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Abstract  

The ability to categorize objects and events is a fundamental human skill that depends 

upon the representation of multimodal conceptual knowledge. This study investigated the 

acquisition and consolidation of categorical information that required participants to integrate 

information across visual and auditory dimensions. The impact of wake- and sleep-dependent 

consolidation were investigated using a paradigm in which training and testing were 

separated by a delay spanning either an evening of sleep or daytime wakefulness, with a 

paired-associate episodic memory task used as a measure of classic sleep-dependent 

consolidation. Participants displayed good evidence of category learning, but did not show 

any wake- or sleep-dependent changes in memory for category information immediately 

following the delay. This is in contrast to paired-associate learning, where a sleep-dependent 

benefit was observed in memory recall. To replicate real-world concept learning, in which 

knowledge is acquired across multiple distinct episodes, participants were given a second 

opportunity for category learning following the consolidation delay. Here we found an 

interaction between consolidation and learning; with greater improvements in category 

knowledge as a result of the second session learning for those participants who had a sleep 

filled delay. These results suggest a role for sleep in the consolidation of recently acquired 

categorical knowledge; however this benefit does not emerge as an immediate benefit in 

memory recall, but by enhancing the effectiveness of future learning. This study therefore 
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provides insights into the processes responsible for the formation and development of 

conceptual representations. 

Key Words: Memory, Sleep, Consolidation, Categorization 

 

Introduction 

Conceptual knowledge refers to the information we possess that enables us to bring 

meaning to the words, objects and events we encounter daily (Lambon Ralph et al., 2010; 

2016). This information is essential for communication and cognition and draws on abstract 

representations that describe the categorical and functional relationships between items 

(Kintsch & Walter, 1988). The development of conceptual knowledge is thought to require 

the integration of information across different sensory modalities (e.g. vision and sound) and 

multiple learning episodes, giving rise to higher-order similarity structures that take into 

account all available sources of information (Lambon Ralph et al., 2016; Patterson et al., 

2007). For any given concept, cross-modality integration is important, as similarity in one 

modality may not be sufficient to extract appropriate conceptual relationships. For example; 

pears and light bulbs are similar in shape but are not related in meaning. Studies investigating 

perceptual category learning provide successful demonstrations of feature integration to order 

to develop conceptual representations (Ashby & Ell, 2001; Ashby et al., 2003; Ashby & 

Valentin, 2005; Ashby & Casale, 2003). However, little research has focused upon the 

acquisition of cross-modal representations and in particular their development across time 

(Maddox et al., 2006; 2009; Hennies et al., 2014). 

To study the acquisition of cross-modal category representations, it is necessary to 

create arbitrary ‘artificial’ categories. The categorization literature provides a useful 

paradigm for creating such stimuli and allows the underlying structure of the categories to be 

experimentally manipulated in order to promote integration across multiple features or 
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dimensions. Categories that require the integration of two (or more) stimulus dimensions are 

referred to as information-integration category structures (an example is presented in Figure 

1). When presented with stimuli from this type of structure, information about category 

identity is available in both dimensions; however neither dimension alone is sufficient to 

make precise categorizations. For optimal categorization, information from both dimensions 

needs to be integrated in order to determine the category boundary (bold line in Figure 1 

shows the optimal category boundary). Through feedback-driven exposure to category 

exemplars, participants are able to acquire knowledge of information-integration category 

structures and show high levels of categorization accuracy (Ashby & Maddox 2005; 2011).  

 

Figure 1 – An information-integration category structure. The stimuli are depicted within an 

abstract space, with each dimension having 100 levels. Both dimensions carry useful category 

information; but successful (optimal) categorization requires integration.  
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Most studies within the categorization literature have focused on two-dimensional 

category structures within a single (visual) domain (e.g. Gabor patches – sinusoidal gratings 

that vary on the dimensions of orientation and frequency) overlooking the cross-modal nature 

of much conceptual knowledge. However, information-integration category structures can be 

created using cross-modal stimuli; Maddox et al. (2006) used visual-auditory stimuli 

dimensions, and subsequent work has shown high levels of categorization when the category 

structure is manipulated such that the categories overlap (Smith et al., 2014). In accordance 

with these findings and to capture the cross-modal nature of conceptual knowledge, the 

current study utilised a cross-modal (visual-auditory) information-integration categorization 

paradigm to study the development of category knowledge across time.  

Research investigating the development of memory across time has typically focused 

upon episodic declarative memory, which requires rapid learning at a specific point in time. 

However, conceptual information is extracted from features present across multiple spatially 

and temporally distinct episodes (Rogers & McClelland, 2004). Given the gradual emergence 

of conceptual knowledge, it is therefore important to consider (i) the influence of 

consolidation processes that may occur in between learning episodes and (ii) the effects of 

prior learning on the information that can be extracted from new experiences. 

There has been a large amount of research into memory consolidation; the processes 

that serve to maintain, strengthen and modify memories. These processes may occur across 

both wake and sleep; however tasks that assess episodic declarative memory suggest a 

specific role for sleep in memory consolidation (Diekelmann et al., 2009). One task that 

reliably demonstrates sleep-dependent consolidation benefits is paired-associate learning, in 

which participants are required to learn lists of associated word-pairs. Memory for the learned 

pairs is usually assessed using cued-recall procedures, which follows a post-learning delay 

that is manipulated to contain either sleep or wakefulness. Consistently, studies report better 
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memory retention after a delay containing sleep (compared to wake) suggesting a role for 

sleep-dependent consolidation in long-term memory retention (Jenkins & Dallenback, 1924; 

Plihal & Born, 1997; Tucker et al., 2006; Diekelmann et al., 2009).  

It was originally hypothesised that sleep benefits memory by offering passive 

protection from interference and forgetting (Ellenbogen et al., 2006). However, there is now 

strong evidence to suggest that sleep plays an active role in consolidation by promoting 

systems-level memory transfer (Diekelmann & Born, 2010). The active systems 

consolidation hypothesis suggests that during sleep, newly encoded information is integrated 

within long-term memory networks and is reorganised to enable the extraction of invariant 

features (Born & Wilhelm, 2012). Strong support for the specific role of sleep has been 

provided by numerous studies which show a correlation between the change across a sleep 

delay and sleep physiology, specifically slow-wave sleep (SWS) (for a review see Rasch & 

Born, 2013). Causal evidence is provided by studies which have re-exposed participants to 

encoding associated cues (e.g. odours or auditory cues) during SWS – which leads to 

enhanced memory performance, highlighting a role for memory reactivation as a possible 

mechanism of sleep-associated consolidation (Rasch et al., 2007; Rudoy et al., 2009; Rasch 

