
Clemson University
TigerPrints

All Theses Theses

8-2015

Thresholding of Statistical Maps in Functional
Neuroimaging via Independent Filtering
Jaqueline Kwiasowski
Clemson University, jkwiaso@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kwiasowski, Jaqueline, "Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering" (2015). All Theses.
2202.
https://tigerprints.clemson.edu/all_theses/2202

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268637054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2202?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Thresholding of Statistical Maps in Functional
Neuroimaging via Independent Filtering

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mathematical Sciences

by

Jaqueline Kwiasowski

August 2015

Accepted by:

Dr. Andrew Brown, Committee Chair

Dr. Taufiquar Khan

Dr. Patrick Gerard



Abstract

The high dimension of functional magnetic resonance imaging (fMRI) data

causes problems in finding effective thresholds for voxelwise test statistics. Due to

the enormous number of voxels, adjustment for multiple testing is necessary. But

such an adjustment can lead to low statistical power. It has been shown that filtering

the test statistics to reduce the number of tests being performed potentially increases

the number of discoveries. However, some filter-test combinations can result in loss

of control over the false discovery rate. We present an independent filtering approach

which avoids this issue. Independent filtering uses filter-test combinations such that

the filter is independent from the test statistic, leaving the null distribution of the

test statistic unchanged. Applying the procedure to fMRI data, we show that when

a voxelwise general linear model is fit, filtering by magnitude of the stimulus coeffi-

cient followed by a procedure which controls the FDR even under arbitrary p-value

dependence structures, increases the number of discoveries. Thus, we demonstrate

that independent filtering has the potential to increase power while controlling the

false discovery rate.
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Chapter 1

Introduction

Functional magnetic resonance imaging (fMRI) is a procedure that uses mag-

netic resonance imaging to indirectly measure neuronal activity by detecting changes

in the local oxygenation of blood. The ultimate goal is to map out neuronal connec-

tivity in the brain associated with certain behaviors. When neurons are activated, the

amount of blood flow in that area increases. The increase in blood flow causes a rela-

tive surplus in local blood oxygenation. FMRI measures signals throughout the brain

that depend on the change of the oxygen level. This is called the blood oxygenation

level dependent (BOLD) signal. There is much literature providing more detailed in-

formation about BOLD signal generation (e.g. Ogawa et al., 1992; Smith et al., 2001;

Huettel et al., 2009). However, the exact relation between neuronal activity and the

BOLD signal is only partly understood (Poldrack et al., 2011).

FMRI plays an important role in current cognitive, clinical, and social psy-

chology research. It has seen an increasing interest since its development in the

1990s. The main reason is that it has the advantage of being non-invasive and safe

in contrast to preceding methods. The first non-invasive neuroimaging method was

positron emission tomography (PET). Although its invention was a breakthrough in
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neuroscience, PET had the disadvantage that radiation exposure was necessary. Due

to safety concerns and the fact that PET systems were barely available, its use was

very restricted. FMRI was safe and scanners capable of performing it were common

in medical centers. Furthermore, not only was its spatial resolution better, but scans

were taken much more quickly (Lindquist et al., 2008; Poldrack et al., 2011).

There are different types of fMRI studies. Resting-state fMRI studies the

behavior of a brain in a resting state, when no task is performed. These studies

can be used to examine functional connectivity such as the default network (Buckner

et al., 2008). Other fMRI studies analyze task-related activation. During such an

fMRI experiment a subject is exposed to a sequence of stimuli while a series of MRI

scans are taken slicewise. To generate a three dimensional brain image, the brain

is partitioned into slices, each consisting of a large number of equally-sized volume

elements (voxels) arranged in grids. A coordinate system is used to relate each voxel

to a spatial location in the brain, where x represents the left-right axis, y represents

the anterior-posterior axis, and z represents the inferior-superior axis (Poldrack et al.,

2011). The number and size of voxels depend on the desired resolution. An MRI scan

measures the BOLD signal at each of often more than 100,000 of voxels repeatedly.

