657 research outputs found

    Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering

    Get PDF
    The high dimension of functional magnetic resonance imaging (fMRI) data causes problems in finding effective thresholds for voxelwise test statistics. Due to the enormous number of voxels, adjustment for multiple testing is necessary. But such an adjustment can lead to low statistical power. It has been shown that filtering the test statistics to reduce the number of tests being performed potentially increases the number of discoveries. However, some filter-test combinations can result in loss of control over the false discovery rate. We present an independent filtering approach which avoids this issue. Independent filtering uses filter-test combinations such that the filter is independent from the test statistic, leaving the null distribution of the test statistic unchanged. Applying the procedure to fMRI data, we show that when a voxelwise general linear model is fit, filtering by magnitude of the stimulus coefficient followed by a procedure which controls the FDR even under arbitrary pp-value dependence structures, increases the number of discoveries. Thus, we demonstrate that independent filtering has the potential to increase power while controlling the false discovery rate

    Analysis and Design of Singular Markovian Jump Systems

    Get PDF
    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H? control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat’s Lemma, among other techniques. Features of the book include: · study of the stability problem for SMJSs with general transition rate matrices (TRMs); · stabilization for SMJSs by TRM design, noise control, proportional-derivative and partially mode-dependent control, in terms of LMIs with and without equation constraints; · mode-dependent and mode-independent H? control solutions with development of a type of disordered controller; · observer-based controllers of SMJSs in which both the designed observer and controller are either mode-dependent or mode-independent; · consideration of robust H? filtering in terms of uncertain TRM or filter parameters leading to a method for totally mode-independent filtering · development of LMI-based conditions for a class of adaptive state feedback controllers with almost-certainly-bounded estimated error and almost-certainly-asymptotically-stable corresponding closed-loop system states · applications of Markov process on singular systems with norm bounded uncertainties and time-varying delays Analysis and Design of Singular Markovian Jump Systems contains valuable reference material for academic researchers wishing to explore the area. The contents are also suitable for a one-semester graduate course

    Detecting differential usage of exons from RNA-Seq data

    Get PDF
    RNA-Seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires comparisons between treatments, tissues or conditions. For the analysis of such experiments, we present _DEXSeq_, a statistical method to test for differential exon usage in RNA-Seq data. _DEXSeq_ employs generalized linear models and offers good detection power and reliable control of false discoveries by taking biological variation into account. An implementation is available as an R/Bioconductor package

    Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications

    Get PDF
    Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene-and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq

    Digital test signal generation: An accurate SNR calibration approach for the DSN

    Get PDF
    A new method of generating analog test signals with accurate signal to noise ratios (SNRs) is described. High accuracy will be obtained by simultaneous generation of digital noise and signal spectra at a given baseband or bandpass limited bandwidth. The digital synthesis will provide a test signal embedded in noise with the statistical properties of a stationary random process. Accuracy will only be dependent on test integration time with a limit imposed by the system quantization noise (expected to be 0.02 dB). Setability will be approximately 0.1 dB. The first digital SNR generator to provide baseband test signals is being built and will be available in early 1991
    corecore