& Born, 2013). Consolidation during sleep is therefore thought to not only strengthen 

individual representations, but may also facilitate the extraction of shared and systematic 

features from the environment – a potentially critical mechanism for the development of 

concept or categorical memory representations. Sleep-dependent consolidation beyond 

isolated episodic memories has received much less attention; however there is evidence to 

suggest that sleep plays a role in the extraction of regularities (Lau et al., 2011). Ellenbogen 

et al. (2007) used a transitive inference paradigm to examine the role of wake- and sleep-

dependent consolidation on the extraction of an implicit hierarchical structure. Participants 

learned arbitrary “premise pairs” (e.g. A > B, B > C, C > D etc.) followed by a wake- or 
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sleep-filled post-learning delay. Participants were then tested on their memory for the trained 

pairs (e.g. A > B) and their knowledge of the untrained hierarchy (e.g. B > D). The two 

groups showed comparable memory for trained items; however the sleep group outperformed 

the wake participants when knowledge of the more distant untrained hierarchy was assessed, 

suggesting sleep had facilitated extraction of the underlying hierarchical information 

(Ellenbogen et al., 2007).   

A sleep-dependent benefit for the extraction of regularities is not however 

consistently reported. In a declarative language learning task, Mirkovic & Gaskell (2016) 

report sleep-dependent benefits for arbitrary vocabulary knowledge, but fail to find 

differences between wake and sleep groups when assessing knowledge for systematic aspects 

of the trained language (i.e. grammatical regularities). It is these systematic aspects of 

learning that are thought to contribute to conceptual memory; however few studies take into 

account the real-world nature of conceptual learning which develops across distinct episodes. 

Evidence from animals (Tse et al., 2007), humans (van Kesteren et al., 2013) and 

computational models (McClelland et al., 2013) suggests that new learning is facilitated by 

prior schematic knowledge, with accelerated integration when new and existing information 

are consistent (McClelland et al., 2013). The acquisition of conceptual information across 

time may therefore rely heavily on an interaction between consolidation processes and 

subsequent learning episodes. A single post-delay test, the typical procedure used in 

consolidation research, may therefore fail to capture the true impact of consolidation on the 

development of conceptual knowledge across time. In an attempt to replicate realistic 

category learning, and to capture potential interactions between consolidation and learning 

mechanisms, this study included a second learning opportunity following the consolidation 

delay.  
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To our knowledge, two studies have used the information-integration categorization 

task described above to study the development of category knowledge across time. Maddox 

et al. (2009) examined the influence of sleep deprivation on information-integration category 

learning. They provided category training in two sessions separated by 24-hours during 

which participants were kept awake or were able to maintain their usual wake-sleep cycle. 

Maddox et al. reported poorer performance for participants who remained awake between 

sessions, however, due to the sleep deprivation paradigm, this study cannot separate the 

effects of sleep-based consolidation from those of fatigue.  

A second study reports an offline consolidation benefit in category learning when 

comparing a delay of 24-hours with 15-minutes (Hennies et al., 2014). Unlike immediate 

post-delay consolidation effects which are reported in studies assessing episodic declarative 

memory, the benefit in this study emerged only after further training following the delay; 

suggesting a subtle benefit of consolidation which increased the effectiveness of post-delay 

learning. Hennies et al. (2014) went on to compare the effects of sleep and wake separately 

by using a 12-hour delay that spanned either a night of sleep or a day of wakefulness; they 

found a specific consolidation benefit for the wake, but not the sleep, delay condition. This 

result contrasts with those typically observed within the consolidation literature and suggest s 

that categorization may not benefit from sleep-based consolidation in the same way as 

declarative memory. However, Hennies et al. (2014) made a number modification to the 

categorization paradigm. These changes made the information-integration structure predictive 

of category membership, but secondary to categorization – which was based on a one-

dimensional visual rule that was provided to participants. This is likely to have had a large 

impact on learning in the task, given that participants were not required to use the category 

structure to achieve accurate categorization. Furthermore, in contrast to the typical 

measurement of accuracy that is used in categorization studies, their measurement of 
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integration was based upon changes in reaction time, making it difficult to compare their 

results with the existing categorization literature. In the current study, we wanted to assess the 

role of wake and sleep based consolidation using the traditional, and unmodified, 

information-integration category learning structure.  

Thus, while the role of sleep-dependent consolidation in the development of episodic 

declarative memory is relatively well-established, the contribution of consolidation in the 

development of conceptual memory has not been widely investigated. It is unknown whether 

the behavioural consequence of sleep-dependent consolidation is consistent across memory 

types, or indeed whether sleep- or wake-dependent mechanisms have a specific role to play in 

the consolidation of conceptual memory. The potential influence of such a mechanism on the 

stabilization of previously encoded information and the impact on subsequent learning has 

yet to be established.  

Accordingly, the current study investigated the role of consolidation on both 

traditional paired-associate declarative memory and conceptual categorization in a cross-

modal information-integration paradigm (Ashby & Gott, 1988). Basic two-dimensional cross-

modal (auditory-visual) stimuli were created and participants were expected to demonstrate 

sensory integration in order to form cross-modal categorical representations. By employing a 

15-minute and 12-hour sleep or wake delay between two sessions of learning, we assessed 

independent contributions time and of wake- and sleep-dependent consolidation on (i) the 

retention of previously-encoded episodic and categorical representations, and (ii) the capacity 

to further develop category knowledge after consolidation. The effects of sleep were then 

replicated in a second sample with concurrent polysomnography recordings although for ease 

of exposition all groups are presented in the same analysis. 

 

Methods 
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Participants 

Participants were 95 undergraduate students recruited from the University of York in 

fulfilment of course credit or for payment. Participants reported normal or corrected-to-

normal vision and hearing and were randomly assigned to one of four experimental 

conditions: a 12-hour wake group (n = 23, mean age: 20.52, S.D. ± 3.54, 17 female), a 12-

hour sleep group (n = 22, mean age: 20.05, S.D. ± 1.32, 19 female), a PSG-monitored 

overnight sleep group (n = 23, mean age: 20.87, S.D. ± 2.49, 16 female) or a 15-minute delay 

group (n = 27, mean age: 20.67, S.D. ± 3.54, 21 female). Participants in the overnight PSG-

monitored sleep group were required to be free from psychoactive drugs, including alcohol 

and caffeine, and to refrain from daytime napping for 24 hours preceding and throughout the 

study period.  

Study overview 

All participants were tested on a measure of declarative episodic memory (paired-

associate learning) and a conceptual category learning task. Participants completed two 

sessions of the study; to assess paired-associate memory a typical consolidation paradigm 

was utilised where participants completed encoding and immediate cued-recall in session 1, 

followed by a delayed cued-recall test in session 2. Category training followed a similar 

procedure, however following the delayed test in session 2, participants completed a second 

round of training and a final test before completing a number of categorization follow-up 

tasks.  The two sessions were separated by a delay of varying lengths (15-minutes vs. 12-

hours) that were manipulated to separately assess the contribution of wake- and sleep-

dependent consolidation. 

