3,235 research outputs found

    Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap

    Get PDF
    While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration) vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult. The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart

    Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair

    Get PDF
    Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.

    Myocardial infarction primes autoreactive T cells through activation of dendritic cells

    Get PDF
    Peripheral tolerance is crucial for avoiding activation of self-reactive T cells to tissue-restricted antigens. Sterile tissue injury can break peripheral tolerance, but it is unclear how autoreactive T cells get activated in response to self. An example of a sterile injury is myocardial infarction (MI). We hypothesized that tissue necrosis is an activator of dendritic cells (DCs), which control tolerance to self-antigens. DC subsets of a murine healthy heart consisted of IRF8-dependent conventional (c) DC1, IRF4-dependent cDC2, and monocyte-derived DCs. In steady state, cardiac self-antigen alpha-myosin was presented in the heart-draining mediastinal lymph node (mLN) by cDC1s, driving the proliferation of antigen-specific CD4(+) TCR-M T cells and their differentiation into regulatory cells (Tregs). Following MI, all DC subsets infiltrated the heart, whereas only cDCs migrated to the mLN. Here, cDC2s induced TCR-M proliferation and differentiation into interleukin-(IL)-17/interferon-(IFN) gamma-producing effector cells. Thus, cardiac-specific autoreactive T cells get activated by mature DCs following myocardial infarction

    Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction

    Get PDF
    Oxidative stress in heart failure or during ischemia/reperfusion occurs as a result of the excessive generation or accumulation of free radicals or their oxidation products. Free radicals formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks. Oxidative stress is a condition in which oxidant metabolites exert toxic effects because of their increased production or an altered cellular mechanism of protection. In the early phase of acute heart ischemia cytokines have the feature to be functional pleiotropy and redundancy, moreover, several cytokines exert similar and overlapping actions on the same cell type and one cytokine shows a wide range of biological effects on various cell types. Activation of cytokine cascades in the infarcted myocardium was established in numerous studies. In experimental models of myocardial infarction, induction and release of the pro-inflammatory cytokines like TNF-&alpha (Tumor Necrosis Factor &alpha), IL-1&beta (Interleukin- 1&beta) and IL-6 (Interleukin-6) and chemokines are steadily described. The current review examines the role of oxidative stress and pro-inflammatory cytokines response following acute myocardial infarction and explores the inflammatory mechanisms of cardiac injur

    Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart

    Get PDF
    Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs

    Versican is induced in infiltrating monocytes in myocardial infarction

    Get PDF
    Versican, a large chondroitin sulfate proteoglycan, plays a role in conditions such as wound healing and tissue remodelling. To test the hypothesis that versican expression is transiently upregulated and plays a role in the infarcted heart, we examined its expression in a rat model of myocardial infarction. Northern blot analysis demonstrated increased expression of versican mRNA. Quantitative real-time RT-PCR analysis revealed that versican mRNA began to increase as early as 6 h and reached its maximal level 2 days after coronary artery ligation. Versican mRNA then gradually decreased, while the mRNA of decorin, another small proteoglycan, increased thereafter. Versican mRNA was localized in monocytes, as indicated by CD68-positive staining, around the infarct tissue. The induction of versican mRNA was accelerated by ischemia/reperfusion (I/R), which was characterized by massive cell infiltration and enhanced inflammatory response. To examine the alteration of versican expression in monocytes/macrophages, we isolated human peripheral blood mononuclear cells and stimulated them with granulocyte/macrophage colony-stimulating factor (GM-CSF). Stimulation of mononuclear cells with GM-CSF increased the expression of versican mRNA as well as cytokine induction. The production of versican by monocytes in the infarct area represents a novel finding of the expression of an extracellular matrix gene by monocytes in the infarcted heart. We suggest that upregulation of versican in the infarcted myocardium may have a role in the inflammatory reaction, which mediates subsequent chemotaxis in the infarcted heart

    Enhancement of Gap Junction Function During Acute Myocardial Infarction Modifies Healing and Reduces Late Ventricular Arrhythmia Susceptibility

    Get PDF
    Objectives: To investigate the effects of enhancing gap junction (GJ) coupling during acute myocardial infarction (MI) on the healed infarct scar morphology and late post-MI arrhythmia susceptibility. Background: Increased heterogeneity of myocardial scarring after MI is associated with greater arrhythmia susceptibility. We hypothesized that short-term enhancement of GJ coupling during acute MI can produce more homogeneous infarct scars, reducing late susceptibility to post-MI arrhythmias. Methods: Following arrhythmic characterisation of the rat 4-week post-MI model (n=24), a further 27 Sprague-Dawley rats were randomised to receive rotigaptide to enhance GJ coupling (n=13) or saline control (n=14) by osmotic minipump immediately prior to, and for the first 7 days following surgical MI. At 4 weeks post-MI, hearts were explanted for ex vivo programmed electrical stimulation (PES) and optical mapping. Heterogeneity of infarct border zone (IBZ) scarring was quantified by histomorphometry. Results: Despite no detectable difference in infarct size at 4 weeks post-MI, rotigaptide-treated hearts had reduced arrhythmia susceptibility during PES (Inducibility score: rotigaptide 2.40.8, control 5.00.6, p=0.02) and less heterogeneous IBZ scarring (standard deviation of IBZ Complexity Score: rotigaptide 1.10.1, control 1.40.1, p=0.04), associated with an improvement in IBZ conduction velocity (rotigaptide 43.13.4 cm/s, control 34.82.0 cm/s, p=0.04). Conclusions: Enhancement of GJ coupling for only 7 days at the time of acute MI produced more homogeneous IBZ scarring and reduced arrhythmia susceptibility at 4 weeks post-MI. Short-term GJ modulation at the time of MI may represent a novel treatment strategy to modify the healed infarct scar morphology and reduce late post-MI arrhythmic risk

    Implantation of Mouse Embryonic Stem Cell-Derived Cardiac Progenitor Cells Preserves Function of Infarcted Murine Hearts

    Get PDF
    Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart
    corecore