75,356 research outputs found

    Relationship between infarct tissue characteristics and left ventricular remodeling in patients with versus without early revascularization for acute myocardial infarction as assessed with contrast-enhanced cardiovascular magnetic resonance imaging

    Get PDF
    Left ventricular (LV) remodeling following myocardial infarction (MI) is the result of complex interactions between various factors, including presence or absence of early revascularization. The impact of early revascularization on the relationship between infarct tissue characteristics and LV remodeling is incompletely known. Therefore, we investigated in patients with versus without successful early revascularization for acute MI potential relations between infarct tissue characteristics and LV remodeling with contrast-enhanced (CE) cardiovascular magnetic resonance (CMR). Patients with versus without successful early revascularization underwent CE-CMR for tissue characterization and assessment of LV remodeling including end-diastolic and end-systolic volumes, LV ejection fraction, and wall motion score index (WMSI). CE-CMR images were analyzed for infarct tissue characteristics including core-, peri- and total-infarct size, transmural extent, and regional scar scores. In early revascularized patients (n = 46), a larger area of infarct tissue correlated significantly with larger LV dimensions and a more reduced LV function (r = 0.39-0.68; all P ā‰¤ 0.01). Multivariate analyses identified peri-infarct size as the best predictor of LV remodeling parameters (R2 = 0.44-0.62). In patients without successful early revascularization (n = 47), there was no correlation between infarct area and remodeling parameters; only peri-infarct size versus WMSI (r = 0.33; P = 0.03) and transmural extent versus LVEF (r = -0.27; P = 0.07) tended to be related. A correlation between infarct tissue characteristics and LV remodeling was found only in patients with early successful revascularization. Peri-infarct size was found to be the best determinant of LV remodeling. Our findings stress the importance of taking into account infarct tissue characteristics and success of revascularization when LV remodeling is studie

    Results of the MRI substudy of the intravenous magnesium efficacy in stroke trial

    Get PDF
    <p><b>Background and Purpose:</b>Although magnesium is neuroprotective in animal stroke models, no clinical benefit was confirmed in the Intravenous Magnesium Efficacy in Stroke (IMAGES) trial of acute stroke patients. The Magnetic Resonance in IMAGES (MR IMAGES) substudy investigated the effects of magnesium on the imaging surrogate outcome of infarct growth.</p> <p><b>Methods:</b> IMAGES trial patients in participating centers were randomized to receive either intravenous magnesium or placebo within 12 hours of stroke onset. Infarct growth was defined as volume difference between baseline diffusion-weighted imaging and day 90 fluid-attenuated inversion recovery image lesions. Patients who died were imputed the largest infarct growth observed.</p> <p><b>Results:</b> Among the 90 patients included in the primary analysis, there was no difference in infarct growth (median absolute growth, P=0.639; median percentage growth, P=0.616; proportion with any growth, P=0.212) between the 46 treated with magnesium and 44 with placebo. Infarct growth correlated with NIHSS score change from baseline to day 90. There was a trend showing baseline serum glucose correlated with infarct growth with magnesium treatment, but not in the placebo group. The mismatch frequency was reduced from 73% to 47% by increasing the mismatch threshold from >20% to >100% of core volume.</p> <p><b>Conclusions:</b> Infarct growth, confirmed here as a surrogate for clinical progression, was similar between magnesium and placebo treatment, paralleling the main IMAGES trial clinical outcomes. Glucose was a covariate for infarct growth with magnesium treatment. A more stringent mismatch threshold to define penumbra more appropriately would have excluded half of the patients in this 12-hour time window stroke study.</p&gt

    Infarct tissue characterization in implantable cardioverter-defibrillator recipients for primary versus secondary prevention following myocardial infarction: a study with contrast-enhancement cardiovascular magnetic resonance imaging

    Get PDF
    Knowledge about potential differences in infarct tissue characteristics between patients with prior life-threatening ventricular arrhythmia versus patients receiving prophylactic implantable cardioverter-defibrillator (ICD) might help to improve the current risk stratification in myocardial infarction (MI) patients who are considered for ICD implantation. In a consecutive series of (ICD) recipients for primary and secondary prevention following MI, we used contrast-enhanced (CE) cardiovascular magnetic resonance (CMR) imaging to evaluate differences in infarct tissue characteristics. Cine-CMR measurements included left ventricular end-diastolic and end-systolic volumes (EDV, ESV), left ventricular ejection fraction (LVEF), wall motion score index (WMSI), and mass. CE-CMR images were analyzed for core, peri, and total infarct size, infarct localization (according to coronary artery territory), and transmural extent. In this study, 95 ICD recipients were included. In the primary prevention group (n = 66), LVEF was lower (23 Ā± 9 % vs. 31 Ā± 14 %; P < 0.01), ESV and WMSI were higher (223 Ā± 75 ml vs. 184 Ā± 97 ml, P = 0.04, and 1.89 Ā± 0.52 vs. 1.47 Ā± 0.68; P < 0.01), and anterior infarct localization was more frequent (P = 0.02) than in the secondary prevention group (n = 29). There were no differences in infarct tissue characteristics between patients treated for primary versus secondary prevention (P > 0.6 for all). During 21 Ā± 9 months of follow-up, 3 (5 %) patients in the primary prevention group and 9 (31 %) in the secondary prevention group experienced appropriate ICD therapy for treatment of ventricular arrhythmia (P < 0.01). There was no difference in infarct tissue characteristics between recipients of ICD for primary versus secondary prevention, while the secondary prevention group showed a higher frequency of applied ICD therapy for ventricular arrhythmia.\u