Experimental Tasks 

Paired-Associate Learning 
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Paired-Associate Stimuli: 80 words were selected from an adapted version of The 

University of South Florida (USF) word association, rhyme, and word fragment norms 

(Nelson et al., 2004) to create 40 semantically unrelated cue and target word pairs (e.g. owl – 

frame). Both the cue and target words were singular, had high USF concreteness ratings (cues 

= 5.90 ± 0.61; targets = 5.85 ± 0.41,t(39) = 0.39; p = .696) and were matched for frequency 

(cues = 35.10 ± 41.09; targets = 40.73 ± 55.26, t(39) = -4.71; p =.640), word length (cues = 

5.18 ± 1.34; targets = 5.15 ± 1.05, t(39) = 0.09; p =.933) and number of syllables (cues = 1.45 

± 0.68; targets = 1.55 ± 0.60, t(39) = -0.73; p = .472). There were no pre-existing forward- or 

backward-association relationships between any of the words, reducing the likelihood of 

erroneous associations between words in separate pairs.  

Paired-Associate Encoding: Participants were presented with each word pair for 5000 

ms and were instructed to memorize the two words as a pair for a future memory test. To help 

memorize the word pairs participants were instructed to use visual imagery. 

Paired-Associate Immediate Recall: To test their memory immediately after 

encoding, participants were presented with the cue from each pair (i.e. the first word of the 

pair) and given 10 s to recall the target word (i.e. the second word of the pair). Participants 

made their responses by typing the target word into the computer, they were instructed to use 

the backspace if they made a mistake and pressed the enter key to submit their response. 

Participants received immediate feedback following each response (3500 ms), and on 

incorrect trials the correct cue and target was re-presented and participants were instructed to 

try and re-learn that word-pair. Cued-recall with feedback offers the opportunity for extra 

learning for incorrectly recalled pairs. As a result, it is expected that memory accuracy will 

increase between this and future memory tests. This immediate recall procedure was repeated 

until participants correctly recalled a minimum of 60% of the word pairs, or until they had 

completed the recall procedure a maximum of three times. This criterion was set to try and 
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maintain a similar level of performance across participants, without large differences in the 

number exposures to the stimuli.  

Paired-Associate Delayed Recall: Delayed recall followed the same procedure as 

immediate recall; however participants did not receive feedback on their performance and 

completed the task just once.  

Categorization Task 

Category Stimuli: All stimuli were generated using MATLAB (PsychToolBox). 

Category exemplars were two-dimensional conjoint visual-auditory stimuli based on Smith et 

al. (2014). The visual dimension was a 150 x 150 pixel unframed box containing randomly 

placed yellow pixels, presented on a black background. There were one hundred-and-one 

levels of pixel density with the number of yellow pixels at each level defined by pixels = 

round(850 × 1.0181
level

). Pixel density therefore varied from 850 lit pixels (level 0), to 5,061 

lit pixels (level 100) out of a total of 22,500. The auditory dimension was a pure tone that 

varied in frequency (Hz), defined by frequency = 220 × 2
(level/120).

 For levels 0 and 100 the 

pitches were 220 Hz and 392 Hz respectively. Stimuli were presented on the right- or left-

hand side of the screen. The placement of each stimulus was determined by its position 

within the stimulus space (see Figure 2); a boundary line orthogonal to the category boundary 

separated the stimuli, with trials on one side of the boundary presented on the left hand side 

of the screen during training (the shaded area in Figure 2) and trials on the other side 

presented on the right hand side of the screen (the non-shaded area in Figure 2). Although 

systematic, screen location did not provide any information about category identity and was 

therefore considered task-irrelevant. 

Category Structure: Category exemplars were created using Ashby and Gott’s (1988) 

randomization technique. Categories were defined by bivariate distributions along the two 

stimulus dimensions following the information-integration condition of Filoteo et al., (2010) 
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(see Table 1). Each stimulus was created by drawing a random sample (x, y) from the 

stimulus space. Stimuli sets were created for each individual, with each set normalised to 

match the overall category distribution before being transformed into concrete visual and 

auditory stimuli using the formulae above. This normalisation ensured that each participant 

had the same statistical information, despite receiving their own unique set of individual 

exemplars. Maximum accuracy using the optimal linear boundary as shown in Figure 2 

would be 95% as there is a 5% category overlap.  

 

Table 1 – Category distribution parameters (mean (µ) and standard deviation (σ)) for the 

pixel density (x) and tone frequency (y) dimensions in the information integration category 

structure.   

 Category Parameters 

Category µx µy σx σy 

A 26.67 50.00 10 10 

A 50.00 73.33 10 10 

B 50.00 26.67 10 10 

B 73.33 50.00 10 10 
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Figure 2 – The information-integration category structure normalised to a 100 point scale. 

The sold line denotes the optimal linear decision boundary; the corsairs and squares represent 

Category A and Category B respectively. Items that fall within the shaded region were 

presented on the left hand side of the screen and those in the non-shaded region presented on 

the right hand side of the screen.   

Category learning trials: Participants completed two blocks of sixty trials in each 

learning session, (with 60 Category A and 60 Category B trials presented in a randomised 

order). On each trial, one conjoint visual-auditory category exemplar was presented.  The 

response icons ‘A’ and ‘B’ were presented in the lower left- and right- hand side of the 

screen, and participants were asked to categorize each stimulus by pressing the ‘A’ or ‘B’ 

keyboard keys. The stimuli were presented for a maximum of 8 s and terminated immediately 

following a response, if no response was given with the 8 s the trial ended and this was 

scored as incorrect. Participants received immediate feedback following each response, with 
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the word “Correct!” or “Incorrect!” presented in the centre of the screen. To encourage good 

performance and to engage participants throughout the task a points system was used such 

that points were added or deducted from a running total following each response. A monetary 

reward was offered for the highest performing participant. A detailed example of two trials 

from the category learning task is presented in Figure 3.  

 

Figure 3 – Sequence of events for two trials in the categorization task. 

 

Instructions: Participants were told that each trial of the categorization task contained 

a pixel box and an auditory tone, with the chance of each trial belonging to category A or B 

being equal. They were instructed to categorize each trial by pressing the “A” or “B” 

keyboard key and that they would need to guess at first, but with practise they would be able 

to categorize the stimuli accurately. Participants were instructed to focus on the density of the 

pixels and the pitch of the tone to make their decisions; they were informed that the pixel box 

would be located on the left or right hand side of the screen, but that this was not important 
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for making their categorization decisions. Participants were encouraged to focus on being as 

accurate as possible during learning. 

