151 research outputs found

    Memory for Semantically Related and Unrelated Declarative Information: The Benefit of Sleep, the Cost of Wake

    Get PDF
    Numerous studies have examined sleep's influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9am or 9pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness

    Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    Get PDF
    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep

    Do your troubles today seem further away than yesterday? On sleep’s role in mitigating the blushing response to a reactivated embarrassing episode

    Get PDF
    The “sleep to forget and sleep to remember hypothesis” proposes that sleep weakens the emotional tone of an experience while preserving or even enhancing its content. Prior experimental research however shows contradictory findings on how emotional reactivity changes after a period of sleep, likely explained by methodological variations. By addressing these inconsistencies, we investigated the mitigating effect of overnight sleep on emotional reactivity triggered by memory reactivation. Using a karaoke paradigm, we recorded participants’ singing of two songs, followed by exposing them to one of the recordings (rec1) to induce an embarrassing episode. After a 12-hr period of either day-time wakefulness (N = 20) or including nighttime sleep (N = 20), we assessed emotional reactivity to the previously exposed recording (rec1) and the newly exposed recording (rec2). Emotional reactivity was assessed with a physiological measure of facial blushing as the main outcome and subjective ratings of embarrassment and valence. Sleep and wake were monitored with diaries and actigraphy. The embarrassing episode was successfully induced as indicated by objective and subjective measures. After controlling for an order effect in stimulus presentation, we found a reduction in blushing response to the reactivated recording (rec1) from pre- to post-sleep compared to wakefulness. However, emotional reactivity to the reactivated recording (rec1) and the new recording (rec2) did not differ after sleep and wakefulness. This study shows that facial blushing was reduced following overnight sleep, while subjective ratings were unaffected. Whether the beneficial effect of sleep is due to changes in memory representation or rather emotion regulation remains elusive

    A survey of emerging architectural techniques for improving cache energy consumption

    Get PDF
    The search goes on for another ground breaking phenomenon to reduce the ever-increasing disparity between the CPU performance and storage. There are encouraging breakthroughs in enhancing CPU performance through fabrication technologies and changes in chip designs but not as much luck has been struck with regards to the computer storage resulting in material negative system performance. A lot of research effort has been put on finding techniques that can improve the energy efficiency of cache architectures. This work is a survey of energy saving techniques which are grouped on whether they save the dynamic energy, leakage energy or both. Needless to mention, the aim of this work is to compile a quick reference guide of energy saving techniques from 2013 to 2016 for engineers, researchers and students

    Consequences of Brief Periods of Sleep Loss on Hippocampus-Dependent Memory and Synaptic Plasticity

    Get PDF
    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are dysregulated by sleep deprivation to impair memory consolidation and plasticity. In this dissertation, I describe experiments that we performed to identify the time window where memory consolidation is sensitive to sleep loss as well as to characterize two potential molecular players targeted by sleep deprivation. Because consolidation appears to have a particular window where it is sensitive to sleep loss, we explore the parameters of this time window in Chapter 2. Our results suggest that a specific 3-hour period of sleep loss during consolidation disrupts both memory and plasticity. In the second portion of this dissertation, I examine the mechanisms by which sleep deprivation impairs hippocampus-dependent memory consolidation. In Chapter 3, we show that loss of the phosphodiesterase (PDE) 4A, an enzyme responsible for decreasing cAMP signaling, rescues spatial memory disrupted by sleep loss. These results further implicate cAMP signaling with the negative effects of sleep deprivation on memory. Obtaining adequate sleep is challenging in a society that values work around the clock. Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is critical. However, a limited number of therapeutics exists that are able to enhance cognition in the face of insufficient sleep. The identification of the temporal characteristics of sleep loss and the molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs

    The value of anaesthetic steroids alphaxolonealphadolone in pregnant mice

    Get PDF
    Thiopentone, pentobarbitone, diazepam and alphaxolone-alphadolone were evaluated as anaesthetic agents in pregnant mice. Incidence of mortality was: Thiopentone 15%, pentobarbitone 13%, diazepam 8%, and alphaxolone-alphadolone 0%. Besides the low mortality, alphaxolone-alphadolone also distinguished by showing no side-effeets at all, neither to the dams nor to the fetuses, and it is recommended as an excellent anaesthetic in pregnant mice

