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ABSTRACT OF DISSERTATION 

POST-TRAUMATIC SLEEP FOLLOWING DIFFUSE TRAUMATIC BRAIN INJURY 

By 
Rachel Kathleen Rowe 

Traumatic brain injury (TBI) is a major cause of death and disability throughout 

the world with few pharmacological treatments available for individuals who suffer from 

neurological morbidities associated with TBI. Cellular and molecular pathological 

processes initiated at the time of injury develop into neurological impairments, with 

chronic sleep disorders (insomnia, hypersomnolence) being among the somatic, 

cognitive and emotional neurological impairments. Immediately post-injury, TBI patients 

report excessive daytime sleepiness, however, discordant opinions suggest that 

individuals should not be allowed to sleep or should be frequently awoken following brain 

injury. To provide adequate medical care, it is imperative to understand the role of acute 

post-traumatic sleep on the recovery of neurological function after TBI. 

The aim of this thesis was to examine post-traumatic sleep after experimental 

TBI, defined as an increase in sleep during the first hours post-injury. In these studies, 

we non-invasively measured sleep activity following diffuse brain injury induced by 

midline fluid percussion injury to examine the architecture of post-traumatic sleep in 

mice. We detected significant injury-induced increases in acute sleep for six hours 

regardless of injury severity or time of day injury occurred. We found concurrent 

increases in cortical levels of the sleep promoting inflammatory cytokine interleukin 1-

beta. We extended the timeline of post-injury sleep recording and found increases in 

post-traumatic sleep are distinctly acute with no changes in chronic sleep following 

diffuse TBI. Further, we investigated if post-traumatic sleep was beneficial to 

neurological outcome after brain-injury by disrupting post-traumatic sleep. Disruption of 

post-traumatic sleep did not worsen functional outcome (neuromotor, sensorimotor, 

cognition) at one week after diffuse TBI. With sufferers of TBI not always seeking 

medical attention, our final studies investigated over-the-counter analgesics and their 

effect on post-traumatic sleep and functional outcome. Acute administration of 

analgesics with varying anti-inflammatory properties had little effect on post-traumatic 

sleep and functional outcome.  

Overall, these studies demonstrated translational potential and suggest sleep 

after a concussion is part of the natural recovery from injury. While disrupting sleep does 

not worsen outcome, it is in no way beneficial to recovery. Additionally, a single 



 
 

analgesic dose for pain management following concussion plays little role in short term 

outcome.  

 

KEYWORDS: TBI, sleep, sleep-disruption, inflammation, concussion 
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Chapter One: Introduction 
 
Traumatic Brain Injury 

Traumatic brain injury (TBI) is a major cause of death and disability 

throughout the world (Langlois et al. 2006; Reilly 2007; Roozenbeek et al. 2013). 

In the United States between 2002 and 2006, the Centers for Disease Control 

and Prevention estimated 52,000 deaths, 275,000 hospitalizations, and 

1,365,000 emergency department visits resulting from TBI each year (Faul et al. 

2010b). It is also estimated that as high as 42% of TBIs are not included in these 

statistics because 1.2-4.3 million survivors of mild TBI annually do not seek 

medical attention (Setnik and Bazarian 2007). TBI is a heterogeneous disorder 

leading to varying degrees of symptoms based on mode and severity of injury. 

Brain injury can lead to both short and long-term impairment, including cognitive 

(Albensi and Janigro 2003), and behavioral (Yeates et al. 2002) deficits as well 

as increasing the risk for developing neurodegenerative disease (Masel and 

DeWitt 2010), post-traumatic headaches (Theeler et al. 2013),  and/or psychiatric 

disorders (Arciniegas et al. 2000). There is no approved pharmacological 

treatment for TBI and current medical care focuses primarily on controlling 

physiological parameters including intracranial pressure and blood pressure 

(Wang et al. 2006). Severity of TBI is categorized based on the Glasgow Coma 

Scale (GCS) which reliably classifies the severity of TBI based on clinical 

symptoms with a total GCS score classifying their injury as mild (score: 13-15), 

moderate (score: 9-12) or severe (score: <9) (Prins et al. 2013). The studies of 

this thesis will focus on mild (non-severe) brain injury. 
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There are two principal classifications for TBI delineated by injury 

mechanisms. Focal brain damage is caused by contact injury resulting in 

contusion and laceration and diffuse brain injury is caused by 

acceleration/deceleration injury resulting in diffuse axonal injury and swelling 

(Werner and Engelhard 2007). TBI is characterized by two pathological phases: 

cellular injury resulting from primary impact and the ensuing secondary injury 

mediated by pathological processes (Werner and Engelhard 2007). Secondary 

injury occurs over time post-injury with a gradual onset beginning minutes to 

hours after impact and contributes to the clinical morbidities associated with TBI. 

Little can be done to mitigate the mechanical disruption associated with the 

primary insult and the biochemical cascades initiated shortly after the time of 

injury can impair physiological function and ultimately worsen long-term outcome 

(Gentleman 1999).  

The complex neurovascular responses after TBI require investigations that 

involve the immune, circulatory, and central nervous systems of live animals. The 

long term consequences of TBI include a host of emotional, cognitive, and 

sensory deficits that can degrade quality of life. Specific aspects of brain injury, 

such as cell death, have been successfully modeled with in vitro neural injury 

(Morrison et al. 1998; Geddes et al. 2003). However, in vitro models cannot be 

sustained over chronic time points to evaluate injury progression and lack the 

complex interactions among systems that characterize TBI neuropathy. 

Additionally, current computer models cannot reproduce the complicated 

pathophysiology of TBI. A wide range of well-accepted animal models are 
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available for neurotrauma investigation and the use of whole animal models is 

justified for TBI research and deemed appropriate for conduct of pre-clinical 

studies (Chen et al. 2008). Therefore, neurotrauma research necessitates live 

animal models of human TBI, which must be employed within the existing animal 

welfare regulatory environment. To study TBI pre-clinically, a range of 

experimental models of TBI are used in research differing in primary injury 

mechanisms. To generate injuries with characteristics of mild to severe TBI, the 

most commonly used animal models include fluid percussion (FP), controlled 

cortical impact (CCI), and weight-drop injury (Prins et al. 2013). While the initial 

impact in these models differ, all produce secondary injury mechanisms with 

characteristic physiological responses common to human TBI (Prins et al. 2013). 

The studies of this thesis utilize a fluid percussion animal model of diffuse brain 

injury to answer specific scientific questions. 

Among secondary injury mechanisms, TBI depletes adenosine-5’-

triphosphate (ATP) causing failure of energy dependent membrane ion pumps, 

increases reactive oxygen species (ROS), increases intracellular concentrations 

of free radicals caused by the activation of lipid peroxidases, and increases 

inflammatory mediating cytokines (Fan et al. 1995; Werner and Engelhard 2007). 

Fluid percussion injury decreases ATP levels in both the cortex and 

hippocampus of rats starting as early as two hours post-injury with declines in 

ATP levels remaining up to 24 hours post-injury (Lifshitz et al. 2003; Aoyama et 

al. 2008). An impact acceleration model of TBI has also shown decreases in ATP 

levels in rats immediately following brain injury (Signoretti et al. 2001). Similarly, 
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secondary injury mechanisms after brain injury increase oxidative stress through 

enhanced production of ROS, free radicals, and lipid peroxidation (Reimund 

1994; Gopalakrishnan et al. 2004). 

 Neuroinflammatory cascades are also initiated as part of the secondary 

injury following TBI (Pleines et al. 2001). The resident macrophages of the 

central nervous system, microglia, respond immediately following brain injury and 

release inflammatory mediators which include inflammatory cytokines and 

chemokines (Davalos et al. 2005; Nimmerjahn et al. 2005; Bachstetter et al. 

2013). Elevated cytokine signaling has been observed across experimental 

models and human TBI, highlighting their involvement in pathological and 

reparative processes triggered by injury (Morganti-Kossmann et al. 2001; Frugier 

et al. 2010; Semple et al. 2010; Ziebell and Morganti-Kossmann 2010). 

Sleep Disturbances Following TBI 

Secondary injuries of TBI, consequences of ongoing cellular events, often 

cause further damage and lead to physiological consequences (Werner and 

Engelhard 2007; Prins et al. 2013). Pathological processes initiated at the time of 

injury develop into neurological impairments, with sleep disturbances among the 

somatic, cognitive and emotional neurological impairments (Castriotta et al. 

2007; Kempf et al. 2010). Among other neurological consequences of TBI, sleep 

disturbances are commonly reported in the acute phase of TBI, some of which 

persist through more chronic periods (Castriotta et al. 2007; Verma et al. 2007; 

Kempf et al. 2010). Published reports indicate an incidence as high as 70% of 

TBI survivors suffer from sleep-wake disturbances (Cohen et al. 1992; Orff et al. 
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2009). Similar sleep disorders develop across the spectrum of TBI, including 

children and adolescents (Tham et al. 2012), ultimately impacting the quality of 

life. Proper identification and treatment of sleep-wake disturbances following TBI 

can facilitate outcomes in vigilance, working memory, and capacity of language 

processing (Wiseman-Hakes et al. 2013).  

 Excessive daytime sleepiness is the most common sleep-wake 

disturbance reported among TBI patients (Castriotta et al. 2007; Kempf et al. 