Categorization Follow-Up Tasks 

Follow-up tasks aimed to assess participants’ knowledge of the category structure, as 

learned in the categorization task. The stimuli used in these tasks are the same as described 

above. 

Categorization Test: The categorization test included 60 trials which followed a 

similar procedure to categorization learning; however participants did not receive feedback 

on their performance. A fixation-cross of 1500 ms was presented before the onset of the each 

trial and participants were instructed to respond both as accurately and as fast as possible, 

using the knowledge they had gained during learning to guide their decisions. Participants 

performed the categorization test three times; immediately following learning in session one, 

straight after the delay in session two and finally after the second round of category training 

in session two (see Figure 4). 

Two-Alternative Forced Choice (2AFC) Task: Participants completed a 2AFC task to 

assess their ability to identify category exemplars. On each trial participants were presented 

with a ‘target Category’ (either A or B) in the centre of the screen. The task was divided such 

that on half of the trials they were presented with a single auditory tone, and two pixel boxes 

(pixel trials) while on the other half of trials they were presented with one pixel box and two 

auditory tones (tone trials). In both trial types, stimuli could be combined to make legitimate 

category A or B items. The participant’s task was to select the stimuli they thought combined 

to create an exemplar of the target category. For example, on ‘pixel trials’ participants had to 

select (from the two pixel boxes) the one they thought combined with the auditory tone to 

match the target category. Participants completed 80 trials in total (40 pixel trials, 40 tone 
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trials) and were instructed to respond as accurately as possible; a fixation cross (1000 ms) 

preceded the onset of each trial. 

Recall Task: Participants completed a recall task to assess their ability to generate 

category exemplars. On each trial participants were presented with a scale which represented 

the normalised level of either the density of a pixel box or the frequency of a tone (ranging 

from level -25 to 125). They were also presented with a ‘target category’ (either A or B) in 

the centre of the screen, along with a fixed stimulus from one dimension (e.g. a pixel box). 

Their task was to change the scale representing the non-presented dimension (e.g. the 

frequency of the tone) to match the target category. Participants used the mouse to click their 

chosen position on the scale and were able to change position an unlimited amount of times. 

On half of the trials the fixed dimension was the pixel box, while in the other half of trials the 

tone was fixed. Participants were instructed to be as accurate as possible. Each trial was 

preceded by a fixation cross presented for 2000 ms and participants completed 60 trials in 

total (30 of each type). 

Location Task: The location task was used to assess participants’ knowledge of the 

task-irrelevant location dimension. This was considered to be task irrelevant as screen 

location did not provide any cues to category membership. We included this manipulation to 

assess whether participants were sensitive to information that was not relevant for successful 

categorization and if knowledge of this information developed differently across delays 

containing sleep or wake. On each trial they were provided with a conjoint visual-auditory 

stimulus and its category in the centre of the screen. They had to indicate whether they 

believed the stimulus belonged on the left or right hand side of the screen. Each trial was 

preceded by a fixation cross for 1000 ms and participants were instructed to respond as 

accurately and as fast as possible, they completed 60 trials in total. 

Psychomotor Vigilance Task (PVT) 
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The PVT is a sustained-attention, reaction-timed task that measures the speed with 

which participants respond to visual stimuli. The PVT task was obtained from 

http://bhsai.org/downloads/pc-pvt/ (Khitrov et al., 2014). During the task, participants were 

presented with a blank black screen, at random intervals, a millisecond counter began to 

scroll, and participants had to left click the mouse to stop the counter as quickly as possible. 

After clicking, the counter displayed the achieved reaction time for 1000 ms, providing the 

subject with feedback on performance. Inter-stimulus intervals were distributed randomly 

from 2 to 10 seconds, and the task lasted for a total of 3 minutes.  

Procedure 

The experiment consisted of two experimental sessions separated by a delay of 

varying lengths across the four conditions. The two 12-hour delay groups spanned either 

daytime wakefulness, in which participants continued with their usual daytime activities, or 

an evening of sleep, where participants returned home to sleep. For these two groups Session 

1 began at 8.30am and 8.30pm respectively with Session 2 being completed exactly 12-hours 

later. Participants in the overnight PSG group were required to arrive at the lab at 8.30 pm 

and completed the experimental tasks after PSG set-up (9.45 pm ± 30 minutes). These 

participants remained in the lab to sleep and were awoken from sleep at approximately 7.30 

am; they completed Session 2 tasks at 8.30 am. Participants in the 15-minute delay group 

completed Session 1 between 9.00 am and 12.00 pm. These participants were instructed to 

take a 15-minute break and were encouraged to leave the testing lab in order to avoid fatigue 

before completing Session 2.   

A schematic illustration of the experimental procedure is shown in Figure 4. Both 

sessions began with completion of the Stanford Sleepiness Scale (SSS) (Hoddes et al., 1973) 

followed by the PVT to obtain measures of sleepiness, alertness and vigilance. In Session 1, 

participants completed paired-associate encoding and immediate cued-recall recall, followed 
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by category learning and the first categorization test (Session 1 ~45 minutes). Session 2 tasks 

involved a second categorization test, a further session of category learning and a final 

categorization test. Participants then completed the categorization follow-up tasks and finally 

paired-associate delayed recall (Session 2 ~1 hour).  

 

Figure 4 – Experimental procedure. Participants completed both sessions and were allocated 

to one of four delay conditions. (SSS – Stanford Sleepiness Scale, PVT – Psychomotor 

Vigilance Task).  

Sleep Recording with Polysomnography (PSG) 

For participants in the overnight PSG group, an Embla N7000 PSG system with 

RemLogic version 3.4 software was used to monitor sleep. After the scalp was cleaned with 

NuPrep exfoliating agent (Weave and Company), gold plated electrodes were attached using 

EC2 electrode cream (Grass Technologies). EEG scalp electrodes were attached according to 

the international 10-20 system at six standardised locations: central (C3 and C4), occipital 

(O1 and O2) and frontal (F3 and F4), and each was referenced to an electrode on the 

contralateral mastoid (A1 or A2). Left and right electrooculography electrodes were attached, 

as were electromyography electrodes at the mentalis and submentalis bilaterally, with a 

ground electrode attached to the forehead. Each electrode had a connection impedance of < 5 

kΩ and all signals were digitally sampled at 200 Hz.  
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Results 

Data were analysed in SPSS 23. All effects that reached a significance level of p < .1 are 

reported, with effects where p < .05 considered significant. Bonferroni-corrected t-tests were 

used to evaluate main effects for factors with more than two levels. 