The resulting data consist of an enormous number of time series of BOLD signal

measurements.

To study these data, it is common to use a voxelwise linear model. In order

to detect voxels at which the BOLD signal changes in response to the stimuli, voxel-

wise hypothesis testing is performed. Results are typically summarized in statistical

parametric maps where each voxel is colored coded according to the t-statistic value

(Friston et al., 1994). Hypothesis tests across all voxels are performed simultaneously.

If many tests are performed simultaneously, the probability among all tests

that voxels are identified as active when they are not becomes very high. This phe-
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nomenon is known as the multiple testing problem. The first attempts to address the

problem of multiple comparisons begin with Fisher’s Least Significant Difference Test

(Fisher, 1935). Other methods follow, among these Tukey’s and Scheffe’s methods

(Tukey, 1949; Scheffe, 1953). One of the currently most well-known methods is the

Bonferroni correction. The Bonferroni inequality appears in Bonferroni (1935, 1936).

However, this is not used as a correction procedure until 1959 (Dunn, 1959, 1961).

The method controls the family wise error rate (FWER), which is the probability

that one or more false positives occur. It adjusts the significance level by dividing it

with the total number of tests being performed. The main issue with this method is

that it will be too conservative if the number of tests is large, because the adjusted

threshold for p-values will be too small. Benjamini and Hochberg (1995) point out

that often times it is more important to consider the number of false discoveries than

the question of whether any false discovery is made. They present a procedure con-

trolling the false discovery rate (FDR), the expected proportion of false positives.

Bourgon et al. (2010) argue that any procedure that adjusts for multiple testing can

result in low power when applied to large-scale datasets. That is one of the reasons

why a more advanced approach is necessary for fMRI.

In this work we study the application of independent filtering to fMRI data.

Independent filtering is a two-stage approach, which first filters the test statistics and

then only tests the remaining set (Bourgon et al., 2010). We analyze filtering fMRI

data by two different criteria and then apply an FDR-controlling procedure to the

remaining voxels. This approach aims to control the FDR while maintaining power.

The thesis is structured as follows. In Chapter 2 we take a closer look at the

statistical modeling of fMRI data and some of the challenges that occur with their data

analysis. Some methods for dealing with the thresholding problem are introduced.

Then we present independent filtering, the two-stage approach mentioned above, in
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detail. In Chapter 3, results are presented and discussed when applying our approach

to real data. Finally, we summarize our results and conclusions briefly and discuss

the need for further research in Chapter 4.
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Chapter 2

Methods

In this Chapter we discuss in detail one approach to the statistical analysis of

fMRI data. We present a voxelwise general linear model and discuss issues associated

with its use. We also introduce our approach for dealing with these issues, which we

apply to real fMRI data in Chapter 3.

2.1 The Voxelwise General Linear Model

A common approach to fMRI data analysis is to consider a general linear

model for each voxel. The general linear model in its simplest matrix form is

Y b,v = Xbβb,v + εb,v, b = 1, . . . , B; v = 1, . . . , Vb, (2.1)

where B is the number of brains and Vb the number of voxels in brain b. Y b,v is the

response, which is the standardized BOLD signal for voxel v in brain b in our case.

Xb is the design matrix consisting of predictors for each voxel in brain b, βb,v is the

unknown coefficients of the predictors, and εb,v is the error, which we assume to be
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normally distributed with mean zero and covariance σ2
b,vV , where V is a symmetric

positive definite matrix (Lazar, 2008). If we assume that the BOLD signal is not

temporally correlated within a voxel, V is the identity matrix. For our analysis, we

standardize the BOLD signal. In other words, if Y ∗b,v,k denotes the raw signal in brain

b, voxel v, at time k, where k = 1, . . . , T , then the standardized signal is given by

Yb,v,k =
Y ∗
b,v,k−Y

∗
b,v

s∗b,v
, where s∗b,v is the standard deviation and Y ∗b,v is the mean of Y ∗b,v.

The design matrix reflects the stimulus that is present / absent at each timepoint

and also contains covariates which account for linear trend and motion correction.

