted HotSausage 144.61 53.82
Interpreted Closure 13.55 1.19
Interpreted Naming Convention 14.61 0.75
None HotSausage 59.42 52.00
None Closure 3.55 26.98
None Naming Convention 7.55 1.39
Full HotSausage 61.49 49.47
Full Closure 3.59 26.98
Full Naming Convention 3.09 0.89

As can be seen by the above results, HotSausagesinc

a severe performance penalty for both object coottm
and protected property access versus traditionghods.

Even given these penalties, we still believe that3dusage

is a better solution than the traditional techniguen object

each unit behaved as expected. In addition, Jasaliowed
us to write a custom renderer to render the testutgut, so
we were able to more easily determine test resulslocate
problems when tests failed.

<script type="text/javascript">

describe('Priviledged test suite', function () {
describe('When HotSausage.Privacy is loaded',
it('should be able to add a privileged me
object’, function () {
var pp;

function () {
thod to an

var Person = function (ssn) {
var purse = this.enablePrivacy();
purse.ssn = ssn;

/Ibad practice, but needed for
pp = this;

testing

Person.privilegedMethod("getSSN", function () {
expect(this).toEqual(pp);
return this.ssn;

i

var ssn = "123-45-6789";
var p = new Person(ssn);

expect(t

expect(p.getSSN).toBeDefined();
expect(p.getSSN()).toEqual(ssn);

</script>

FIGURE 16
A SINPPET ORJAVA SCRIPT SOURCE DEMONSTRATING AN EXAMPLEASMINE
TEST

We wrote extensive test suites for all modules haf t
framework, including privacy. We used these testesuto
ensure that the framework functioned as we intenti¢éel

with HotSausage privacy enabled on it has a smallgidn the test suite after any major edits to thecuode to

memory footprint than a comparable object with ates
based privacy and is more secure than a compaoajget
using naming convention based privacy.

It is important to note that these processing tiraes
for many iterations of object construction and ptées
property access, and when performing each of tteedes a
small number of times, the differences in the compimes
required are not measurable.

TESTING

verify that the changes that we made did not a@Wers
impact the functionality of the framework. If a tes
happened to fail, we investigated the cause ofdiigre and
implemented a fix before moving on to the next siep
development.

spec 1: HotSausage test suite when HotSausage is loaded HotSausage m
HotSausage test suite when HotSausage is loaded: 4 expects pass

HotSausage test suite: 4 expects passed, 0 expects failed, 4 expec

To ensure that our framework performs as expected a

throughout development, we employed an extensistntge

strategy based upon the behavior driven developmer

philosophy. Behavior driven development focusesusing
natural language to describe the behavior of wfitsode

rather than the technical details that power thdm.

minimizes translation between the technical languay
which the code is written and the domain languggeken
by the end users [14].

|. Testing Framework

To aid us in our testing, we employed an existirpavior
driven development testing framework called Jasnil/g.
Jasmine allowed us to cleanly express the behafiaur
units of code and easily write expressive tesengure that

spec 2: Priviledged test suite When HotSausage.Privacy is loaded HotSat
spec 3: Priviledged test suite When HotSausage.Privacy is loaded should
spec 4: Priviledged test suite When HotSausage.Privacy is loaded should
Priviledged test suite When HotSausage.Privacy is loaded: 20 exp

FIGURE 17
OUR CUSTOM JASMINE TEST OUTPUT

HOTSAUSAGE CASE STUDY

To demonstrate our framework in action, we appiied an
already existing JavaScript application. This casly of
the privacy module allowed us to verify the praality of
our work and see its overhead in a real world stena

As part of our research, we also work on the Mddica
Device Plug and Play (MDPnNP) project [16]. The Medli

Device Plug and Play project aims to improve patsafety
by developing standards for the safe operation
communication between medical devii We gathered all
of the requirements of the project and developadogk
system that demonstrated the possibilities of lpumedical
devices function in coordination with each otheror
initial design to final testing, we utilized a ety of
technologes, including JavaScript, to implement
successful mock environment that integrated a
hardware in several scenarios to demonstrate ttetal of
the system [17].

The system is composed using mostly JavaScriptdt
software models, but also coms hardware interface
written in Java and a usené@nface written with JavaScrif
HTML, and Flash [18, 10]Other tools, such as XML at
JSON are also used as communications carriers dta
between components of the system.