Stanford Sleepiness Scale and Psychomotor Vigilance Task 

 Alertness measures were taken using the SSS (ratings of sleepiness) and performance 

on the PVT, focusing upon measures of reaction time (RT) and attentional lapses (RT > 

500ms, data is presented in Table 2).  Each measure was analysed using and analysis of 

variance (ANOVA) with the between-subjects variable Group (15-minute, PSG, 12-hour 

wake, 12-hour sleep) and repeated-measures variable Session (Session 1, Session 2). There 

were no differences in the levels of rated sleepiness across groups (F(3, 90) = 2.36, p = .077), 

however there was a main effect of session, with participants rating themselves as sleepier in 

session one when compared to session two (F(1, 90) = 9.25, p = .003), there was no 

interaction between these factors (p > .69). No differences were observed when measuring 

alertness by mean RT (Group; F(1, 89) = 0.90, p = .443, Session; F(1, 89) = 0.001, p = .980) 

or the number of lapses in the PVT (Group; F(1, 89) = 0.39, p = .758, Session; F(1, 89) = 

0.25, p = .620).  This suggests that general levels of alertness cannot account for any effects 

of Group in the experimental tasks. 
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Table 2 – Stanford Sleepiness Scale (SSS) and Psychomotor Vigilance Task (PVT) scores 

for each group in Session 1 and Session 2. SSS ratings are marked on a 7-point scale with a 

score of 1 representing most alert; mean scores are presented. PVT scores represent mean 

reaction time (RT) in ms and the mean number of lapses in attention (RT > 500ms). Standard 

error of the mean  is presented in brackets. 

 Session 1 Session 2 

 SSS 
PVT 

RT 

PVT 

Lapse 
SSS 

PVT 

RT 

PVT 

Lapse 

15-minute 
2.73  

(0.16) 

254.75 

(4.91) 

0.08  

(0.05) 

2.23  

(0.14) 

272.96 

(9.05) 

0.65 

(0.36) 

PSG 
3.17  

(0.17) 

279.25 

(6.18) 

0.17 

(0.08) 

2.52  

(0.15) 

275.51 

(6.71) 

0.52 

(0.23) 

12h – Sleep 
3.18  

(0.20) 

278.47 

(9.83) 

0.48 

(0.19) 

2.81 

 (0.23) 

268.02 

(6.16) 

0.24 

(0.10) 

12h – Wake 
2.70  

(0.23) 

274.67 

(7.42) 

0.74 

(0.27) 

2.47  

(0.21) 

270.27 

(5.77) 

0.35 

(0.12) 

 

Paired-Associate Learning 

 Analysis of paired-associate memory focused upon accuracy in the final recall attempt 

from the immediate test (if participants were required to repeat the test to meet the 60% recall 

criterion) and delayed cued-recall. Two participants were removed from the analysis due to 

computer failures during delayed recall (both from the 15-minute delay condition). To 

examine changes in performance across the delay, an analysis of covariance (ANCOVA) was 

performed on delayed recall with the variable Group (15-minute, PSG, 12-hour wake, 12-

hour sleep) and covariate immediate cued recall (see Table 3). The ANCOVA revealed a 

significant effect of Group (F(3, 93) = 10.02, p <.001, η2
 = 0.26). Post-hoc Bonferroni-

corrected pairwise comparisons showed that this effect was driven by a smaller proportion of 

correctly recalled items in the 12-hour wake group compared to all other conditions (15-

minute delay p = .001, 12-hour sleep p < .001, PSG overnight group p < .001). Therefore, in 
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this assessment of episodic declarative memory, we observe a sleep-associated benefit for 

delayed cued-recall.  

 

Table 3 – Accuracy in the immediate paired associated cued-recall test (data taken from the 

final recall attempt, mean proportion correct presented) and delayed cued-recall (covariate 

adjusted means are presented with the covariate immediate recall). Standard error of the mean 

is presented in brackets. 

 Paired-Associate Recall 

 Immediate Test Delayed Test 

15-minute  .73 (.03) .84 (.16) 

PSG .71 (.03) .86 (.16) 

12h – Sleep .71 (.02) .86 (.17) 

12h – Wake .78 (.03) .75 (.16) 

 

Category Learning 

Categorization - Session 1 

 The rate of category learning in Session 1 was assessed by comparing the number of 

correctly categorized trials in the two blocks of training. Performance is presented in Table 4 

and was analysed using an ANOVA with the within-subjects variable Block (Block 1, Block 

2) and between-subjects variable Group (15-minute, PSG, 12-hour wake, 12-hour sleep). A 

main effect of Block was observed (F(1, 91) = 20.93, p < .001, η2 
= 0.19), demonstrating 

improvements in categorization across training. There were no Group differences (F(3, 91), 

0.44, p = .727) and no interaction between the variables (F(3, 91) = 0.96, p = .418). 
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Table 4 – Performance in the categorization learning task and tests. Session 1 scores 

represent the mean proportion of correctly categorized trials. Session 2 scores show covariate 

adjusted means (as evaluated with the covariate Test 1). Standard error of the mean is 

presented in brackets.  

 Session 1  Session 2 

 Learning 
Test 1 

 

Test 2 
Leaning 

Test 3 
 Block 1 Block 2  Block 1 Block 2 

15-minute 
.66 

(.02) 

.70 

(.02) 

.71 

(.02) 

 .73 

(.01) 

.73 

(.02) 

.77 

(.02) 

.74 

(.02) 

         

PSG 
.64 

(.02) 

.69 

(.02) 

.68 

(.03) 

 .74 

(.02) 

.76 

(.02) 

.77 

(.02) 

.77 

(.02) 

         

12h – Sleep 
.65 

(.02) 

.72 

(.02) 

.76 

(.02) 

 .71 

(.02) 

.74 

(.02) 

.80 

(.02) 

.77 

(.02) 

         

12h – Wake 
.66 

(.02) 

.69 

(.02) 

.75 

(.02) 

 .71 

(.02) 

.73 

(.02) 

.73 

(.02) 

.69 

(.02) 

 

The first categorization test provides a measure of Session 1 category learning. All 

groups performed above chance level, as determined by one-sample t-tests with chance level 

performance as 0.5 (p < .001 for all groups). Data is presented in table 4 (Test1), a between-

subjects ANOVA with the variable Group was non-significant (F (3, 91) = 1.85, p = .143). 

There was however some variation in condition means and so performance at this time-point 

was used as a covariate in subsequent analyses.  

Categorization – Session 2 

 Category knowledge was re-assessed with a test at the beginning of Session 2 to 

measure the retention of category knowledge across the delay. Again all groups performed 

above chance level (0.5) when tested with one-sample t-tests (p < .001 for all groups). 