    Study of protein expresion [sic] in peri-infarct tissue after cerebral ischemia

    Get PDF
    In this work, we report our study of protein expression in rat peri-infarct tissue, 48 h after the induction of permanent focal cerebral ischemia. Two proteomic approaches, gel electrophoresis with mass spectrometry and combined fractional diagonal chromatography (COFRADIC), were performed using tissue samples from the periphery of the induced cerebral ischemic lesions, using tissue from the contra-lateral hemisphere as a control. Several protein spots (3408) were identified by gel electrophoresis, and 11 showed significant differences in expression between peri-infarct and contralateral tissues (at least 3-fold, p < 0.05). Using COFRADIC, 5412 proteins were identified, with 72 showing a difference in expression. Apart from blood-related proteins (such as serum albumin), both techniques showed that the 70 kDa family of heat shock proteins were highly expressed in the peri-infarct tissue. Further studies by 1D and 2D western blotting and immunohistochemistry revealed that only one member of this family (the inducible form, HSP72 or HSP70i) is specifically expressed by the peri-infarct tissue, while the majority of this family (the constitutive form, HSC70 or HSP70c) is expressed in the whole brain. Our data support that HSP72 is a suitable biomarker of peri-infarct tissue in the ischemic brain

    Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction.

    Get PDF
    BackgroundKnowledge of the three-dimensional (3D) infarct structure and fiber orientation remodeling is essential for complete understanding of infarct pathophysiology and post-infarction electromechanical functioning of the heart. Accurate imaging of infarct microstructure necessitates imaging techniques that produce high image spatial resolution and high signal-to-noise ratio (SNR). The aim of this study is to provide detailed reconstruction of 3D chronic infarcts in order to characterize the infarct microstructural remodeling in porcine and human hearts.MethodsWe employed a customized diffusionĀ tensor imaging (DTI) technique in conjunction with late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) on a 3T clinical scanner to image, at submillimeter resolution, myofiber orientation and scar structure in eight chronically infarcted porcine hearts ex vivo. Systematic quantification of local microstructure was performed and the chronic infarct remodeling was characterized at different levels of wall thickness and scar transmurality. Further, a human heart with myocardial infarction was imaged using the same DTI sequence.ResultsThe SNR of non-diffusion-weighted images was &gt;100 in the infarcted and control hearts. Mean diffusivity and fractional anisotropy (FA) demonstrated a 43% increase, and a 35% decrease respectively, inside the scar tissue. Despite this, the majority of the scar showed anisotropic structure with FA higher than an isotropic liquid. The analysis revealed that the primary eigenvector orientation at the infarcted wall on average followed the pattern of original fiber orientation (imbrication angle mean: 1.96ā€‰Ā±ā€‰11.03Ā° vs. 0.84ā€‰Ā±ā€‰1.47Ā°, pā€‰=ā€‰0.61, and inclination angle range: 111.0ā€‰Ā±ā€‰10.7Ā° vs. 112.5ā€‰Ā±ā€‰6.8Ā°, pā€‰=ā€‰0.61, infarcted/control wall), but at a higher transmural gradient of inclination angle that increased with scar transmurality (rā€‰=ā€‰0.36) and the inverse of wall thickness (rā€‰=ā€‰0.59). Further, the infarcted wall exhibited a significant increase in both the proportion of left-handed epicardial eigenvectors, and in the angle incoherency. The infarcted human heart demonstrated preservation of primary eigenvector orientation at the thinned region of infarct, consistent with the findings in the porcine hearts.ConclusionsThe application of high-resolution DTI and LGE-CMR revealed the detailed organization of anisotropic infarct structure at a chronic state. This information enhances our understanding of chronic post-infarction remodeling in large animal and human hearts

    Enhancement of Gap Junction Function During Acute Myocardial Infarction Modifies Healing and Reduces Late Ventricular Arrhythmia Susceptibility