2010; Baumann 2012) and is characterized primarily by an increase in sleep 

propensity. Post-traumatic hypersomnia, an increased need in sleep over a 24 

hour period, is also reported among the most common sleep-wake disturbances 

reported following TBI (Baumann 2012; Billiard and Podesta 2013). Other 

commonly reported disorders include narcolepsy, delayed sleep phase, 

insomnia, and fatigue (Ouellet and Morin 2006; Verma et al. 2007; Kempf et al. 

2010; Baumann 2012). These sleep disturbances in TBI survivors make an 

impact on rehabilitation of patients after injury and can exacerbate symptoms 

such as pain and cognitive deficits (Mathias and Alvaro 2012; Bhalerao et al. 

2013). 

Functions of Sleep 

 Sleep is a state of immobility with reduced responsiveness, differing from 

coma or anesthesia by the ability to rapidly be reversed. While sleep is an 

evolutionarily conserved phenomenon that is essential for survival (Banks and 

Dinges 2007), the function of sleep is not completely understood. In the absence 

of sleep, however, there are significant detriments in cognitive function (Krueger 
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et al. 1999). Early hypotheses suggest the function of sleep is restoration, 

eliminating waste and restoring depleted energy sources (Oswald 1980), and 

energy conservation (Walker and Berger 1980; Xie et al. 2013). More recent 

hypotheses conclude sleep homeostasis reflects synaptic changes, highlighting a 

cellular need for sleep and indicate plasticity and learning as the major functions 

of sleep (Tononi and Cirelli 2003; Huber et al. 2004).  

 There are substantial variations in the amount of daily sleep required from 

mammal to mammal, with some animals demanding 18 to 20 hours of sleep and 

others needing a minimal 3 to 4 hours (Siegel 2005). Ecological studies suggest 

a correlation between a species’ diet and sleep time and a link between body 

mass, brain size, and duration of cumulative sleep cycle (Zepelin et al. 2005). A 

possible explanation for this relationship is the inverse correlation of metabolic 

rate with both body and brain mass (Siegel 2005). High metabolic rates, linked to 

biochemical changes which modulate sleep, result in the generation of reactive 

oxygen species (ROS) by mitochondria, and sleep time may be a defense 

against this oxidative stress (Siegel 2005). The relationship between sleep and 

defense against oxidative damage has been outlined in studies showing sleep 

deprivation in the rat increases oxidative stress in the hippocampus, subcortical 

regions, and peripheral tissue (Eiland et al. 2002; Ramanathan et al. 2002; 

Everson et al. 2005; Siegel 2005). 

 Adenosine, a byproduct of energy metabolism is also a regulator of brain 

energy (Brown et al. 2012). During sleep, adenosine may serve as a homeostatic 

regulator of brain energy (Benington and Heller 1995; Scharf et al. 2008). 
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Wakefulness requires a higher metabolic rate than sleep, leading to increased 

levels of extracellular adenosine as a result of ATP breakdown (Pull and 

McIlwain 1972; Madsen and Vorstrup 1991; Maquet 1995).  Sleep reduces 

neuronal activity which correlates to a surge in ATP (Dworak et al. 2010). 

Together, these studies suggest sleep-induced increases in ATP allow for 

increased anabolic processes during sleep, highlighting the restorative 

biosynthetic function of sleep (Dworak et al. 2010; Brown et al. 2012). 

 There is an accumulation of evidence supporting sleep plays a role in 

synaptic homeostasis, regulating the synaptic weight of the brain (for review, see 

(Tononi and Cirelli 2003; Tononi and Cirelli 2006)). During wakefulness there is 

synaptic potentiation in cortical circuits which accumulate as a net increase in 

synaptic weight, and it is hypothesized this accumulation of synaptic potentiation 

during wakefulness leads to increases in sleep (Tononi and Cirelli 2006). This is 

supported by animal studies which conclude increasing wakefulness in rats by 

gentle handling increases the expression of synaptic potentiation markers (Cirelli 

and Tononi 2000).  

 Lastly, sleep has a role in the modulation of the immune system. Sleep is 

coupled to immunological responses such as inflammation with observations 

suggesting sleep patterns may predict clinical outcome of disease processes 

(Toth 1995). Long periods of enhanced sleep in rabbits inoculated with E. coli, S. 

aureus, or C. albicans lead to a more favorable prognosis and less severe clinical 

signs when compared to a microbial challenge followed by short periods of 

enhanced sleep then prolonged sleep suppression (Toth and Krueger 1988; Toth 
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et al. 1993). Sleep promoting stimuli, such as cytokines interleukin-1 (IL-1) and 

tumor necrosis factor (TNF), expressed transiently after microbial challenge, 

likely contribute to the sleep enhancement observed during microbial infections 

(Toth 1995). Furthermore, inflammatory mediating cytokines produced in vivo by 

infection parallel the cytokines produced by secondary injury cascades following 

TBI (Chensue et al. 1991; Clark et al. 1991; Wakabayashi et al. 1991; Bjork et al. 

1992; Ziebell and Morganti-Kossmann 2010). These data suggest sleep may 

naturally be promoted following brain injury.  

Thesis Outline 

While acute sleep disturbances are among one of the most commonly 

reported clinical neurological impairments following TBI, there is a lack of 

investigations into the duration, manipulation, and implications of this post-

traumatic sleep. The overall goal of this thesis was to identify the role of post-

traumatic sleep in recovery from diffuse brain injury. The overarching hypothesis 

was that diffuse brain injury leads to increases in acute sleep, and that 

manipulation of that sleep leads to worsened outcome. 

To test the hypothesis that injury-induced sleep enhances recovery of 

neurological function following diffuse brain injury, the studies described in this 

dissertation used a novel non-invasive sleep monitoring cage system to gain 

insight into acute sleep immediately following TBI in the mouse. The most 

fascinating finding was that sleep is significantly increased following brain injury 

independent of injury severity or time of day injury occurs. Also, injury-induced 

increases in sleep extend into the first week post-injury but do not develop into 
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chronic sleep disturbances using our midline fluid percussion injury model. These 

data, in chapter two and three, are the first to provide insight into post-traumatic 

sleep following diffuse brain injury. 

 Chapter Four further explores acute post-traumatic sleep by investigating 

the relationship between immediate disruption of post-traumatic sleep and 

functional outcome following diffuse brain injury in the mouse. In summary, these 

studies were designed to disrupt the acute injury-induced increase in sleep 

observed in Chapter Two, and to elucidate the potential relationship between 

acute sleep and functional outcome following TBI. Taken together our results 

from these studies indicate there is a recovery of neurological function despite 

immediate sleep disruption following diffuse brain injury in the mouse.  

 Despite the large portion of mild TBI survivors not seeking medical 

attention (Setnik and Bazarian 2007) who likely self-medicate for post-traumatic 

headache, the role of over-the-counter (OTC) pain relief medicines in the course 

of brain injury is not completely understood. Finally, Chapter Five focused on 

acute OTC pharmacological intervention following TBI. We demonstrated that a 

one-time dose administered at the time of injury did not adversely affect 

behavioral outcome following diffuse TBI in the mouse. While there were drug-

induced alterations of sleep profiles within the first 24 hours post-injury, changes 

in sleep did not result in changes in functional outcome. In addition, further 

implications of drug intervention and TBI outcome are covered in the Appendix. 
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Collectively, the data of these studies have a translational impact which 

will help inform clinical recommendations for the at-home treated population of 

mildly concussed TBI survivors. With TBI individuals not always seeking medical 

attention, it is important that standardized messages about acute at-home care 

are properly delivered following investigations into the nature of post-traumatic 

sleep. If sleep is restorative and promotes plasticity, then post-traumatic sleep 

may aid in recovery of function following injury, which could change the 

standards of care for brain-injured patients. The studies of this thesis are 

comprised of five manuscripts submitted (Chapter 3, Chapter 5) or accepted 

(Chapter 2, Chapter 4, Appendix) for publication in peer-reviewed journals. 
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Preface to Chapter Two 

 

The aim of the experiments in Chapter Two was to investigate acute sleep 

following diffuse brain injury. Using non-invasive sleep monitoring cages 

significant increases in sleep were detected over the first six hours post-injury 

which were independent of both injury severity and time of injury. Injury-induced 

increases in cortical IL-1β were measured over the first nine hours post-injury. In 

conclusion, it was demonstrated that secondary injury cascades may contribute 

to the overall increase in acute sleep measured following experimental diffuse 

brain injury in the mouse. 

 

Chapter Two: Diffuse Brain Injury Induces Acute Post-Traumatic Sleep 

 

Summary 

Clinical observations report excessive sleepiness immediately following 

TBI, however, there is a lack of experimental evidence to support or refute the 

benefit of sleep following a brain injury. The aim of this study is to investigate 

acute post-traumatic sleep. Sham, mild or moderate diffuse TBI was induced by 

midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to 

evaluate injury-induced sleep behavior at sleep and wake onset, respectively. 