Performance in this test (see Figure 5a) was assessed using an ANCOVA with the variable 
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Group (15-min, PSG, 12-hour wake, 12-hour sleep) and covariate Test 1. A non-significant 

effect of Group suggests that all groups were performing at a similar level (F(3, 90) = 1.00, p 

= .397). There was no evidence for immediate consolidation effects on the retention and 

retrieval of categorical knowledge acquired in Session 1; this is in contrast to declarative 

paired associate task where we observed a sleep-associated benefit.  

 Participants then went on to complete two further blocks of category training; 

performance was assessed by comparing the number of correctly categorized trials across 

each block (see Table 4). An ANCOVA with the within-subject variable Block (Block 1, 

Block 2), between-subjects variable Group (15-min, PSG, 12-hour wake, 12-hour sleep) and 

covariate Test 1 revealed a main effect of Block, suggesting that participants were able to use 

the extra learning in session 2 to boost their category knowledge (F(1, 90) = 5.53, p = .021, η2
 

= 0.06). A main effect of Group was not observed (F(3, 90) = 1.88, p = .138) and there was 

no interaction with the factor Block(F(3, 90) = 2.61, p = .056, η2
 = 0.08). 

 The third and final categorization test assessed category knowledge following both 

the consolidation delay and Session 2 training. Performance is shown in Figure 5b. An 

ANCOVA with the factors Group (15-min, PSG, 12-hour wake, 12-hour sleep) and covariate 

Test 1 revealed a main effect of Group; F(3, 89) = 4.89, p = .003, η2
 = 0.14. Bonferroni-

corrected pairwise comparisons suggest this main effect was driven by superior performance 

in the 12-hour sleep (p = .009) and PSG (p = .008) groups in comparison to the 12-hour wake 

condition. Participants who had sleep-filled consolidation delays, followed by further 

category training, showed higher rates of categorization compared to participants who stayed 

awake during the delay.  
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Figure 5 – The proportion of correctly categorized trials during Test 2 (A) and Test 3 (B). 

Residual proportions are presented as evaluated with the covariate Test 1. Error bars 

represent SEM. (** represents p < .01). 

Category Learning – Follow-up Tasks 

ANCOVAs with the variable Group (15-min, PSG, 12-hour wake, 12-hour sleep) and 

covariate Test 1 were performed separately for each follow-up task. Accuracy in the 2AFC 

and location task was calculated as the proportion of correct responses. Accuracy in the recall 

task was calculated as an error score, i.e. the difference between the participants response and 

the target response (the point of best fit based on the category distribution), a small error 

score is indicative of accurate performance in this task. All task scores are presented in Table 

5, in the 2AFC and Location Task all groups performed above change level (chance = 0.5, p’s 

< .05). Group differences were not observed in the 2AFC task (F(3, 89) = 1.75, p = .163), the 

recall task (F(3, 89) = 2.25, p = .089) or the location task (F(3, 89) = 0.35, p = .788). 

In Session 2 of this study participants completed multiple tests to assess the role of 

consolidation on the memory. Across these tests we find a significant effect of group in 

paired associate recall (p < .001) and in the third categorization task (p = .003). Given that we 

take multiple measures of performance across Session 2 (a total of 7 different measures) a 

more careful correction for multiple comparisons, including all post-consolidation tests, 

A B 
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would be a Bonferroni corrected alpha level of p = .007 (0.05/7). The significant effects of 

Group observed in this study survive this more conservative correction for multiple 

comparisons. 

Table 5 – Accuracy scores in the category follow-up tasks. Covariate adjusted means are 

presented (as evaluated with the covariate Test 1 accuracy). Standard error of the mean is 

presented in brackets.  

 Categorization Follow-Up Tasks 

 
2AFC 

(proportion correct) 

Recall 

(error score) 

Location Task 

(proportion correct) 

15-minute  .62 (.02) 39.17 (2.66) .57 (.03) 

PSG .61 (.02) 37.95 (2.86) .57 (.03) 

12h – Sleep .62 (.02) 33.90 (2.92) .56 (.03) 

12h – Wake .56 (.02) 43.70 (2.84) .55 (.03) 

 

Sleep Stage Analysis 

 One participant was excluded from sleep analyses due to PSG equipment failure (N = 

22). PSG recordings were scored in accordance with the criteria of the American Academy of 

Sleep Medicine (Iber et al. 2007). Sleep data was partitioned according to the proportion of 

total sleep time spent in stage I, stage II, slow-wave sleep (SWS) and rapid-eye-movement 

(REM) sleep. Sleep stage data is presented in Table 6. To establish whether the sleep related 

behavioural effects were driven by specific architectures of sleep, improvement scores were 

calculated between (i) delayed and immediate paired-associate recall, (ii) categorization 

accuracy in Test 2 and Test 1 and (iii) categorization accuracy in Test 3 and Test 1. Bivariate 

correlations were then performed between these behavioural measures and the proportion of 

time spent in (i) non-rapid-eye-movement (NREM) sleep (combined time in stage I, stage II 

and SWS), (ii) stage II sleep and (iii) and SWS were performed. Correlations for each 

behavioural measure were tested against a Bonferroni-corrected alpha level of p ≤ .006. 
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 A positive correlation was observed between the proportion of time spent in NREM 

sleep and paired-associate learning (r = .514, p = .014) however this didn’t survive the 

Bonferroni corrected alpha level. Correlations with the proportion of time in stage II sleep (r 

= .317, p = .150) and SWS (r = .038, p = .868) were non-significant. No correlations were 

observed between improvement scores in the categorization task and each of the stages of 

sleep (all p > .5). 

Table 6 Percentage of time spent in each sleep stage. (NREM – non-rapid eye movement 

sleep, SWS – slow-wave sleep, REM – rapid eye movement sleep, TST – total sleep time). 

Standard error of the mean is presented in brackets.  

NREM Stage 1 Stage 2 SWS REM TST  (min) 

80.28 

(0.74) 

8.45 

(0.66) 

43.85 

(1.32) 

 27.98 

(1.43) 

19.72 

(0.74) 

441.38 

(11.10) 

 

Model-based Analyses 

 General Recognition Theory (GRT)-based analysis determines which of a predefined 

set of decision–boundary models best describes the classification adopted by each participant 

(Ashby & Gott, 1988). This analysis allows us to assess whether participants were truly 

adopting an information-integration decision boundary to separate Category A from Category 

B exemplars. Four models were considered in this analysis: one-dimensional, conjunction, 

general linear classifier and random.  