A detailed description of the design matrix is provided below. We use the voxelwise

general linear model to detect those voxels at which the coefficient corresponding to

the stimulus is significantly non-zero.

Temporal Correlation

FMRI data are highly spatially and temporally correlated. Temporal correlation oc-

curs within each voxel, whereas spatial correlation exists between voxels. Methods

which do not account for either can result in reduced efficiency or misstatement of the

false discovery rate (Purdon and Weisskoff, 1998). Models which describe spatial and

temporal correlation are more realistic, but the increase in complexity leads to higher

computational costs. As fMRI data sets are typically very large, this tradeoff needs

to be considered. There are even cases for which the simple general linear model that

assumes independence across voxels and timepoints provides useful results (Lazar,

2008).

One way to account for temporal correlation is to extend the general linear

model so that the error term becomes an autoregressive process of small order. This

means that the the elements of the unknown covariance matrix V depend on an

autocovariance function between timepoints (Marchini and Ripley, 2000; Lazar, 2008).
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We choose order 1 (AR(1)) for our model, so that the error at time k depends on the

error at time k − 1. Thus, the error term at time k is given by

εb,v,k = φεb,v,k−1 +Wb,v,k,

where φ is a constant satisfying |φ| < 1 and Wb,v,k is white noise (Poldrack et al.,

2011; Shumway and Stoffer, 2011). Woolrich et al. (2001) study different methods

accounting for temporal correlation and show that differences in efficiency are very

small. This leads to the conclusion that as long as we account for temporal correla-

tion, it does not matter which method we choose.

Hemodynamic Response and Convolution

Neuronal activity lasts only milliseconds, whereas the changes in blood flow evolve

over several seconds with a delay between the actual activation and the onset of

changes in oxygenation. The hemodynamic response function (HRF) is a model to

describe those changes in the BOLD signal at a single voxel. Within the first two

seconds of the onset of neuronal activation, an initial dip in the BOLD signal with

relatively small amplitude has been observed in some studies. The blood flow takes

about 4-6 seconds to reach its maximum observed amplitude, the peak height. A

long undershoot of up to 20 seconds after the onset follows until the signal returns to

baseline. The characteristics of the HRF are illustrated in Figure 2.1.

Another important characteristic of the HRF is linear time invariance. Studies

suggest that the relationship between the BOLD signal and the neuronal response

is linear time invariant for the most part (Dale and Buckner, 1997). Linear means

that if we scale the neuronal response by a constant factor, then the BOLD response

will be scaled by the same amount. Time invariance is characterized by the BOLD
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Figure 2.1: Characteristics of the hemodynamic response to describe the HRF are the
initial dip (ID), the time from stimulus until peak (TP), the maximum height (H) of
the HRF, the width at half the height (W) and the poststimulus undershoot (PSU).
Source: Poldrack et al. (2011).

response shifting by the same amount of time as any shift in the time of activation

(Poldrack et al., 2011).

There are different approaches to estimate the hemodynamic response function

(HRF). The most common ones are parametric approaches, where some family of

statistical distributions model the BOLD response curve. The first family suggested

was the Poisson family (Friston et al., 1994). But the gamma family, proposed by

Lange and Zeger (1997), is used more often as it is continuous and more flexible than

the Poisson family, which only has one parameter to describe the HRF. Since the

BOLD response is continuous over time, a continuous family seems to be a better

choice than a discrete one like Poisson (Lazar, 2008). As it is difficult to model all
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the fine details of the BOLD response with a single gamma family, Friston et al.

(1998) suggest taking the difference of two gamma functions and using the parameter

estimates given by Glover (1999). We follow this suggestion and thus model the HRF

at time t by

h (t) =

(
t

τ1

)δ1
exp

[
−δ1
τ1

(t− τ1)
]
− c

(
t

τ2

)δ2
exp

[
−δ2
τ2

(t− τ2)
]
,

where τ1 = 0.9δ1, τ2 = 0.9δ2, δ1 = 6, δ2 = 12 and c = 0.35. Those values correspond

to assumptions regarding the peak time and undershoot (Glover, 1999).