Sleep profiles were measured post-injury using a non-invasive, piezoelectric 

cage system. In separate cohorts of mice, inflammatory cytokines in the 

neocortex were quantified by immunoassay, and microglial activation was 

visualized by immunohistochemistry. Immediately after diffuse TBI, quantitative 
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measures of sleep were characterized by a significant increase in sleep (>50%) 

for the first 6 hours post-injury, resulting from increases in sleep bout length, 

compared to sham. Acute post-traumatic sleep increased significantly 

independent of injury severity and time of injury (9:00 vs 21:00). The pro-

inflammatory cytokine IL-1β increased in brain-injured mice compared to sham 

over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-

injured cortex at 6 hours post-injury. Post-traumatic sleep occurs for up to 6 

hours after diffuse brain injury in the mouse regardless of injury severity or time-

of-day. The temporal profile of secondary injury cascades may be driving the 

significant increase in post-traumatic sleep and contribute to the natural course of 

recovery through cellular repair.  

Introduction 

TBI is a major cause of death and disability throughout the world with little 

pharmacological treatment for the individuals who suffer from lifelong 

neurological morbidities associated with TBI. Brain injury can lead to both short 

and long-term impairment, including cognitive (Albensi and Janigro 2003), and 

behavioral (Yeates et al. 2002) deficits as well as increasing the risk for 

developing neurodegenerative disease (Masel and DeWitt 2010) and/or 

psychiatric disorders (Arciniegas et al. 2000). Little can be done to mitigate the 

mechanical disruption associated with the primary insult and the biochemical 

cascades initiated shortly after the time of injury can impair physiological function 

and ultimately worsen long-term outcome (Gentleman 1999). 
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Clinical studies have provided evidence to support the hypothesis that 

brain injury contributes to chronic sleep disturbances as well as leads to 

excessive daytime sleepiness (Baumann et al. 2007; Castriotta et al. 2007; 

Kempf et al. 2010; Baumann 2012). Far less is known about the acute 

relationship between TBI and sleep. Immediately after TBI, secondary injury 

mechanisms may impair physiological functions associated with the homeostatic 

regulation of sleep. For example, secondary injury processes result in glia 

activation and initiation of marked inflammatory responses. Injury-induced 

inflammation is mediated by the production of cytokines, such as the pro-

inflammatory, cytokine interleukin-1 beta (IL-1β), which can have dual roles as 

sleep regulatory substances (SRSs) (Krueger and Majde 1995; Krueger et al. 

2007). Elevated cytokine signaling has been observed across experimental 

models and human TBI, highlighting their involvement in pathological and 

reparative processes triggered by injury (Morganti-Kossmann et al. 2001; Frugier 

et al. 2010; Semple et al. 2010; Ziebell and Morganti-Kossmann 2010). However, 

cytokines which are SRSs can also modulate sleep-wake behavior, primarily 

enhancing sleep by acting on sleep circuits of the brain (Krueger et al. 2001a; 

Krueger et al. 2007).  

Secondary injury mechanisms of TBI deplete ATP causing failure of 

energy-dependent membrane ion pumps, increase reactive oxygen species 

(ROS), increase intracellular concentrations of free radicals caused by activation 

of lipid peroxidases, as well as increase inflammatory mediating cytokines (Fan 

et al. 1995; Werner and Engelhard 2007). A low energy state, high ROS, and the 
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increase of certain cytokines have all been implicated in increased sleep 

propensity and sleep duration (Dworak et al. 2010; Chikahisa and Sei 2011). 

Thus, secondary injury processes following TBI have the potential to induce post-

traumatic sleep. The magnitude and duration of the induction of post-traumatic 

sleep are unknown. Further, as these cellular processes continue, chronic sleep 

issues may develop.  

The biological function of sleep remains controversial, however, prevailing 

hypotheses suggest the function of sleep is restorative, conservative, and 

adaptive (Tononi and Cirelli 2006; Chokroverty 2010). In the absence of sleep, 

humans exhibit deficits in attention, memory, learning, and higher cognitive 

processes (McCoy and Strecker 2011). Sleep is regulated by homeostatic 

processes as well as circadian processes (Borbely and Achermann 1999) such 

that injury may disrupt the signaling required to maintain a healthy sleep profile. If 

sleep is regenerative in function, then acute post-traumatic sleep may improve 

outcome from brain injury. This study is the first of its kind to investigate acute 

sleep following diffuse brain injury. 

To characterize acute sleep patterns in brain-injured mice, a non-invasive 

sleep monitoring cage system was used to continuously record post-traumatic 

sleep. The sleep monitoring cage system allows reliable, immediate and 

continuous sleep monitoring by using piezoelectric materials configured as 

highly-sensitive pressure detectors incorporated into the bottom of the animal 

cage to determine rest-activity based on motion and breathing patterns (Donohue 

et al. 2008). Sleep is discriminated from wake every 2 seconds from tapered 8 
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second overlapping windows based on classification algorithms that exploit the 

limited mouse sleeping postures and distinct respiratory patterns consistent with 

sleep, compared to rest and activity (Flores et al. 2007; Donohue et al. 2008). 

This technology is also adapted to measure the polycyclic sleep pattern of mice, 

accounting for short interruptions and brief arousals in sleep. The cage system 

recognizes short bouts (a single sleep episode) lasting only seconds as well as 

extended bouts lasting longer than a minute.  

Sleep can complicate the understanding of injury processes following TBI 

(Baumann 2012). The investigation of post-traumatic sleep may lead to rational 

interventions to mitigate damage. The present study was designed to examine 

injury-induced alterations in acute sleep following TBI. Clinical observations 

indicate that patients report excessive sleepiness immediately following TBI 

(Castriotta et al. 2007). In view of these observations, we hypothesized that 

diffuse brain injury would induce acute post-traumatic sleep in the mouse. The 

lack of biomedical research surrounding the controversial question whether one 

should sleep or be frequently awoken immediately following brain injury adds to 

the importance of investigating post-traumatic sleep, specifically in the acute 

period. In neurosurgical wards TBI patients are frequently awoken during the first 

day after injury to check for possible worsening of their consciousness, a 

condition that requires immediate action. In more mild conditions, the practice of 

keeping a brain-injured individual awake is controversial. Here we demonstrate 

significant increases in acute sleep post-injury regardless of injury severity or 
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time of day. Post-traumatic sleep occurs during the same time as increased 

cortical expression of SRS cytokines and inflammation.  

Methods 

Animals 

Male C57BL/6J mice (Harlan Laboratories, Inc., Indianapolis, IN) were 

used for all experiments (n=75). The animals were housed in a 14 h light/10h 

dark cycle at a constant temperature (23°C ± 2° C) with food and water available 

ad libitum according to the Association for Assessment and Accreditation of 

Laboratory Animal Care International. Animals were acclimated to their 

environment following shipment for at least three days prior to any experiments. 

After surgery, animals were evaluated daily for post-operative care by a physical 

examination and documentation of each animal’s condition. All studies were 

approved by the University of Kentucky Institutional Animal Care and Use 

Committee (IACUC Protocol Number: 2007-0142). All surgery was performed 

under isoflurane anesthesia, and efforts were made to minimize suffering. 

Midline Fluid Percussion Injury (mFPI) 

Mice (20-24g) were subjected to midline fluid percussion injury (mFPI) 

consistent with methods previously described (Lifshitz 2008). Mice were 

anesthetized using 5% isoflurane in 100% oxygen for five minutes and the head 

of the animal was placed in a stereotaxic frame with continuously delivered 

isoflurane at 2.5% via nosecone. While anesthetized, the animal’s body 

temperature was maintained using a Deltaphase® isothermal heating pad 

(Braintree Scientific Inc., Braintree, MA). A midline incision was made exposing 
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bregma and lambda, and fascia was removed from the surface of the skull. A 

trephine (3 mm outer diameter) was used for the craniotomy, centered on the 

sagittal suture between bregma and lambda without disruption of the dura. An 

injury cap prepared from the female portion of a Luer-Loc needle hub was fixed 

over the craniotomy using cyanoacrylate gel and methyl-methacrylate (Hygenic 

Corp., Akron, OH). The injury cap was closed using a Luer-Loc cap and mice 

were placed in a heated recovery cage and monitored until ambulatory before 

being returned to their sleep cage. 

For injury induction 24 hours post-surgery, animals were re-anesthetized 

with 5% isoflurane delivered for five minutes. The cap was removed from the 

injury-hub assembly and the dura was visually inspected through the hub to 

confirm it was intact with no debris. The hub was then filled with normal saline 

and attached to a tube connected to the male end of the fluid percussion device 

(Custom Design and Fabrication, Virginia Commonwealth University, Richmond, 

VA). An injury of moderate severity (1.4 atm) was administered by releasing the 

pendulum onto the fluid-filled cylinder. Sham-injured animals underwent the 

same procedure except the pendulum was not released. Animals were monitored 

for the presence of a forearm fencing response and righting reflex times were 

recorded for the injured animals as indicators of injury severity (Hosseini and 

Lifshitz 2009). The righting reflex time is the total time from the initial impact until 

the animal spontaneously rights itself from a supine position. The fencing 

response is a tonic posturing characterized by extension and flexion of opposite 

limbs that has been validated as an overt indicator of injury force magnitude 
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(Hosseini and Lifshitz 2009). The injury hub was removed and the brain was 

inspected for uniform herniation and integrity of the dura. The dura was intact in 

all animals, none were excluded as technical failures. The incision was cleaned 

using saline and closed with sutures. Moderate brain-injured animals had righting 

reflex recovery times greater than six minutes and a positive fencing response. 

Sham injured animals recovered from anesthesia within 20 seconds. After 

spontaneously righting, animals were placed in a heated recovery cage and 

monitored until ambulatory (approximately 5 to 15 minutes) before being returned 

to their sleep cage. Adequate measures were taken to minimize pain or 

discomfort. Following all surgical procedures the investigators were blinded to 

experimental groups to prevent bias in latter animal studies. 