 The one-dimensional models assume that participants use a single dimension in order 

to classify stimuli by comparing each stimulus with a determined criterion value. An example 

using the tone frequency dimension in the current study would be “Respond Category A for 

high tones and Category B for low tones”. These models have two parameters: the criterion 

value and the variance of internal noise. The conjunction model suggests that participants 

hold a criterion value along both dimensions and combine the judgements to determine 
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category membership. An example of a conjunction model would be “If the tone frequency is 

high and the pixel density is low assign Category A otherwise, assign Category B”. This 

model has three parameters: the two criterion values and internal noise.  The general linear 

classifier (GLC) model assumes that a straight diagonal decision boundary can describe 

classification. The model can vary in gradient and intercept but suggests participants are 

integrating across both dimensions to determine category membership. The GLC model has 

three parameters: the intercept, gradient and noise. The random model assumes that 

participants are responding randomly and this model has no parameters.  

 For each participant, and in each of the three categorization tests, the best fit of each 

of these models was calculated and the best fitting model was selected using Akaike’s 

information criterion (Akaike, 1974). These analyses were performed using the grt package in 

R environment (Matsuki, 2017) and are reported in Table 7.  

 A mixed-effects model was fitted with the likelihood of a GLC classification as the 

dependent measure. The model included Group (15-minute, PSG, 12-hour sleep and 12-hour 

wake), Test (Test 1, Test 2 and Test 3) and their interactions as fixed effects. Both fixed 

effects were coded with Helmert contrasts, with Test 1 and 15-minute delay conditions acting 

as the reference levels. This meant that for Test a first contrast compared Test 1 with Tests 2 

and 3, and a second contrast compared Test 2 with Test 3. For Group, a first test compared 

the three long delay groups (12-hour wake, 12-hour sleep and PSG) with the 15-minute delay 

group, a second contrast compared the PSG and 12-hour Sleep groups to the 12-hour Wake 

group, and a third contrast compared the PSG and 12-hout Sleep conditions. Random effects 

included by-subject intercepts only, which was the maximal random effect structure justified 

by the data (Baayen, Davidson & Bates, 2008). We used the lme4 package in R with the logit 

link function (Bates et al., 2015; Jaeger, 2008) to conduct the analysis. There was a 

significant interaction between the second Group contrast (comparing the PSG and 12-hour 
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Sleep groups to the 12-hour Wake group) and first Test contrast (comparing Test 1 with Tests 

2 and 3), β = -0.24, standard error = 0.09, z = -2.83, p = .005. GLC classification in the PSG 

and 12-hour sleep groups tended to increase between Test 1 and the two subsequent Tests, 

while there was a decrease in GLC classification in the 12-hour Wake Group (see Figure 6). 

There was also a significant effect for the second Test contrast (comparing Test 2 with Test 

3), with all groups showing an increase in GLC classification across these two testing points 

(β = 0.53, standard error = 0.18, z = 2.95, p = .003). All other contrasts and interactions were 

non-significant (p’s > .062). 

Although modelling categorization data is typical in this area of research, the 

modelling results should be interpreted with caution given the restricted set of models tested 

and the small number of trials used for each test in the current study (Donkin et al., 2014).  

Table 7 Proportion of participants best described by each model according to the model-

based analyses for each test in the categorization task. (1D = one-dimensional, GLC = 

general linear classifier, CJ = conjunction, RND = random).  

  Strategies 

  1D GLC CJ RND 

15-minute Test 1 .48 .44 .04 .04 

 Test 2 .52 .30 .18 .00 

 Test 3 .31 .58 .08 .04 

      

PSG Test 1 .48 .26 .22 .04 

 Test 2 .39 .39 .22 .00 

 Test 3 .22 .52 .22 .04 

      

12-hour Sleep Test 1 .32 .50 .14 .05 

 Test 2 .41 .45 .09 .05 

 Test 3 .14 .77 .09 .00 

      

12-hour Wake Test 1 .39 .61 .00 .00 

 Test 2 .39 .35 .26 .00 

 Test 3 .35 .39 .26 .00 
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Figure 7 – The likelihood of participants in each Group being classified as using the optimal 

GLC decisions boundary in the three categorization tests. Error bars represent standard error 

of the mean.  

Discussion 

This study investigated the role of consolidation in both a declarative paired-associate 

memory task, and on the emergence of cross-modal conceptual representations using an 

information-integration categorization paradigm. In line with previous literature, we observed 

a clear sleep-associated consolidation benefit for paired-associate memory, with participants 

showing better retention following a consolidation delay that contained sleep compared to 

wakefulness. This result is consistent with the view that processes during sleep act to promote 

the consolidation of declarative memory (Diekelmann et al., 2009; Rasch & Born, 2013). Our 

assessments of category knowledge provide good evidence for sensory-integration, with 
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participants successfully acquiring the cross-modal (auditory – visual) category structure. As 

real-world conceptual knowledge comprises information across multiple modality dimensions 

(Patterson et al., 2007) this task, albeit in a very simplistic form, resonates with natural 

concept learning. However, in contrast to paired-associate memory, we did not observe any 

immediate post-delay wake- or sleep-associated changes in categorization accuracy. Instead, 

we found a facilitative effect of sleep-associated consolidation on subsequent learning, with 

participants showing greater category knowledge and shifts towards more optimal decision 

strategies after training in session two, if they had a delay filled with sleep.  

These results suggest that the behavioural benefits of sleep-associated consolidation 

are dependent upon the type of memory being assessed. Episodic memory, as assessed by the 

paired-associate task, produces immediate sleep benefits in memory recall, whereas the 

advantages for conceptual memory emerge only after an opportunity for further learning. 

This result draws attention to the relationship between sleep-associated consolidation and the 

effectiveness of post-consolidation learning; an important finding when considering the 

development of conceptual memory which develops across temporally distinct episodes 

interleaved with consolidation opportunities.  

These results are in agreement with theories of consolidation which suggest that sleep 

facilitates systems-level memory reorganisation, allowing new and consistent information to 

be assimilated into long-term memory networks at a quicker rate (McClelland et al., 1995; 

2013; Kumaran et al., 2016; Tse et al., 2007; van Kesteren et al., 2013). Sleep-dependent 

training benefits in this study may therefore be the consequence of subtle sleep-dependent 

mechanisms which facilitated the storage of category knowledge acquired in session one; 

thus providing the architecture required for enhanced assimilation of new and consistent 

information the following day. This interpretation is also supported by modelling the decision 

strategies of participants; those who had the opportunity to sleep between sessions showed a 
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shift to the optimal linear decision strategy following the delay and session two training. 

Memory reorganisation during sleep, which may promote the development of category 

structure, along with further task training, may have allowed participants to align their 

response strategies with the optimal linear decision boundary in this task. This same shift in 

response strategy was not observed following 12-hours of wakefulness, supporting the 

suggestion of a sleep-associated mechanism in the consolidation of category knowledge.   

These results highlight the importance of assessing consolidation across multiple 

learning episodes when studying the development of categorical memory representations. An 

interesting question that remains is whether the benefits of sleep on second session learning 

are specific to the trained categorization structure, or whether these benefits extend to 

perceptually and/or structurally similar categorization tasks. Understanding the flexibility of 

consolidated categorical representations will be important for determining the role of 

consolidation in broader conceptual memory. 