    Get PDF
    Objectives: To investigate the effects of enhancing gap junction (GJ) coupling during acute myocardial infarction (MI) on the healed infarct scar morphology and late post-MI arrhythmia susceptibility. Background: Increased heterogeneity of myocardial scarring after MI is associated with greater arrhythmia susceptibility. We hypothesized that short-term enhancement of GJ coupling during acute MI can produce more homogeneous infarct scars, reducing late susceptibility to post-MI arrhythmias. Methods: Following arrhythmic characterisation of the rat 4-week post-MI model (n=24), a further 27 Sprague-Dawley rats were randomised to receive rotigaptide to enhance GJ coupling (n=13) or saline control (n=14) by osmotic minipump immediately prior to, and for the first 7 days following surgical MI. At 4 weeks post-MI, hearts were explanted for ex vivo programmed electrical stimulation (PES) and optical mapping. Heterogeneity of infarct border zone (IBZ) scarring was quantified by histomorphometry. Results: Despite no detectable difference in infarct size at 4 weeks post-MI, rotigaptide-treated hearts had reduced arrhythmia susceptibility during PES (Inducibility score: rotigaptide 2.40.8, control 5.00.6, p=0.02) and less heterogeneous IBZ scarring (standard deviation of IBZ Complexity Score: rotigaptide 1.10.1, control 1.40.1, p=0.04), associated with an improvement in IBZ conduction velocity (rotigaptide 43.13.4 cm/s, control 34.82.0 cm/s, p=0.04). Conclusions: Enhancement of GJ coupling for only 7 days at the time of acute MI produced more homogeneous IBZ scarring and reduced arrhythmia susceptibility at 4 weeks post-MI. Short-term GJ modulation at the time of MI may represent a novel treatment strategy to modify the healed infarct scar morphology and reduce late post-MI arrhythmic risk

    Combined antiapoptotic and antioxidant approach to acute neuroprotection for stroke in hypertensive rats

    Get PDF
    We hypothesized that targeting key points in the ischemic cascade with combined neuroglobin (Ngb) overexpression and c-jun N-terminal kinase (JNK) inhibition (SP600125) would offer greater neuroprotection than single treatment after in vitro hypoxia/reoxygenation and in a randomized, blinded in vivo experimental stroke study using a clinically relevant rat strain. Male spontaneously hypertensive stroke-prone rats underwent transient middle cerebral artery occlusion (tMCAO) and were divided into the following groups: tMCAO; tMCAO+control GFP-expressing canine adenovirus-2, CAVGFP; tMCAO+Ngb-expressing CAV-2, CAVNgb; tMCAO+SP600125; tMCAO+CAVNgb+SP600125; or sham procedure. Rats were assessed till day 14 for neurologic outcome before infarct determination. In vitro, combined lentivirus-mediated Ngb overexpression+SP600125 significantly reduced oxidative stress and apoptosis compared with single treatment(s) after hypoxia/reoxygenation in B50 cells. In vivo, infarct volume was significantly reduced by CAVNgb, SP600125, and further by CAVNgb+SP600125. The number of Ngb-positive cells in the peri-infarct cortex and striatum was significantly increased 14 days after tMCAO in animals receiving CAVNgb. Neurologic outcome, measured using a 32-point neurologic score, significantly improved with CAVNgb+SP600125 compared with single treatments at 14 days after tMCAO. Combined Ngb overexpression with JNK inhibition reduced hypoxia/reoxygenation-induced oxidative stress and apoptosis in cultured neurons and reduced infarct and improved neurologic outcome more than single therapy after in vivo experimental stroke in hypertensive rats

    Infarct size and left ventricular remodelling after preventive percutaneous coronary intervention

    Get PDF
    Objective: We hypothesised that, compared with culprit-only primary percutaneous coronary intervention (PCI), additional preventive PCI in selected patients with ST-elevation myocardial infarction with multivessel disease would not be associated with iatrogenic myocardial infarction, and would be associated with reductions in left ventricular (LV) volumes in the longer term. Methods: In the preventive angioplasty in myocardial infarction trial (PRAMI; ISRCTN73028481), cardiac magnetic resonance (CMR) was prespecified in two centres and performed (median, IQR) 3 (1, 5) and 209 (189, 957) days after primary PCI. Results: From 219 enrolled patients in two sites, 84% underwent CMR. 42 (50%) were randomised to culprit-artery-only PCI and 42 (50%) were randomised to preventive PCI. Follow-up CMR scans were available in 72 (86%) patients. There were two (4.8%) cases of procedure-related myocardial infarction in the preventive PCI group. The culprit-artery-only group had a higher proportion of anterior myocardial infarctions (MIs) (55% vs 24%). Infarct sizes (% LV mass) at baseline and follow-up were similar. At follow-up, there was no difference in LV ejection fraction (%, median (IQR), (culprit-artery-only PCI vs preventive PCI) 51.7 (42.9, 60.2) vs 54.4 (49.3, 62.8), p=0.23), LV end-diastolic volume (mL/m2, 69.3 (59.4, 79.9) vs 66.1 (54.7, 73.7), p=0.48) and LV end-systolic volume (mL/m2, 31.8 (24.4, 43.0) vs 30.7 (23.0, 36.3), p=0.20). Non-culprit angiographic lesions had low-risk Syntax scores and 47% had non-complex characteristics. Conclusions: Compared with culprit-only PCI, non-infarct-artery MI in the preventive PCI strategy was uncommon and LV volumes and ejection fraction were similar
    • ā€¦
    corecore