I. Framework Application

Specifically, we incorporated the HotSausi
framework in the modules of our system that hanthe
creation andtorage of patient vital sign data. In our syst
sensor devices send signals containing data pay
through the network to be stored inegpository of data. B
modifying the output of each sensor device andatteesso
methods of the storage component, we were ablagiby:
integrate the privacy features of HotSausage mecsisten
We chose the vital sign creation and storage codest our
framework since its data should by nature be se
immutable, and private.

. External
Control & Monitoring GUI External _ Syetem < - Cxemal
System 7‘1_,_, System
| T oy

Master
Controller _

Procedures

Events Logs

Device
Model
[y

v
swgl:ais
commands

Rules

Patient
Model

i

i
signals
!

signals
commands commands
¥

ICE

signals
|
commands

Actuating
Device
physical Actuating
connection Device
FIGURE 18

AN OVERVIEW OF THE ARCHITECTURE OF OUR MDICAL DEVICE
SIMULATION

Monitoring
Device

Monitoring
Device

physieal

- o
connection

Applying the framework to our systenwas a
straightforward process requiring minimal riting of
existing code. The only major changes that werelireq
were in the declaration of functions that had ascts

private data as well as enabling privacy on viigih ©bjects
as they were created by sensor dev

Il. Results and Analysis

After HotSausage was applied to our MDPnP system
were able to analyze the effectiveness, performaand
usability of the modified syste!

The framework behaved exactly as expected v
applied to an actual application. Since the appboawas
previously using closurbased privacy features, t
conversion to HotSausagased privacy had no change
the interface of the objects or on their functigiyalWe
noted that the privacy of the data stored in edsjbad was
still subject to the same effectiveivacy that it had earlier,
but without the overhead that is attached to ck-based
privacy.

Although we did not instrument the MDPnP sys!
before and after HotSausage application to get fiata, we
did not notice any major performance impacts on
operation of the system. We decided not to instnintiee
system because the number of vital sign objects dahe
created and accessed per second in the systenatively
low (<100), and based on previous benchmarks of
framework, this low number operations is not
measureable using the finite clocks that JavaSpriptides.
The bottlenecks in the application remained the esas
before the application of thframework, mostly in the
interactive components of the user interf

I11. Conclusions

The framework behaved exactly as expected wheneaf
to a realworld JavaScript application. All functionality t
we had guaranteed through unit testing worked pecrd
At first, we were wary that the performance peealtithal
we noted during ourdnchmarking would be a hindrance
realworld use, but that proved not to be the ¢ As
mentioned earlier, the number of instantiationg¥acy-
enabled objects and accesses to private data aerantall
to be measureable by the techniques that wd at our
disposal and no hume-noticeable difference in
responsiveness was detected. This small case gtadiged
evidence that our framework is practical, usablag
provides the security features that it inter

CONCLUSIONS AND FURTHER WORK

Although HotSausageds not yet production ready, its
advantages are already apparéVhile the collections and
templates modules are not quite mature, the prinaagule
is almost ready for deployment into actual appiore

Our analysis of the privacy moduleas led us to
identify several weaknesses and vulnerabilities$,vine feel
that we have addressed them to the best of oltiedilWe
have checks in place already to prevent the mgjait
vulnerabilities found, and have an implementation
progress forthe attack that was discovered during
analysis. Although we have also discovered se
vulnerabilities that cannot be addressed with ownrent

solution, such as programmer negligence, we hoaelh
providing adequate documentation we will reduce or
eliminate any attacks that take advantage of teigkwess in
our framework.

The most significant obstacle that we encountered
during our implementation and analysis was perforcea
The additional processing overhead introduced by
HotSausage is quite significant, although we cahttrat
this additional work required is worth the functidity that
the framework provides. Its advantages over battlitional
types of JavaScript privacy are considerable amdilghbe
taken into account when authors choose which type o
privacy strategy to employ in their applicationsurase
study on our medical device simulation proved tbat
framework not only functions as it was designedtdt, also
is practical in real world applications.

In the future, we plan to continue to develop
HotSausage and release it as open source software f
inclusion in real world applications. The majoritfwork in
the privacy module will be directed towards addresshe
vulnerability discussed earlier and reducing thecpssing
footprint of enabling privacy on an object and asteg
private properties of an object. Lastly, we are sidering
aligning our codebase with the standards of Com@dnJ
facilitate its use as a library in both client asetver-side
applications [19]. We hope that by completing agléasing
this framework to the community, we will be ableaitow
developers to write safer, more tamper resistade asith
minimal effort.