We observed differences in the sleep-associated benefit observed across the two tasks 

in this study, one possible reason for this is due to the nature of encoding. Paired-associate 

learning requires participants to make associations between two previously unrelated items, 

creating very strong episodic memory representations which place high demands on the 

medial temporal lobe system in the brain, in particular the hippocampus (Cameron et al., 

2001). The hippocampus plays a pivotal role in theories of memory consolidation, with the 

suggestion that it is responsible for both the rapid encoding of information during wake and 

then the redistribution of encoded material to the neocortex during sleep (McClelland et al., 

1995; Diekelmann & Born, 2010). In contrast to paired-associate learning, the categorization 

task considerably reduces the value of episodic encoding by using a continuous category 

structure without a definitive category boundary (i.e. there was a degree of category overlap). 
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This results in each trial being perceptually very similar, without any discriminative or 

arbitrary features to allow trial-by-trial individuation  

The immediate sleep-dependent benefit for paired-associates may therefore reflect a 

component of the consolidation mechanism which is strongly linked to episodic memory. We 

were not able to compare episodic and conceptual memory within the same paradigm in the 

current study, however Graveline & Wamsley (2017) were able to do this using a 

classification task in which participants were trained to discriminate between dot patterns that 

were derived from category prototypes. Importantly, participants were trained on individual 

category exemplars, that although were perceptually very similar, were repeatedly presented 

during training, allowing participants to develop strong representations for individual items. 

In line with our paired-associate data, they show sleep-dependent benefits in memory for 

these trained items. However, they also show sleep benefits for the categorization of novel 

and untrained category patterns, suggesting sleep also benefitted the extraction of shared 

category knowledge. This highlights a complex interplay between episodic and conceptual 

memory, where sleep may benefit concept based representations when strong individual 

episodic representation are held in memory.  

 The sleep-dependent benefit in post-consolidation learning in this study is in contrast 

to the wake-dependent consolidation benefit observed in the category learning study by 

Hennies et al. (2014). In a similar categorization task they found that wake, rather than sleep, 

facilitated the development of category knowledge. Two factors may account for these 

contradictory results; the first is the selectivity of sleep-dependent consolidation (Rasch & 

Born, 2013). Sleep-dependent consolidation effects are more robust under explicit learning 

conditions and are improved by motivational factors such as relevance for future goals 

(Robertson et al., 2004; Fischer et al., 2006; Walker et al., 2003; Cohen et al., 2005; 

Diekelmann et al., 2008; Wilhelm et al., 2011). In the current study, participants were 
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explicitly aware of the relevant information needed for determining category membership 

(i.e. the visual and auditory dimensions) despite the nature of the category structure itself 

being initially unknown. In contrast, the underlying category structure was truly implicit in 

Hennies et al., (2014). They manipulated the traditional categorization paradigm such that the 

information-integration category structure was hidden within a pre-stimulus event, which if 

utilised would increase reaction time, but was not necessary for accurate categorization. 

Explicit appreciation for the relevant integrative dimensions may therefore make the stimulus 

in this experiment more susceptible to sleep-dependent consolidation mechanisms. 

A second factor that may explain the differences observed between these studies 

relates to the level of initial learning. Stickgold (2009) proposed that sleep mainly benefits 

memories encoded at intermediate memory strengths, such that there is an inverted-U shaped 

curve to the sleep benefit. As a result, both very weak and very strong memories would fail to 

benefit from sleep-based consolidation mechanisms. In the current study participants were 

able to categorize stimuli above chance level after training in session one, but did not reach 

ceiling levels. According to the theory proposed by Stickgold (2009), learning was therefore 

within the optimal range to benefit from sleep-dependent consolidation. In contrast, Hennies 

et al. (2014) found no evidence of implicit category learning before the consolidation delay, 

participants may have been insensitive to sleep-dependent consolidation mechanisms in their 

study. 

Given that the results of the current study contrast with those from Hennies et al. 

(2014) it is important to note that we did provide a direct replication of our sleep effect by 

using two sleep group comparisons. This study was initially run as a comparison between two 

groups with a 12-hour delay containing wake or sleep. Following data collection and 

preliminary analyses, the 15-minute and PSG monitored group were added to i) provide a 

short delay comparison and ii) to replicate the sleep effect observed in the initial 12-hour 
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sleep group with concurrent PSG recordings. We successfully replicated the initial sleep-

associated benefit but present all groups within a single comparison in the current paper to 

streamline the analysis. Replication of the sleep benefit observed in this study, as well as 

further investigation more generally within the domain of consolidation and categorization is 

certainly required to fully understand the development of category knowledge across time. 

The design we used in this experiment, which compares nocturnal sleep with daytime 

wakefulness, like many others is the consolidation literature, does not control for circadian 

effects on memory that may influence performance (Rasch & Born, 2013). Although ratings 

of sleepiness and vigilance suggest participants general alertness levels were comparable in 

the current study, a replication of the sleep-based effects using a nap design would remove 

this confound and add support to our interpretations.  

This study compared the role of consolidation in a declarative paired-associate task, 

and on the emergence of cross-modal categorical memory representations. We provide good 

evidence for a role of sleep-dependent consolidation in paired-associate learning, with 

participants showing post-sleep benefits in memory recall that correlate with signatures of 

sleep. This finding is in line with a growing body of research suggesting that process during 

sleep play an active role in the consolidation of declarative memory (Rasch & Born, 2013). 

Using a perceptual categorization task, we were able to demonstrate cross-modal category 

learning, a key feature of real-world conceptual memory for which information is drawn from 

multiple sensory dimensions. We also observe a sleep-dependent consolidation benefit in 

category learning; however unlike paired-associate memory, this benefit emerges only when 

sleep-based consolidation is paired with further category training. This result highlights an 

important interaction between those mechanisms responsible for consolidation and those 

responsible for learning. Establishing the exact nature of this relationship will be important 

for (i) understanding how we develop, update and maintain conceptual memory 
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representations and (ii) understanding why we observe different behavioural consequences of 

sleep-dependent consolidation across episodic declarative and conceptual memory 

representations.  
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Highlights 

 The study investigated the role of sleep- and wake-associated consolidation on declarative 

episodic memory and cross-modal category learning. 

 Episodic declarative memory showed sleep-associated improvements in memory. 

 Category knowledge remained stable across the consolidation delay and did not show any 

sleep- or wake-associated changes in performance.  

 Further category learning following consolidation was however enhanced for those 

participants who had slept, suggesting a sleep-associated mechanism that increased the 

effectiveness of post-delay learning.  

 