As explained above, the HRF is assumed to be time invariant. This assump-

tion allows us to use a convolution operation to create the convolved stimulus trail

that is used as a predictor for our general linear model (Poldrack et al., 2011). The

predictor is obtained by a convolution of the stimulus trail s(t), a binary time series

corresponding to the blocks of fixation and stimulus, and a model for the hemody-

namic response function, h(t), so that

x (t) =

∫ ∞
0

h (u) s (t− u) du.

Thus the predictor which is included in the design matrix of the general linear model

will be the convolution at each time t. Say scans are taken T times, the correspond-

ing column in our design matrix is then (x(1), x(2), . . . , x(T ))′ (Lazar, 2008). The

convolved stimulus is illustrated in Figure 2.2.

The Design Matrix

The design matrix incorporates the convolved stimulus, a correction for linear trend

and six estimated correction parameters for head motion. The correction parameters

9



are specified for each brain individually, since each person moves their head differently

throughout the experiment. They account for translational and rotational changes in

head position. In more detail, the design matrixXb consists of the following columns:

• t : the vector of T timepoints t = (1, 2, . . . , T )′ is used to correct for a linear

trend in the BOLD signal

• the convolved stimulus trail (x(1), x(2), . . . , x(T ))′

• zb,trans,x, zb,trans,y, zb,trans,z: motion correction parameters for translation in the

x-,y- and z-axis

• zb,rot,x, zb,rot,y, zb,rot,z : motion correction parameters for rotation around the

x-,y- and z-axis

Figure 2.2: An example of a convolved stimulus trail and the original stimulus trail
(dashed line). The heights of the original stimulus trail are dummy indicator variables
indicating when the stimulus is present and when it is absent, thus they do not have
a meaning.
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The model we consider can be written as

Y b,v = Xbβb,v + εb,v

= β0,b,v1 + β1,b,vt+ β2,b,vx+ β3,b,vzb,trans,x + β4,b,vzb,trans,y (2.2)

+β5,b,vzb,trans,z + β6,b,vzb,rot,x + β7,b,vzb,rot,y + β8,b,vzb,rot,z + εb,v,

where x = (x(1), x(2), . . . , x(T ))′ and the error structure is AR(1) as described before.

2.2 Thresholding Statistical Parametric Maps

It is common to detect active voxels in neuroimaging data by performing vox-

elwise hypothesis tests and thresholding the resulting test statistics. After fitting the

general linear model to the data, we can perform hypothesis tests. Testing voxel by

voxel, the null hypothesis is that the voxel is not activated in response to the task

whereas rejecting it implies that the voxel shows task-related activation. A test statis-

tic is computed for each voxel and those voxels corresponding to the test statistics

exceeding the threshold are declared active.

The results for each slice are often displayed in statistical parametric maps

(Friston et al., 1994). In a t-map, each voxel is colored based on the t-statistic value

corresponding to the estimated coefficient of the convolved stimulus. To generate the

t-maps in our study, we first fit model (2.2) to our data and use the test statistic

T
β̂2,b,v

=
β̂2,b,v

se(β̂2,b,v)
, where se(β̂2,b,v) is the standard error of the estimated coefficient

β̂2,b,v corresponding to the convolved stimulus timecourse x(t). An example of a t-map

is shown in Figure 2.3. Such a t-map can give some information about the activity

structure, but should be used carefully (Lindquist et al., 2008). We need to consider

that we have a large number of voxels. Our data, for example, contain 1920 voxels
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Figure 2.3: Example of a t-map of the test statistics generated from fitting voxelwise
general linear models to observed BOLD signals. Each voxel is colored based on its
t-value.

per slice, before masking out voxels that are outside of the brain.

Thresholding and False Discovery Rates

In general, we are mainly interested in controlling the proportion of hypothesis rejec-

tions that are false positives. The four possible statistical decisions are summarized

in Table 2.1 (Genovese et al., 2002).