Sleep Recordings 

The non-invasive sleep cage system (Signal Solutions, Lexington, KY) 

used in this study consisted of 16 separate units that could simultaneously 

monitor the sleep and wake states over several days. The cage system classified 

sleep and wake behavior based on methods previously described (Flores et al. 

2007; Donohue et al. 2008). Each cage unit housed the mice individually with 

separate 18x18 centimeter walled compartments and attached food and water 

structures (Donohue et al. 2008). The cages had open bottoms that allowed them 

to be placed on a base with a Polyvinylidine Difluoride (PVDF) sensor on the 

cage floor (Donohue et al. 2008). The PVDF sensors were coupled to an input 

differential amplifier and pressure signals were generated and classified by the 

non-invasive high-throughput classifier as motions consistent with either wake 
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activity or the inactivity associated with sleep (Donohue et al. 2008). Sleep was 

characterized primarily by periodic pressure measurements with regular 

amplitudes, typical of respiration from a still mouse. In contrast, movements 

characteristic of wake were both the absence of the characteristic sleep signal 

and higher amplitude, irregular spiking associated with volitional movements 

(Figure 2.3). The piezoelectric signals were classified by the automated sleep 

scoring system in two second epochs as “sleep” or “wake”. The tapered 

segmentation window was advanced every two seconds and features associated 

with the characteristics just described were computed. A linear discriminant 

classifier based on these features was applied to assign a binary label given to 

each point associated with the center of the window (see dashed line in Figure 

2.3) (Donohue et al. 2008). Data collected from the cage system were binned 

over specified time periods (e.g. 5 minutes, 1 hour) using a rolling average of the 

percent sleep, as well as binned by length of individual bouts of sleep and the 

median bout lengths were calculated.  

Mice were acclimated to the cages and sensors were tested for 8 days 

prior to injury (Figure 2.1A). The animals were removed from their home cages 

for the midline craniotomy surgery and were placed back into their specific cage 

following the surgery. The following day the mice were removed from their home 

cage and were subjected to mFPI or sham injury. As soon as the mice were 

ambulatory (approximately 5 to 15 minutes), they were returned to their original 

sleep cage and the sleep recordings started to measure sleep continuously for 7 

days (Donohue et al. 2008). Previous validation of the sleep cages in agreement 
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with human observation resulted in classification rates of 90% or higher 

(Donohue et al. 2008). This sleep cage system was a valid method for monitoring 

acute sleep in injured animals without confounding the injury. Placement of 

invasive EEG equipment for recordings can compromise the dura and adds 

external weight to the head of the rodent possibly exacerbating the brain-injury. 

A two-way analysis of variance (ANOVA) including repeated measures 

was used to compare the mean percent sleep of brain-injured mice to uninjured 

shams over time followed by a Bonferroni post-hoc test. Statistical significance 

was assigned when p < 0.05.  

Tissue preparation and cytokine measurement 

At selected time points (1, 3, 9, 12, 24, 48, 168 hours) post-injury or sham 

operation, mice were given an overdose of sodium pentobarbital and 

transcardially perfused with phosphate buffered saline (PBS) (Figure 2.1A). Mice 

were decapitated and the brains were dissected on ice and snap frozen in liquid 

nitrogen then stored at -80° C until used. The protein levels of a panel of 

inflammatory cytokines were measured in the neocortex by Meso Scale 

Discovery (MSD) multiplex immunoassay (sector imager 2400, Meso Scale 

Discovery; Gaithersburg Maryland) (Figure 2.1B) as previously described 

(Bachstetter et al. 2011). Brain cortex was homogenized using high shear 

homogenizer (Omni TH115), in a 1:10 (w/v) of ice-cold lysis buffer consisting of 

PBS containing 1μg/ml Leupeptin, 1mM PMSF, and 1mM EDTA. The cortical 

homogenate was centrifuged at 14,000xg for 20 minutes at 4°C in a 

microcentrifuge. Fifty microliters of the resulting supernatant was loaded per well 
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of the custom MSD plate, and IL-1β levels were determined by MSD assay 

(Mouse Proinflammatory 7-Plex Ultra-Sensitive (K15012C)). IL-1β levels in the 

cortex were normalized to the total amount of protein in the sample loaded as 

determined by BCA Protein Assay (Pierce).  

Cytokine levels of IL-1β were compared between uninjured sham and 

brain-injured mice. Increases in cytokine levels in the brain-injured mice were 

analyzed over a time course using a one-way ANOVA and selected comparisons 

were made using the Bonferroni post hoc test. 

Tissue preparation for immunohistochemistry 

At 6 hours post-injury or sham operation, mice were given an overdose of 

sodium pentobarbital and transcardially perfused with 4% paraformaldehyde after 

a (PBS) flush. Brains were removed and placed in 4% paraformaldehyde 

overnight. Brains were immersed in serial dilutions (10%, 20%, and 30%) of 

sucrose for 24 hours each. The brains were removed from the 30% sucrose and 

frozen at -20° C. After freezing, brains were sectioned in the coronal plane at 20 

µm, mounted onto glass slides, and stored at -80° C.  

IBA-1 immunohistochemistry 

Slides were removed from -80° C, placed in an oven at 60° C for 

approximately 4 hours and then rinsed three times for 5 minutes each in PBS. 

Next, the slides were incubated in 4% goat serum blocking solution for 1 hour. 

The slides were incubated with the primary antibody (rabbit anti-ionized calcium 

binding adaptor molecule 1 (IBA-1), 1:1000, Wako Chemicals 0199-19741) and 
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stored at room temperature overnight. Slides were rinsed three times in PBS and 

the secondary antibody (biotinylated horse anti-rabbit, 1:250, Vector 

Laboratories) was added then slides were incubated on a rocker at room 

temperature for 1 hour. The slides were washed in PBS three times for 5 minutes 

each and tertiary stain was applied (streptavidin Alexa© Fluor 594, 1:1000, 

Jackson Laboratories) and slides were incubated for 1 hour at room temperature. 

Lastly, slides were rinsed three times in PBS and coverslipped with Fluoromount-

G anti-fade medium (Southern Biotech). The cortex was examined for microglia 

activation in response to brain-injury using a Zeiss Axio Scope with attached 

digital camera.  

Results 

Diffuse TBI induces acute post-traumatic sleep in the mouse  

Immediately after diffuse TBI, mean percent sleep was significantly 

increased in brain-injured animals compared to sham for the first 6 hours post-

injury (F(1, 45)=6.545, p=0.00007) (Figure 2.2A). After 6 hours post-injury, the 

mean percent sleep of the injured mice (n=31) normalized and was 

indistinguishable from sleep in the sham (n=16) through 7 days post-injury (data 

not shown). A more detailed analysis was performed by calculating the mean 

percent sleep over five minute intervals for the first hour post-injury to examine 

the increase in sleep observed acutely post-injury. The mean percent sleep 

showed a significant time-dependent increase in sleep over the first hour post-

injury (F(11,495)=8.22, p<0.0001) (Figure 2.2B) until maximum sleep was 

reached. In addition, analysis over the first hour-post injury showed a significant 
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group effect (F(1,45)=37.00, p<0.0001) (Figure 2.2B) indicating TBI induced a 

significant increase in mean percent sleep compared to the uninjured sham. 

Increase in acute post-traumatic sleep in the diffuse brain-injured mouse was 

associated with increased median bout lengths of sleep (Figure 2.2C). We 

observed a significant increase in the median bout length of brain-injured mice 

compared to sham for the first 4 hours post-injury (F(1,45)=2.9138, p=0.032). 

This increase in bout length indicated that the increase in mean percent sleep 

observed acutely post-injury (Figure 2.2A) could result from mice sleeping for 

longer durations during each bout, as opposed to sleeping more bouts after 

diffuse TBI. 

Post-traumatic sleep bouts are interrupted by volitional movement and 

arousal similar to uninjured shams 

Immediately after diffuse TBI, mean percent sleep was significantly 

increased in brain-injured mice compared to uninjured sham. To analyze the 

signals used to classify sleep, the raw piezoelectric sensor data was extracted 

and compared between brain-injured and sham mice within the first hour post-

injury. Uninjured sham mice showed a periodic rhythm associated with the 

motion of breathing, approximately 3 Hz, with regular amplitude typical of sleep in 

the mouse (Figure 2.3A). These sleep bouts were interrupted by higher 

frequency and amplitude signals that correspond to movements consistent with 

wake activity (Figure 2.3A). The sleep-wake classifier plotted with the decision 

threshold (Figure 3, below raw signal) were classified as sleep activity above the 

threshold and as wake activity below the threshold. In brain-injured mice, sleep 
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activity showed similar rhythmic breathing classified as sleep (Figure 2.3B). As in 

the uninjured sham, sleep was interrupted by high amplitude and frequency 

signals corresponding to volitional movement. Interruptions of sleep bouts by 

volitional movement indicate the brain-injured animals terminate sleep bouts in a 

similar manner to uninjured mice, suggesting that brain-injured mice are 

responsive, capable of movement, and not in a comatose state of 

unresponsiveness. As shown, sleep bouts in brain-injured mice are longer in 

duration than in uninjured mice (Figure 2.3B).  