ACKNOWLEDGEMENT

We would like to thank Steven Moser, Yun Young Lee,
Nicholas Chen, Ralph Johnson, and the MDPnP project
group — with special thanks to Mu Sun, Cheolgi Kimj
Sha, and Mary Flesner.

REFERENCES

[1] JavaScript. http://en.wikipedia.org/wiki/JavaScript

[2] JavaScript: The World's Most Misunderstood Progrargm
Language. D. Crockford.
http://www.crockford.com/javascript/javascript.html

[3] C.Ye and H. Wang. "Characterizing Insecure JaipScr
Practices on the Web", Proc. of the WMAW 2009, pages 961-
970, 2009

[4] W. S. (Editor). “Web Engineering: Principles anctfiriques”
IGI Publishing, ISBN 1-591-40433-9, 2005

[5] Google AdSense. https://www.google.com/adsense/
[6] Google Analytics. http://www.google.com/analytics/

[7] S. Lebresnet al. “Understanding the Dynamics of JavaScript”
In Proc. for the 1st workshop on Script to Program Evolution,
pages 30-33, 2009

[8] m3rabb / HotSausage / Overview — bitbucket.org.
http://bitbucket.org/m3rabb/hotsausage/

[9] D. Flanagan. “JavaScript: The Definitive Guide” @iy
Media, ISBN 0-596-10199-6, 2006

[10] YUI Library. http://developer.yahoo.com/yui/

10

[11] eval - MDC.
https://developer.mozilla.org/En/Core_JavaScrifi_Referenc
e/Global_Functions/Eval

[12] Rhino — JavaScript for Java. http://www.mozilla/ohgno/

[13] Rhino optimization — MDC.
https://developer.mozilla.org/en/Rhino_Optimization

[14] Behavior Driven Development — Wikipedia.
http://en.wikipedia.org/wiki/Behavior_Driven_Develment

[15] pivotal's jasmine at master — GitHub.
http://github.com/pivotal/jasmine

[16] MDPnNP. https://agora.cs.illinois.edu/display/mdpighe

[17] C. Meyer. “Mocking an Integrated Clinical Environmeavith
JavaScript”, 2009

[18] Adobe — Flash Player.
http://www.adobe.com/software/flash/about/

[19] CommonJS: JavaScript Standard Library. http://conjmorg/

privilegedMethod

anEmployee
getlLastFourOfSSN ployee

N
urse
-+ enablePrivacy —

e c— \
closure: Privac b\»
4 function _attachPurse() {...} ---

/closure: _attachPurse

@

\m_» function (sessionKey) {
b

aPurse
ssn: 123-45-6789

_ActiveTransporter[sessionKey] = _purse; aHashMap
return null;

}

é\ Y,

function __purseOf(target) {

target._purse(sessionKey);
N var purse = _ActiveTransporter[sessionKey];

return purse;

Ay
\
(e closure: _newPrivilegedMethod @ N @
1
’l
= 4

M_.* function privilegedMethod() {

var purse = __purseOf(this);
var answer = impFunc.apply(purse, args);

return answer;

} Ss-_
\) @

N
> privilegedMethod > fynction _newPrivilegedMethod(name, impFunc){..} =~

@ ——————— anEmployee.privilegedMethod("getLastFourOfSSN",
function () {return this.ssn.substring(this.ssn.length-4, 4);}
);

FIGURE 19
THE LIFECYCLE OF THE PURSE AND PRIVILEGED METHODS

SINGLE BLACK ARROWHEADS REPRESENT DIRECT RELATIONSHIPS
DOUBLE BLACK ARROWHEADS REPRESENT DIRECT REFERENCES TO FUNCTIONSEXECUTE
DOUBLE WHITE ARROWHEADS REPRESENT REFERENCES TO FUNCTIONS VIA DELETE OBJECTS
DOUBLE OPENARROWHEADS WITH DASHED LINES REPRESENT A FLOW OF IECUTION

ROUND LABELS REPRESENT A STEP IN A SEQUENCE OF STEPS
SQUARE LABELS REPRESENT ASSIGNMENTS AS PART OF A SEQUENCE SFEFS

STEPS AL THROUGH F6 REFER TO THE PROCESS OF ENABLING PRIVACY AND ATTACHIN® PURSE TO AN OBJECT

STEPS ML THROUGH M5 REFER TO PROCESS OF ADDING A PRIVILEGED METHOD TAN OBJECT
STEPS EL THROUGH E5 REFER TO THE PROCESS OF EXECUTING A PRIVILEGED MEJD

11