One of the main problems in the statistical analysis of fMRI data is to choose

a threshold for which the voxels corresponding to the exceeding test statistics are

declared active. There are different methods to deal with this problem and to correct

for multiple comparisons. The common goal is to limit the number of false discoveries,

V10. One traditional approach is the Bonferroni correction for the FWER which is

described in Chapter 1. This is a very conservative method and, in practice, too

Declared active Declared inactive Total

Truly active V00 V01 V0.
Truly inactive V10 V11 V1.

Total V.0 V.1 V

Table 2.1: Tabulation of outcomes when performing multiple hypothesis tests

12



conservative when applied to fMRI data. Due to the large number of tests required,

the Bonferroni adjustment is not only preventing false discoveries but also true ones,

resulting in low statistical power. Over the last decade it has become popular in fMRI

research to use methods which control the expected proportion of false discoveries,

the false discovery rate (FDR), rather than just the probability that even one false

discovery is made. Using the notation from Table 2.1, the FDR is given by

FDR =
V10

V00 + V10
=
V10
V.0

.

If no hypothesis is rejected, the FDR is set to zero, by definition (Benjamini and

Hochberg, 1995; Lazar, 2008). The procedure for controlling the FDR introduced by

Benjamini and Hochberg (1995) is as follows:

To test n null hypotheses H1
0 , H

2
0 , . . . , H

n
0 with p-values p1, p2, . . . , pn ,

1. Order p-values so that p(1) ≤ p(2) ≤ . . . ≤ p(n) and let H(j) be the null hypothesis

corresponding to p(j).

2. Let l be the largest j for which p(j) ≤ j
n
q, where q is a constant.

3. Reject H(1), H(2), . . . , H(l).

It can be shown that if the test statistics are independent, this procedure con-

trols the FDR at q, which means that E (FDR) ≤ q, where E (FDR) is the expected

value of the FDR (Benjamini and Hochberg, 1995). It is important to point out that,

according to Benjamini and Hochberg (1995), there is a gain in power compared to

controlling the FWER. However, if the null hypothesis is true everywhere, the FDR

is identical to the FWER. Many more approaches toward controlling the FDR exist.

Some of them are described by Lazar (2008).

13



Independent Filtering

Corrections for multiple testing procedures can lead to relatively low statistical power.

The reduction in power gets worse with the number of performed hypotheses tests.

Bourgon et al. (2010) suggest a two-stage procedure that tests only those variables

which pass a certain filter. Filtering can potentially increase the number of rejections

by reducing the number of tests performed. However, some filter-test pairs might

result in a misstatement of the FDR and overly optimistic p-values. An increase in

discoveries is only helpful if the FDR is still under control, so that the rejections tend

to be associated with true non-null cases. Bourgon et al. (2010) argue that indepen-

dent filtering prevents this issue and can indeed increase power. Independent filtering

means that filter-test pairs “are independent under null hypothesis but correlated un-

der the alternative”(Bourgon et al., 2010). The goal of this procedure is to increase

the number of discoveries while maintaining control over the FDR.

To apply the procedure, an appropriate choice of filter and test statistic needs

to be found. In the first stage, variables are filtered by the chosen filtering criterion.

This is done for a range of cutoffs, so that different sizes of fractions are filtered out.

In the second stage, the chosen test is applied to the remaining sets. Generally, an

efficient choice for a filter is one which reduces the number of hypothesis tests to

be performed in stage two, while only filtering out variables which are of no interest.

However, to guarantee control over the FDR, further conditions need to hold. Bourgon

et al. (2010) examine those conditions and found that a filter-test combination should

satisfy the marginal independence criterion. The marginal independence criterion

is that for true null hypotheses, “the conditional marginal distributions of the test

statistics after filtering are the same as the unconditional distributions before filtering”

(Bourgon et al., 2010). Thus the independent filtering method uses filters that are

14



independent of the test statistic, so that after filtering the null distribution of the test

statistic remains unchanged.