Increase in acute post-traumatic sleep in the diffuse brain-injured mouse 

was independent of injury time of day 

Sham or brain injury was administered at transitional time points (9:00 or 

21:00) in the light/dark cycle (Figure 2.1A). We observed an increase in the mean 

percent sleep of brain-injured mice compared to sham when mice were injured at 

9:00, following the onset of the light cycle (Figure 2.4A). Brain-injury resulted in a 

significant increase in mean percent sleep for the first 3 hours following injury as 

compared to the mean percent sleep of sham (F(1,25)=15.95, p=0.0005). 

Similarly, we observed an increase in post-traumatic sleep when mice were 

subjected to injury at 21:00, following the onset of the dark cycle (Figure 2.4B). 

We recorded a significant increase in mean percent sleep for the first 3 hours 

following brain-injury compared to uninjured shams (F(1,17)=4.42, p=0.0506). 

Regardless of injury time of day, post-traumatic sleep was increased to 

comparable levels (45-65%) and became indistinguishable from sleep in the 

sham after 3 hours post-injury. In contrast, diurnal pressures associated with the 
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change in the light/dark cycle were evident on the mean percent sleep of 

uninjured sham animals, as expected. The mean percent sleep of uninjured 

sham mice in the 9:00 group was significantly higher than the mean percent 

sleep of sham mice in the 21:00 group (F(1,15)=6.303, p=0.0240). This finding is 

representative of the nocturnal activity of mice. 

Increase in acute post-traumatic sleep in the diffuse brain-injured mouse 

was independent of injury severity 

Two levels of experimental injury severity were used to test the effects of 

injury severity on post-traumatic sleep. We define injury severity as mild (0.8 atm) 

and moderate (1.2-1.3 atm) according to the righting-reflex and the fencing 

response (see methods). Post-traumatic sleep was not significantly different 

between mild and moderate brain-injured mice (Figure 2.5). A significant 

increase in post-traumatic sleep was observed acutely following both mild and 

moderate injury compared to the uninjured sham (F(2,44)=3.4773, p=0.00037). 

No significant difference was found between mild brain-injured mice and 

moderate brain-injured mice, indicating the significant increase in post-traumatic 

sleep is independent of injury severity. 

Secondary injury responses temporally associate with the increase in 

acute post-traumatic sleep in the diffuse brain-injured mouse 

Following brain injury there is an up-regulation of pro-inflammatory 

cytokines (Helmy et al. 2011) that include IL-1β (Fan et al. 1995; Frugier et al. 

2010). IL-1β is a cytokine with sleep regulatory substance activity (Krueger and 

Majde 1995; Fang et al. 1998; Krueger et al. 2001a) which could partially explain 
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post-traumatic sleep. A temporal profile of IL-1β indicated that cortical levels 

increased rapidly following moderate injury as compared to uninjured sham 

(Figure 2.6A). Levels of IL-1β peak at or near 9 hours post-injury and return to 

baseline levels by 12 hours post-injury. There was a significant increase in IL-1β 

levels in brain-injured animals compared to sham (F(7,21)=6.474, p=0.0004) and 

selected comparisons using the Bonferroni post-hoc analysis indicated a 

significant increase between sham and brain-injured mice at 1, 3 and 9 hours 

post-injury. 

Microglia morphology, an indicator of microglia activation, was examined 

after diffuse brain injury in the mouse using Iba-1 immunohistochemistry. Iba-1 

labels all microglia, however, distinct morphological differences in Iba-1 stained 

microglia were observed in brain-injured (mild and moderate injury, 09:00, Figure 

2.6 C,D) compared to uninjured (Figure 2.6B) cortex at 6 hours post-injury. 

Microglia in brain-injured cortex showed morphologies consistent with activated 

microglia, including amoeboid cell bodies with thick, densely labeled processes 

(denoted by arrowheads). In contrast, thin, highly ramified processes of ramified 

microglia (denoted by arrows) were present in the uninjured sham cortex. 

Discussion 

Brain injury survivors report varying degrees of sleep disturbances (Orff et 

al. 2009), however, the contribution of acute post-traumatic sleep to the injury 

itself remains unclear. To achieve this long-term goal, we undertook the present 

study to measure the acute sleep response to diffuse TBI, which we term post-

traumatic sleep. We chose to focus on acute sleep post-injury, because sleep 
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itself may be restorative and aid in the recovery of function following injury. By 

non-invasively recording sleep immediately following diffuse brain injury, we were 

able to document the induction of post-traumatic sleep. Altogether, our data, for 

the first time, support the hypothesis that diffuse brain injury promotes acute 

post-traumatic sleep in the mouse, and secondary injury related cellular 

processes coincide with this increase. 

Current sleep research associated with TBI has focused on chronic sleep 

disorders in the sequelae of human injury (Verma et al. 2007; Orff et al. 2009; 

Boone et al. 2012). The lack of studies investigating acute sleep following TBI 

heightens the importance of studies in this field, because evidence promoting or 

disrupting sleep after TBI may change the standard of care for brain-injury 

patients. By investigating the role of post-traumatic sleep, interventions can be 

developed to mitigate damage.  This study used a non-invasive sleep monitoring 

cage system which reliably measures injury-induced alterations in sleep 

(Donohue et al. 2008) immediately following injury. Without the surgical 

procedures required for EEG recordings, we avoided the contraindications of an 

electrode in the brain at the time of injury which would create contusion or 

cavitation and most importantly allowed for post-injury sleep to be measured 

within minutes of the initial injury. The piezoelectric sensor cages, in conjunction 

with computer algorithms, recorded the sleep of each individual mouse (injury 

and sham) and created a detailed sleep profile that included mean percent sleep 

and median bout length. The cage system allows for sleep profiles of brain-

injured and sham mice to be measured in exactly the same way. We found that 
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post-traumatic sleep was significantly increased after brain injury, regardless of 

time of day or injury severity, with longer median sleep bouts underlying the 

overall increased post-traumatic sleep.  

Despite the limitation of not being able to discriminate stages of sleep 

(rapid-eye-movement-sleep, slow wave sleep), the piezoelectric cage system is 

capable of accurately distinguishing wake from sleep (Flores et al. 2007). While 

the sleep cage system has been well validated in distinguishing sleep from wake 

with comparisons between EEG/EMG and human observation in normal mice 

(Donohue et al. 2008), it is possible that sleep could be over-estimated in TBI 

mice. If this were true, we would expect percent sleep times to be greatest in the 

first hour after injury and for moderate TBI to show a greater sleep increase than 

mild TBI. Since TBI mice were able to make postural adjustments and voluntary 

movements that signal wake, post-traumatic sleep is likely to be sleep, rather 

than a more severe condition. While the post-traumatic sleep bears many 

hallmarks of normal sleep, we cannot rule out that the increased sleep time is in 

part due to non-convulsive seizures with behavioral and temporal dynamics 

similar to sleep. We discount non-convulsive status epilepticus (NCSE) as a 

component of post-traumatic sleep because the development of epilepsy 

following experimental brain injury does not occur within the first week post-injury 

(D'Ambrosio et al. 2004). Following severe lateral fluid percussion in rats, EEG 

recordings indicated no injury-induced seizure within the first six hours post-injury 

(Kharatishvili et al. 2006).  Furthermore, EEG/EMG signal features used to 

determine sleep stages in normal mice may be compromised after brain injury 
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and affect sleep-wake scoring. It should also be noted EEG/EMG recordings can 

result in false positive or negative sleep determination leading to possible error 

when used as the sole arbiter of sleep. For the purposes of this study, sleep 

determination did not rely fundamentally on EEG/EMG measures, but more 

simply is associated with a reversible perceptual disengagement from the 

environment, marked by a suspension of voluntary bodily functions. Ongoing 

work with the sleep cage system suggests that signal processing can distinguish 

REM from NREM sleep based on more irregular breathing during REM stages. 

Future work will determine whether the increases we observed in post-traumatic 

sleep arise from increases in REM or NREM sleep, or most likely from increases 

in both. 

In order to explore the impact of diffuse TBI on natural sleep, mice were 

subjected to injury at two time points in their circadian rhythms. By conducting 

the injuries at the light/dark transition, we investigated whether post-traumatic 

sleep was a result of the brain injury or an interaction with natural biological 

tendencies to sleep. The 9:00 time point followed the onset of the light cycle, a 

time when nocturnal mice were expected to sleep. The 21:00 time point followed 

the onset of the dark cycle, a time when nocturnal mice are most active. Sleep 

patterns of uninjured mice showed circadian related pressures. Acute post-

traumatic sleep significantly increased in comparison to the sleep of uninjured 

shams independent of the time of day mice were subjected to injury. This degree 

of increase in sleep following TBI is similar to the mean percent sleep of mice 

following 6 hours of sleep deprivation (Huber et al. 2000). It is possible that the 
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circadian clock itself or its outputs are dysregulated by TBI (Boone et al. 2012), 

which would contribute to injury-induced sleep being independent of the time at 

which the injury occurs. However, immediate permanent pathology is unlikely, as 

sleep parameters return to sham levels beyond 6 hours post-injury.  