    A role for consolidation in cross-modal category learning

    Get PDF
    The ability to categorize objects and events is a fundamental human skill that depends upon the representation of multimodal conceptual knowledge. This study investigated the acquisition and consolidation of categorical information that required participants to integrate information across visual and auditory dimensions. The impact of wake- and sleep-dependent consolidation were investigated using a paradigm in which training and testing were separated by a delay spanning either an evening of sleep or daytime wakefulness, with a paired-associate episodic memory task used as a measure of classic sleep-dependent consolidation. Participants displayed good evidence of category learning, but did not show any wake- or sleep-dependent changes in memory for category information immediately following the delay. This is in contrast to paired-associate learning, where a sleep-dependent benefit was observed in memory recall. To replicate real-world concept learning, in which knowledge is acquired across multiple distinct episodes, participants were given a second opportunity for category learning following the consolidation delay. Here we found an interaction between consolidation and learning; with greater improvements in category knowledge as a result of the second session learning for those participants who had a sleep filled delay. These results suggest a role for sleep in the consolidation of recently acquired categorical knowledge; however this benefit does not emerge as an immediate benefit in memory recall, but by enhancing the effectiveness of future learning. This study therefore provides insights into the processes responsible for the formation and development of conceptual representations

    Ba Jiao

    Get PDF
    Ting Lee is a sophomore majoring in English with a concentration in Creative Writing and a minor in Journalism. She was one of two managing editors for the fifth issue of The Diamond Line, published in Spring of 2022. She strives to educate her community about the East Asian experience in the United States through writing. Outside of schooling, Jasmine is a third degree black belt in Taekwondo and helps her father with his martial arts school in Bentonville. She is also an avid fan of the open-world action RPG game Genshin Impact

    POST-TRAUMATIC SLEEP FOLLOWING DIFFUSE TRAUMATIC BRAIN INJURY

    Get PDF
    Traumatic brain injury (TBI) is a major cause of death and disability throughout the world with few pharmacological treatments available for individuals who suffer from neurological morbidities associated with TBI. Cellular and molecular pathological processes initiated at the time of injury develop into neurological impairments, with chronic sleep disorders (insomnia, hypersomnolence) being among the somatic, cognitive and emotional neurological impairments. Immediately post-injury, TBI patients report excessive daytime sleepiness, however, discordant opinions suggest that individuals should not be allowed to sleep or should be frequently awoken following brain injury. To provide adequate medical care, it is imperative to understand the role of acute post-traumatic sleep on the recovery of neurological function after TBI. The aim of this thesis was to examine post-traumatic sleep after experimental TBI, defined as an increase in sleep during the first hours post-injury. In these studies, we non-invasively measured sleep activity following diffuse brain injury induced by midline fluid percussion injury to examine the architecture of post-traumatic sleep in mice. We detected significant injury-induced increases in acute sleep for six hours regardless of injury severity or time of day injury occurred. We found concurrent increases in cortical levels of the sleep promoting inflammatory cytokine interleukin 1-beta. We extended the timeline of post-injury sleep recording and found increases in post-traumatic sleep are distinctly acute with no changes in chronic sleep following diffuse TBI. Further, we investigated if post-traumatic sleep was beneficial to neurological outcome after brain-injury by disrupting post-traumatic sleep. Disruption of post-traumatic sleep did not worsen functional outcome (neuromotor, sensorimotor, cognition) at one week after diffuse TBI. With sufferers of TBI not always seeking medical attention, our final studies investigated over-the-counter analgesics and their effect on post-traumatic sleep and functional outcome. Acute administration of analgesics with varying anti-inflammatory properties had little effect on post-traumatic sleep and functional outcome. Overall, these studies demonstrated translational potential and suggest sleep after a concussion is part of the natural recovery from injury. While disrupting sleep does not worsen outcome, it is in no way beneficial to recovery. Additionally, a single analgesic dose for pain management following concussion plays little role in short term outcome
    corecore