The marginal independence criterion ensures that even after filtering we can

use the unconditional null distribution to find p-values for an FDR-controlling proce-

dure, because the conditional probabilities to compute the p-values after filtering are

equivalent to the unconditional probabilties before filtering. FDR-controlling pro-

cedures which make no requirements for the joint distribution of the p-values can

therefore be applied directly to the p-values after filtering. Bourgon et al. (2010)

point out that the method introduced by Benjamini and Yekutieli (2001) is one such

procedure.

2.3 Two-stage Approach: Filtering and FDR-control

We first filter the data and then apply an FDR-controlling method to the

remaining set. Our goal is to maximize the number of discoveries while still controlling

the FDR. We consider two different filters. For the first one, we fit a general linear

model to the data without the convolved stimulus, so that only linear trend and

motion correction are applied. Then we filter by residual variance setting θ-quantiles

as cutoffs, where θ is in [0, 1]. Those voxels corresponding to the lowest residual

variances, that means the lowest θ(100)% residual variances, are removed from the

set. Then the full general linear model (2.2) is used to fit the remaining voxels. For

the other filter, we use model (2.2) and then filter by magnitude of β̂2,b,v, the estimated

regression coefficients corresponding to the convolved stimulus. Again, we filter out

those voxels corresponding to the lowest θ(100)% coefficient magnitudes. In the next

step we apply an FDR-controlling procedure to the test statistics corresponding to

the remaining voxels. The procedure that we are using is originally introduced by
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Benjamini and Yekutieli (2001) and then suggested for fMRI data by Genovese et al.

(2002). The method is guaranteed to control the FDR so that

E (FDR) ≤ V1
V
q ≤ q,

where E denotes expected value. Moreover, it controls the FDR even under arbitrary

dependencies of the p-values. As filtering drastically alters the correlation structure

among the test statistics, this is an important feature necessary for our approach.

The procedure can be described as follows:

1. Pick an FDR bound q, where 0 ≤ q ≤ 1. q is the maximum false discovery rate

that the researcher is willing to tolerate.

2. Sort p-values in ascending order: p(1) ≤ p(2) ≤ . . . ≤ p(V ).

3. Let k be the largest i, so that the following is satisfied:

p(i) ≤
i

V

q

cV
,

where cV is a constant determined based on the assumptions about the distri-

bution of p-values across voxels.

4. The voxels v(1) . . . v(k) corresponding to the p-values p(1) . . . p(k) are declared

active.

When assuming that all p-values across voxels are independent the constant

should be cV = 1. Note that if we we make this choice, the procedure is the same

as the original procedure propsed by Benjamini and Hochberg (1995). For any other

joint distribution of p-values the constant should be set as cV =
∑V

i=1
1
i
. This constant

is the modification made by Benjamini and Yekutieli (2001) leading to an algorithm
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which is guaranteed to control the FDR under arbitrary dependence structure of the

p-values. Our general linear model accounts for temporal correlation only. However,

literature suggests that the BOLD signal is also spatially correlated across voxels

(e.g., Purdon et al., 2001; Lazar, 2008; Poldrack et al., 2011). Thus, cV =
∑V

i=1
1
i

is

a better choice. By choosing this constant, our approach accounts for both temporal

and spatial correlation.
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Chapter 3

Results

We consider fMRI data obtained from a study with 64 subjects. We have two

samples, the control sample consisting of 32 healthy subjects and the case sample

consisting of 32 schizophrenia patients. Each subject was given a sequence of visual

stimuli during an MRI. The sequence of visual stimuli alternated between seven blocks

at 28 seconds fixation and six blocks at 28 seconds prosaccade trials. A prosaccade

is an eye movement task. The subject is asked to keep their head still and look in

the direction of the target, which is moved from directly in front of the subject to

the left or right. (Experiments involving prosaccade are studied in Dyckman et al.,

2007; Camchong et al., 2008, and elsewhere.) Fixation required the patient to look

at a fixed target in front of them. The stimulus pattern is displayed in Figure 3.1.