We also examined the relationship between injury severity and post-

traumatic sleep. Severity of the initial injury is considered a major determining 

factor for magnitude of secondary injury processes and outcome following TBI 

(Curry et al. 2011), which led to the hypothesis that injury severity would directly 

impact post-traumatic sleep. Contrary to our hypothesis, both mildly and 

moderately brain-injured mice showed similar significant increases in post-

traumatic sleep compared to sham values. Even mild injury significantly 

increased sleep, which urges continued investigation into the contribution of post-

traumatic sleep to the natural course of the injury. The possibility exists to induce 

an even milder injury, which may have less impact on post-traumatic sleep; 

however this may reduce/eliminate all other cellular hallmarks of TBI as well. 

Unfortunately, because mildly and moderately injured mice have comparable 

increases in acute post-traumatic sleep, the utility of sleep to serve as a 

diagnostic biomarker for injury severity is limited.  

Our data also exclude the possibility of an injury-induced coma, as an 

extreme manifestation of sleep. Severe TBI can lead to coma, however, our 

brain-injured mice exhibit a brief period of non-responsiveness measured by the 

suppression of the righting reflex. Also, the maximum median bout length, 

measured in seconds, was 30 seconds, followed by periods of wake activity, 
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which excludes the possibility of an injury-induced coma since mice voluntarily 

woke between sleep bouts. These periods of wake activity during the interbout 

interval between sleep activity were clearly shown by the piezoelectric sensor 

data. 

TBI is characterized by two pathological phases: cellular injury resulting 

from primary impact and the ensuing secondary injury mediated by pathological 

processes (Werner and Engelhard 2007). Secondary injury occurs over time 

post-injury with a more gradual onset beginning minutes to hours after impact 

and contributes to the clinical morbidities associated with TBI. Post-traumatic 

sleep in 5 minute intervals showed that the increase in mean percent sleep over 

the first hour post-injury is time dependent (Figure 2.2B). If the primary impact 

solely contributed to post-traumatic sleep, then an immediate increase in post-

traumatic sleep to a maximum level would have been observed. The secondary 

injury cascades that play a role in inducing sleep following diffuse TBI likely 

include post-traumatic signaling that activate glia, as evidenced by increased 

production of pro-inflammatory cytokines, such as IL-1β, in both animal models 

and human head injury patients (Fan et al. 1995; Helmy et al. 2011).  

Activated microglia can contribute to the production of IL-1β after TBI. 

Once produced, IL-1β acts locally to affect neuronal assemblies, altering their 

functional status, as well as acting on sleep regulatory circuits (Krueger et al. 

2007). Our group has accumulated evidence for circuit disruption, dismantling 

and reorganization in the diffuse-injured cortex, particularly the whisker sensory 

circuit of the rat (Lifshitz et al. 2007; Hall and Lifshitz 2010; McNamara et al. 
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2010; Cao et al. 2012; Lifshitz and Lisembee 2012). Microglia likely act as the 

effectors of circuit disruption (Cao et al. 2012) by producing cytokines and as a 

consequence influence the functional state of those circuits. The impact of 

microglia can then extend beyond local circuits to sleep regulatory circuits and 

ultimately induce sleep (Krueger and Majde 1995; Krueger et al. 2001a; Krueger 

2008). In the injured mouse brain, these microglial signaling processes that 

influence sleep last 6 hours post-injury and remain to be determined in the 

human condition. 

Our data show that IL-1β was upregulated in the cortex following diffuse 

TBI, and previous studies have reported that humans undergoing IL-1β therapy 

report excessive sleepiness (Krueger et al. 2007). Injections of IL-1β enhance 

NREM sleep (Krueger et al. 2001a) and application of IL-1β to the 

somatosensory cortex leads to enhanced EEG delta wave activity (Yasuda et al. 

2005). These data indicate a mechanistic link between IL-1β and sleep. In the 

injured cortex, IL-1β continues to increase, peaking at or near 9 hours post-injury 

and returning to sham levels by 12 hours post-injury (Figure 2.6A), similar to the 

increase in mean percent sleep in brain-injured mice. Collectively, these data 

suggest that post-traumatic sleep may involve inflammatory mediated processes 

and the upregulation of pro-inflammatory cytokines that can act as sleep 

regulatory substances. Our immunohistological staining indicated activation of 

microglia in the cortex of mild and moderate brain-injured mice compared to 

uninjured sham at 6 hours post-injury, coinciding with elevated cytokine levels in 

moderate injury and the end of post-traumatic sleep. Activated microglia produce 
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pro-inflammatory cytokines, including those with dual roles as SRSs (IL-1β, IL-6, 

TNFα) (Wisor et al. 2011), as indicated by pharmacological inhibition of microglia 

reducing levels of pro-inflammatory cytokines. The infiltration and activation of 

microglia may be a potential source of sleep regulatory factors in the injured 

brain (Alder et al. 2011; Cao et al. 2012; Jin et al. 2012), regardless of injury 

severity. We argue that increases in sleep following TBI may result from the 

inflammatory response associated with the secondary injury in which elevated 

cytokine levels are associated with activation of microglia after brain injury. 

Future studies are needed to examine the mechanistic relationship between 

changes in cytokine levels and sleep. 

Conclusion 

The current study demonstrated that acute sleep was increased following 

diffuse TBI, and injury-induced cellular cascades may contribute to this increase. 

The increase in sleep was independent of time of day that the injury occurred 

and the injury severity. Increases in median bout length contributed to the overall 

increase in sleep observed post-injury. Further studies need to determine the 

cellular benefit or detriment of acute post-traumatic sleep on recovery following 

TBI (and other neurological conditions) by disrupting acute sleep. Understanding 

the role of acute post-traumatic sleep on outcome can begin to answer the 

controversial question, “Should one sleep, be frequently awoken or left 

uninterrupted after a concussion?”  
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Chapter Two: Figures 

 

Figure 2.1 Schematic of the study design. 

Two cohorts of mice were used based on experimental outcome measures: (A) 

sleep recordings and (B) cortical samples and histology. (A) Mice were 

acclimated to piezoelectric sleep cages for 8 days while sample sleep recordings 

were monitored to test signal integrity. All mice received a midline craniotomy 

one day prior to brain or sham injury. Mice were divided into 2 groups based on 

the time of day they were subjected to injury (9:00, 21:00). Within each group, 

mice were selected at random and subjected to sham, mild (0.8 atm) or 

moderate (1.2-1.3 atm) diffuse brain injury by midline fluid percussion (mFPI) 

(n=47). Following injury, mice were placed back into piezoelectric sleep cages 

and post-traumatic sleep was recorded for 7 days. (B) For biochemistry and 

histology, mice received a midline craniotomy one day prior to injury or sham 

injury. Mice were subjected to sham, or moderate (1.2-1.3 atm) diffuse brain 
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injury (9:00) and cortical samples were retrieved at 1, 3, 9, 12, 24, 48, 168 hrs 

(n=25). Tissue was also collected and prepared for histology 6 hrs post-injury 

(n=3). 
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Figure 2.2 Diffuse TBI in the mouse disrupts acute post- traumatic sleep 

parameters compared to uninjured sham. 

(A) A multivariate ANOVA showed a significant increase in mean percent sleep 

over the first 6 hours post-injury compared to the uninjured sham (mean ±SEM; 

sham n=16; injured n=31; F(1, 45)=6.545, p=0.00007). After 6 hours post-injury, 

the mean percent sleep of injured mice normalized to sham mean percent sleep 

levels and remained comparable for 7 days post-injury (data not shown). (B) A 

detailed analysis of the acute post-traumatic sleep (in the first hour) following 

diffuse TBI indicated a significant time dependent effect on the increase in sleep. 

A multivariate ANOVA of the rolling average of the mean percent sleep over 5 

min intervals showed post-traumatic sleep significantly increased over the first 

hour post-injury with a significant effect of time (mean ±SEM; sham n=16; injured 

n=31; F(11,495)=8.22, p<0.0001) and group (mean ±SEM; sham n=16; injured 

n=31; F(1,45)=37.00, p<0.0001). Bonferroni post hoc analysis was used (*, p < 

0.05). (C) Acutely post-injury, the brain-injured mice showed an increase in 

median bout length compared to shams. A multivariate ANOVA revealed an 

increase in bout length significant over the first 4 hours post-injury (mean ±SEM; 

sham n=16; injured n=31; F(1,45)=2.9138, p=0.032). This increase in bout length 

suggested that the increase in mean percent sleep observed acutely post-injury 

could result from mice sleeping for longer durations, as opposed to sleeping 

more bouts after diffuse TBI.  
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Figure 2.3 Representative sleep-wake recordings in the first hour post-

injury showed sleep bouts interrupted by brief arousal and movement. 

Uninjured sham mice showed a periodic rhythm of breathing motion (~3 Hz) with 

regular amplitude typical of sleep, interrupted by high frequency and amplitude 

signals corresponding to movement consistent with an awake mouse (A). Diffuse 

brain-injured mice showed similar rhythmic breathing classified as sleep 

interrupted by frequency and amplitude variations corresponding to movement 

during interbout intervals of sleep (B). The red lines represent the raw 
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piezoelectric sensor data over a one minute (top) or 25 second (bottom) interval. 