For each brain, data were generated for 38 slices. Each slice consists of 1920

voxels with size 3.4x3.4x4mm, arranged in a 40x48 grid. Every 2 seconds the BOLD

signal was measured at each voxel, resulting in a time series consisting of 182 measure-

ments. Preprocessing steps were applied to the resulting data. Preprocessing included

despiking, slice timing correction, alignment of functional images to anatomical im-

ages, scaling of voxel time series to the mean of 100, and warping the functional
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Figure 3.1: Stimulus over time for the fMRI data analyzed here, where fixation is
indicated by 0 and prosaccade by 1.

images into Talaraich space, a three-dimensional coordinate space defined by a set

of anatomical landmarks (Poldrack et al., 2011), to make them comparable across

brains. In our study, we mask out the voxels lying outside the brain and thus only

consider the time series at each voxel corresponding to the brain. Throughout this

study we only consider a single slice of one subject’s brain from the control group,

consisting of 897 voxels inside the brain region. All results presented in this Chapter

are based on the observed BOLD signals of this particular brainslice.

Figure 3.2 shows t-maps of our considered brainslice when the model (2.2) with

an AR(1) error structure is fit to the data. On the right, the model (2.2) is fit but

this time we let the errors be independent and identically normally distributed (i.i.d.)

with mean zero and variance σ2
v .(Note that we omit the index for brain since we are

only considering one.) A general linear model with i.i.d. error structure is sometimes

used in practice. Since the Figure shows higher values for the t-statistics, we can

conclude that fitting the data assuming independence results in more voxels being

declared active. But as discussed above, ignoring the temporal correlation leads to
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a rather unrealistic model and we can conclude that the results are overly optimistic

and thus not useful.

Figure 3.2: T-maps displaying values of test statistics corresponding to the change in
BOLD signal due to the stimulus at each voxel

We apply our two-stage approach described in Chapter 2 to the data. To

account for an arbitrary p-value distribution, we choose the constant cV =
∑V

i=1
1
i

for

the threshold. Furthermore, we choose the bound q = 0.05, which is the maximum

FDR that we are willing to tolerate, on average.

We consider two different filters. One is filtering by residual variance when

using the general linear model without the predictor, the convolved stimulus trail.

We set quantiles ranging from 0-quantile, which leaves the set unfiltered, to 0.95-

quantile as cutoffs. For each θ-quantile, where θ ∈ [0, 0.95], voxels associated with

the residual variances that are smaller than the specified quantile are removed from

the set. Thus, for each cutoff we are left with a θ(100)% fraction from the original

set. The voxels in the remaining sets are then used to fit the full general linear

model including the predictor corresponding to the stimulus. In the second stage we

apply the FDR-controlling procedure, as described in Chapter 2. The other filter

criterion we consider is the magnitude of β̂2,v, the estimated regression coefficients
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corresponding to the convolved stimulus, when the general linear model (2.2) is fit.

Again, we set quantiles ranging from 0-quantile to 0.95-quantile as cutoffs and for

each cutoff, we remove those voxels corresponding to the θ(100)% lowest magnitudes

of β̂2,v. Then the FDR-controlling procedure is applied to the remaining sets of voxels.

The resulting binary activation maps are displayed in Figures 3.3 and 3.4.

Comparing those Figures, we can see that both filters result in similar estimated

activation patterns. However, the plots in Figure 3.4 show more red areas than those

in Figure 3.3. We can conclude that when the filter criterion of residual variance is

applied, less voxels are declared active than when the approach is used with filtering by

the magnitude of β̂2,v. We can further compare the two filters by looking at Figures

3.5 and 3.6. They show the number of rejections corresponding to the different

quantile cutoffs. After a modest increase in the beginning, the curve in Figure 3.5

is decreasing. Filtering by residual variance the number of null hypotheses rejected

increases by a small number if 1% of the original set is filtered out, but filtering out

larger fractions results in less discoveries. The curve in Figure 3.6, however, has a

different shape. It increases first and reaches its peak around the 0.7-quantile cutoff

and then starts to decrease. Removing voxels corresponding to the lowest 69% of the

estimated stimulus coefficients, the number of discoveries increases by roughly 44%.

We can conclude that the filter by residual variance is not an effective choice with our

approach. The increase in discoveries is minor, especially compared to the increase

depicted in Figure 3.6. Using our two-stage approach with filtering on magnitude of

β̂2,v results in more discoveries and we can conclude a gain in power. Additionally,

FDR-control is guaranteed by using the FDR-controlling procedure under arbitrary

dependence in the second stage.
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Figure 3.3: Binary activation maps display voxels that are declared active (red) when
the two-stage approach with filtering by residual variance is applied. Voxels corre-
sponding to the lowest θ(100)% residual variances are removed from the set. The
number above each plot indicates this percentage of voxels that are filtered out.
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Figure 3.4: Binary activation maps display voxels that are declared active (red) when

the suggested two-stage approach with filtering by magnitude of β̂2,v, the estimated
regression coefficients corresponding to the convolved stimulus, is applied. Voxels
corresponding to the lowest θ(100)% coefficient magnitudes are removed from the
set. The number above each plot indicates this percentage of voxels that are filtered
out.
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Figure 3.5: Number of rejections (voxels declared active) when the independent fil-
tering method is applied with filtering by residual variance in the first step and an
FDR-controlling procedure in the second step

Figure 3.6: Number of rejections (voxels declared active) when the independent filter-
ing method is applied with filtering by magnitude of estimated stimulus coefficients
in the first step and an FDR-controlling procedure in the second step
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Chapter 4

Discussion

We found that our suggested two-stage approach with filtering by magnitude

of the estimated stimulus coefficients leads to more discoveries. By applying this

approach, we were able to increase power while controlling the false discovery rate.

However, filtering by residual variance resulted in less discoveries for the most part.

Therefore the filter by coefficient magnitude should be used with our method. Al-

though the approach leads to the conclusion that we can attain a gain in power, a

simulation study should be conducted to investigate the method’s impact on power

in general.

We made assumptions when using the general linear model which are common

but nevertheless unrealistic. One of them is that we assumed the same model for

every voxel. Considering the physiological complexity of the brain, this assumption is

doubtful. Furthermore it is well known that fMRI data are not only temporally but

also spatially correlated. The voxelwise general linear model we used accounts only

for temporal correlation. Instead of describing spatial correlation with the model,

we dealt with it by choosing an appropriate threshold within the FDR-controlling

procedure that we apply. In this way our approach accounts for both temporal and
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spatial correlation.

In our study we filtered by two different filter criteria. While filtering by

magnitude of the estimated stimulus coefficients led to satisfying results, filtering by

residual variance did not. The only multiple testing adjustment we applied in stage

two is the FDR-controlling procedure that is suggested by (Genovese et al., 2002).

The results summarized in Chapter 3 were obtained with the FDR bound q = 0.05,

which can be interpreted as the maximum proportion of false discoveries we are will-

ing to tolerate. Other choices of q could be considered as well. Although it is common

to select this bound similar to typical significance levels, there is no good reason to

do so. There are situations in which more conservative or higher choices are appro-

priate, so it might be worth considering different FDR bounds (Lazar, 2008). The

application of independent filtering with other filter and multiple testing approaches

should be analyzed. Moreover it should be considered that filtering drastically alters

spatial correlation structure among data. So far the standard way to handle this is

to use a multiple testing procedure that makes no assumption about the dependence

structure. Interesting future work would be to find filtering methods that preserve

local dependences among the statistics, or a satisfactory way of modeling the new

correlation structure obtained after filtering.

We presented the two-stage approach in the context of fMRI data. In general,

the procedure could be applied to any high-dimensional data, where the multiple

testing problem often arises. Knowledge about the data’s nature and scientific back-

ground can help to find an effective filter. Studies analyzing independent filtering in

neuroimaging have been rare so far. However, due to its potential to gain power while

controlling the false discovery rate, its simple implementation and the chance to in-

corporate scientific background information, further analysis of independent filtering

methods could lead to a valuable contribution to future fMRI research.
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