The discontinuous blue line indicates the decision classifier over two second 

intervals to classify sleep activity from wake activity. The broken green line 

delineates the threshold (in arbitrary units) to determine sleep activity (above the 

threshold) from wake activity (below the threshold).  
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Figure 2.4 Significant increase in post-traumatic sleep is independent of 

the time of day of the injury. 
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Mice subjected to mild or moderate injury at 9:00 (A), following the dark/light 

transition showed significant increases in acute post-traumatic sleep compared to 

uninjured sham. A multivariate ANOVA and Bonferroni post-hoc analysis was 

used (mean ±SEM; sham n=12; injured n=17; F(1,25)=15.95); *, p < 0.05). Mice 

subjected to mild or moderate injury at 21:00 (B), following the light/dark 

transition also showed significant increases in acute post-traumatic sleep 

compared to sham. A multivariate ANOVA and Bonferroni post-hoc analysis was 

used (mean ±SEM; sham n=5; injured n=14; F(1,17)=4.42; *, p < 0.05). An 

increase in sleep is observed acutely following TBI and is observed over the 

course of the first 3 hours in injured mice compared to sham. After 3 hours, sleep 

began to normalize in the injured animals and became indistinguishable from 

sleep in the sham. Mean percent sleep of uninjured sham mice in the 9:00 group 

was significantly higher than the mean percent sleep of sham mice in the 21:00 

group (F(1,15)=6.303, p=0.0240), as expected. 
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Figure 2.5 The significant increase in post-traumatic sleep is observed 
acutely following both mild and moderate injury. 

A multivariate ANOVA showed a significant increase in mean percent sleep 

between injured mice and uninjured shams over the first 6 hours post-injury with 

no significant difference between mildly injured mice compared to moderately 

injured mice (mean ±SEM; sham n=16; mild n=16; moderate n=15; 

F(2,44)=3.4773, p=0.00037).  
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Figure 2.6 Inflammation following diffuse TBI in the mouse. 

 

(A) Temporal profile of IL-1β. The temporal profile indicated that levels in the 

cortex increase rapidly following moderate injury (9:00) as compared to uninjured 

sham. Levels of IL-1β peak at or near 9 hours post-injury and return to baseline 

levels by 12 hours post-injury (One-way ANOVA, mean ±SEM; sham n=7; injured 

n=22; F(7,21)=6.474; p=0.0004). Selected comparisons were made (Bonferroni 

post-hoc), asterisk denotes significance (*, p < 0.05) compared to sham. (B, C, 
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D) Microglia morphology, an indicator of microglia activation, was examined after 

mFPI in the mouse using Iba-1 immunohistochemistry. Iba-1 labels all microglia, 

however, tissue from a 6 hr sham (40x) (B) compared to a 6 hr mild injury (40x) 

(C) and a 6 hr moderate injury (40x) (D) show distinct differences in microglia 

morphology. Microglia in sham (B) demonstrated thin ramified processes 

(denoted by arrows) strongly contrasting the larger cell bodies and thicker 

processes (denoted by arrowheads) characteristic of activated microglia 

observed in the diffuse injured mouse (C, D). 
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Preface to Chapter Three  

 

The aim of the experiments in Chapter Three was to test if our current 

model of diffuse brain injury produced chronic sleep disturbances similar to those 

reported by TBI patients. Using non-invasive sleep cages, sleep was measured 

following diffuse brain injury and injury-induced increases were detected in sleep 

during the first week post-injury.  Furthermore, it was shown that these increases 

did not extend beyond week one, and were not present in weeks two through 

five.  

Chapter Three: Diffuse brain injury does not affect chronic sleep patterns 

in the mouse 

Summary 

 The objective of this study was to test if our current model of diffuse brain 

injury produces chronic sleep disturbances similar to those reported by TBI 

patients. Adult male C57BL/6 mice were subjected to moderate midline fluid 

percussion injury (n=7; 1.4 atm; 6-10 min righting reflex time) or sham injury 

(n=5). Sleep-wake activity was measured post-injury using a non-invasive, 

piezoelectric cage system. Chronic sleep patterns were analyzed weekly for 

increases or decreases in percent sleep (hypersomnia or insomnia) and changes 

in bout length (fragmentation). During the first week after diffuse TBI, brain-

injured mice exhibited increased mean percent sleep and mean bout length 

compared to sham-injured mice. Further analysis indicated the increase in mean 

percent sleep occurred during the dark cycle. Injury-induced changes in sleep, 
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however, did not extend beyond the first week post-injury and were not present in 

weeks 2-5 post-injury. Previously, we showed that the midline fluid percussion 

model used in this study immediately increased post-traumatic sleep. The current 

study extended the timeline of investigation to show that sleep disturbances 

extended into the first week post-injury, but did not develop into chronic sleep 

disturbances. However, the clinical prevalence of TBI-related sleep-wake 

disturbances warrants further experimental investigation.  

Introduction 

Sleep disturbances are commonly reported neurological impairments in 

the acute phase of TBI, some of which persist through more chronic periods 

(Castriotta et al. 2007; Verma et al. 2007; Kempf et al. 2010). Pathological 

processes initiated at the time of injury develop into neurological impairments, 

with chronic sleep disturbances among the somatic, cognitive and emotional 

neurological impairments (Castriotta et al. 2007; Kempf et al. 2010). According to 

the literature, an incidence as high as 70% of TBI survivors suffer from sleep-

wake disturbances (Cohen et al. 1992; Orff et al. 2009). Similar sleep disorders 

develop across the spectrum of TBI, including children and adolescents (Tham et 

al. 2012). The high prevalence of sleep disorders and impact on quality of life 

reported in both the adult and pediatric population of TBI survivors warrants 

investigation of this injury-induced neurological impairment. 

Excessive daytime sleepiness is a common sleep-wake disturbance 

reported among TBI patients (Castriotta et al. 2007; Verma et al. 2007; Baumann 

2012) and is characterized primarily by an increase in sleep propensity. Post-
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traumatic hypersomnia, an increased need to sleep over a 24 hour period, is 

reported equally frequent following TBI (Baumann 2012; Billiard and Podesta 

2013). These disturbances of increased sleepiness and fatigue can remain 

several years after injury, becoming chronic impairments (Beaulieu-Bonneau and 

Morin 2012; Tham et al. 2012; Billiard and Podesta 2013) and overall lowering 

the quality of life of TBI patients. Injury-induced sleep disturbances also 

potentially affect the course of recovery (Rao and Rollings 2002; Tham et al. 

2012) and hinder rehabilitation (Mathias and Alvaro 2012). Chronic sleep 

disturbances not only compromise recovery, but can intensify comorbidities 

including anxiety, depression, cognitive deficits, and pain (Dean et al. 2012; 

Mathias and Alvaro 2012; Bhalerao et al. 2013; Khoury et al. 2013). For these 

reasons, exploring animal models that recapitulate aspects of injury-induced 

sleep problems is timely. 

With compromised sleep affecting patient outcome and quality of life, 

understanding the role of sleep in recovery from brain injury is an important 

health concern. Focusing on pre-clinical experimentation can potentially 

accelerate the understanding of the relationship between brain injury and sleep. 

Experimental models of TBI can be used to evaluate secondary injury 

mechanisms underlying the pathophysiology of the injury and may be a useful 

model to investigate chronic post-traumatic sleep. Our lab has recently shown 

diffuse brain injury in mice increases sleep during the first six hours post-injury 

(Rowe et al. 2013c). Here we investigate whether the same experimental model 

shows chronic sleep disturbances associated with TBI. In this study we examine 
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the relationship between TBI and chronic sleep using non-invasive piezoelectric 

sleep cages to measure sleep for five weeks after midline fluid percussion injury 

(mFPI) (Dixon et al. 1987). We hypothesize our model of diffuse brain injury will 

produce chronic sleep deficits relevant to those reported by TBI patients, thereby 

permitting further exploration of the role of sleep in recovery from brain injury. 

Methods 

Animals 

Male C57BL/6 mice (Harlan Laboratories, Inc., Indianapolis, IN) were used 

for all experiments (n=12). The animals were housed in a 12h light/12h dark 

cycle at a constant temperature (23°C ± 2°C) with food and water available ad 

libitum according to the Association for Assessment and Accreditation of 

Laboratory Animal Care International. Animals were acclimated to their 

environment following shipment for at least three days prior to any experiments. 

After surgery, daily post-operative care was provided, including physical 

examination and documentation of each animal’s condition. Animal use was 

approved by the Institutional Animal Care and Use Committee at St. Joseph’s 

Hospital and Medical Centre (Phoenix, AZ). All animals used in this study were 

singly housed in the non-invasive sleep-monitoring cage system (Signal 

Solutions, Lexington, KY). 

Midline Fluid Percussion Injury (mFPI) 

Mice (20-24g) were subjected to mFPI consistent with methods previously 

described (Lifshitz 2008). Mice were anesthetized using 5% isoflurane in 100% 

oxygen for five minutes and the head of the animal was placed in a stereotaxic 
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frame with continuously delivered isoflurane at 2.5% via nosecone. While 

anesthetized, the animal’s body temperature was maintained using a 

Deltaphase® isothermal heating pad (Braintree Scientific Inc., Braintree, MA). A 

midline incision was made exposing bregma and lambda, and fascia was 

removed from the surface of the skull. A trephine (3 mm outer diameter) was 

used for the craniotomy, centred on the sagittal suture between bregma and 

lambda without disruption of the dura. An injury cap prepared from the female 

portion of a Luer-Loc needle hub was fixed over the craniotomy using 

cyanoacrylate gel and methyl-methacrylate (Hygenic Corp., Akron, OH). The 

injury cap was closed using a Luer-Loc cap and mice were placed in a heated 

recovery cage and monitored until ambulatory before being returned to their 

sleep cage. For injury induction 24 hours post-surgery, animals were re-

anesthetized with 5% isoflurane delivered for five minutes. The cap was removed 

from the injury-hub assembly and the dura was visually inspected through the 

hub to confirm it was intact with no debris. The hub was then filled with normal 

saline and attached to a tube connected to the male end of the fluid percussion 

device (Custom Design and Fabrication, Virginia Commonwealth University, 

Richmond, VA). An injury of moderate severity (1.4 atm) was administered by 

releasing the pendulum onto the fluid-filled cylinder. Sham-injured animals 

underwent the same procedure except the pendulum was not released. Animals 

were monitored for the presence of a forearm fencing response and righting 

reflex times were recorded for the injured animals as indicators of injury severity 

(Hosseini and Lifshitz 2009). The righting reflex time is the total time from the 



 51 

initial impact until the animal spontaneously rights itself from a supine position. 

The fencing response is a tonic posturing characterized by extension and flexion 

of opposite limbs that has been validated as an overt indicator of injury force 

magnitude (Hosseini and Lifshitz 2009). The injury hub was removed and the 

brain was inspected for uniform herniation and integrity of the dura. The dura was 

intact in all animals, none were excluded as technical failures. The incision was 

cleaned using saline and closed with sutures. Moderate brain-injured animals 

had righting reflex recovery times greater than six minutes and a positive fencing 

response. Sham injured animals recovered from anesthesia within 20 seconds. 

After spontaneously righting, animals were placed in a heated recovery cage and 

monitored until ambulatory (approximately 5 to 15 minutes) before being returned 

to their sleep cage. Adequate measures were taken to minimize pain or 

discomfort.  

Sleep Recordings  

The non-invasive sleep cage system (Signal Solutions, Lexington, KY) 

used in this study consisted of 16 separate units which simultaneously monitor 

sleep and wake states, as previously published (Rowe et al. 2013c). Each cage 

unit housed a single mouse inside 18 x 18 centimetre walled compartments with 

attached food and water structures (Donohue et al. 2008). The cages had open 

bottoms resting on Polyvinylidine Difluoride (PVDF) sensors serving as the cage 

floor (Donohue et al. 2008). The non-invasive high-throughput PVDF sensors 

were coupled to an input differential amplifier and pressure signals were 

generated and classified by the classifier as motions consistent with either wake 
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activity or the inactivity and regular breathing movements associated with sleep 

(Donohue et al. 2008). Briefly, sleep was characterized primarily by periodic (3 

Hz) and regular amplitude signals recorded from the PVDF sensors, typical of 

respiration from a sleeping mouse. In contrast, signals characteristic of wake 

were both the absence of characteristic sleep signals and higher amplitude, 

irregular spiking associated with volitional movements. The piezoelectric signals 

in two second epochs were classified by a linear discriminant classifier algorithm 

based on frequency and amplitude to assign a binary label of “sleep” or “wake” 

(Donohue et al. 2008). Mice sleep in a polycyclic manner (more than 40 sleep 

episodes per hour) (McShane et al. 2010) and so mouse sleep was quantified as 

the minutes spent sleeping per hour, presented as a percentage for each hour. 

Data collected from the cage system were binned over specified time periods 

(e.g. 1 hour) using the average of percent sleep, as well as binned by length of 

individual bouts of sleep and the median bout lengths were calculated.  

Sleep data were collected continuously for five weeks and organized into 

week long intervals for analysis. Daily percent sleep was calculated by averaging 

the percent sleep at each of 24 hours for all days of a given week post-injury. 

Statistical Analysis 

Data are shown as mean ± SEM and analyzed using statistical software 

(GraphPad-Prism 6). Differences in mean percent sleep and mean bout length 

were determined with a repeated measures two-way analysis of variance 

(ANOVA) followed by Sidak’s multiple comparison test. Statistical significance 

was assigned when p<0.05. 
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Results 

Diffuse TBI impacted percent sleep and mean bout length during the first 

week post-injury.  

 We have previously reported significant increases in mean percent sleep 

in brain-injured mice compared to uninjured shams over the first six hours post-

injury (Rowe et al. 2013c). In the present study, we repeated this observation and 

brain-injured mice slept significantly more over the first six hours compared to 

uninjured shams (F(1,10)=7.209, p=0.0229; sham n=5, injury n=7; data not 

shown). Overall, brain-injured mice slept significantly more than sham during the 

first week post-injury (F(1,10)=17.61, p=0.0018; sham n=5, injury n=7; Figure 

3.1A). To investigate “excessive daytime sleepiness”, we evaluated sleep 

propensity during the dark phase. Mice are nocturnal, sleeping more during the 

day with prolonged wakefulness at night, and therefore the mouse equivalent of 

“excessive daytime sleepiness” in humans would most likely occur at night. Mean 

percent sleep was evaluated over the dark cycle (the time the lights went off at 

night until they turned on again the following morning). Our data indicate a 

significant increase in mean percent sleep in brain-injured mice compared to 

uninjured shams (F(1, 10)=11.29, p=0.0072; sham n=5, injury n=7; Figure 3.1B) 

during the dark cycle. Brain-injured mice had the typical initial bout of high 

wakefulness at dark onset (low percentage sleep), but did not sustain this 

wakefulness to same degree as uninjured mice (Fig. 3.1A, 3.1B). By 01:00 in the 

dark cycle, brain-injured mice were sleeping significantly more than uninjured 

sham. Further, mean bout length was significantly increased in brain-injured mice 
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compared to uninjured shams during the first week post-injury (F(1, 10)=5.186, 

p=0.0460; sham n=5, injury n=7;Figure 3.1C), suggesting that the increase in 

mean percent sleep observed was due to mice sleeping for longer durations 

each bout, as opposed to sleeping more bouts, during the first week post-injury 

(Figure 3.1A, 3.1C). 

Diffuse TBI did not induce sleep disturbances between weeks two and five 

post-injury.  

Sleep recordings were extended beyond week one for the same mice to 

investigate chronic sleep patterns post-injury. Identical percent sleep, dark cycle 

sleep and mean bout length analyses were also conducted for weeks 2-5 post-

injury. No significant injury-dependent effect on daily percent sleep was detected 

in brain-injured mice (n=7) compared to sham mice (n=5) during post-injury week 

two (F(1,10)=2.206, p=0.1683; Figure 3.2A), week three (F(1,10)=0.4557, 

p=0.5150; Figure 3.2B), week four F(1,10)=0.7659, p=0.4020; Figure 3.2C), or 

week five (F(1, 10) = 0.1282, p=0.7277; Figure 3.2D).  

Further analysis of mean percent sleep focused on sleep only during the 

dark cycle, placing emphasis on the nocturnality of mice. No injury-dependent 

effect during the dark cycle on percent sleep was detected in brain-injured mice 

compared to sham mice during post-injury week two (F(1,10)=0.07426, 

p=0.7908; Figure 3.3A), week three (F(1,10)=0.2760, p=0.6108; Figure 3.3B), 

week four F(1,10)=0.01892, p=0.8933; Figure 3.3C), or week five (F (1, 10) = 

0.4322, p=0.8395; Figure 3.3D).  



 55 

No significant injury-dependent effect on daily mean bout length was 

detected in brain-injured mice compared to sham mice during post-injury week 

two (F(1,10)=0.3694, p=0.5569; Figure 3.4A), week four (F(1,10)=0.8686, 

p=0.3733; Figure 3.4C), or week five (F(1,10)=0.2344, p=0.6387; Figure 3.4D). 

During week three, brain-injured mice slept significantly longer average bouts 

than shams F(1,10)=8.437, p=0.0157; Figure 3.4B), without specific post-hoc 

differences at particular hours. Overall, brain-injury did not result in consistent 

chronic changes in mean percent sleep or mean bout lengths of sleep. 

Discussion 

Sleep research associated with TBI has focused on sleep disturbances in 

human injury (Verma et al. 2007; Orff et al. 2009; Baumann 2012). These chronic 

disturbances are present in both pediatric and adult cases of TBI extending up to 

three years after injury (Kaufman et al. 2001; Kempf et al. 2010). Commonly 

reported sleep-wake disturbances after TBI include excessive daytime 

sleepiness, fatigue, hypersomnia, and insomnia (Ouellet and Morin 2006; Verma 

et al. 2007; Kempf et al. 2010; Baumann 2012). The high prevalence and 

subjective nature of clinically reported chronic sleep disturbances warrant the 

investigation of chronic sleep following experimental TBI. Our previous studies 

showed a significant increase in percent sleep of brain-injured mice compared to 

uninjured shams over the first six hours following diffuse TBI (Rowe et al. 2013c), 

termed post-traumatic sleep. Injury-induced changes in sleep patterns were 

limited to the first week after diffuse brain injury in the mouse, not extending into 

chronic time points. Only in the first week post-injury did the total percentage 
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sleep, sleep during the dark cycle and sleep bout length increase in brain-injured 

compared to uninjured sham mice.  

Excessive daytime sleepiness and post-traumatic hypersomnia, 

characterized primarily by an increase in sleep propensity, have been reported to 

be among the most common sleep-wake disturbances following TBI (Baumann 

2012). Hypersomnia, an increased need for sleep over a 24 hour period, differs 

from excessive daytime sleepiness in which the increased need for sleep is 

exclusively in the daytime (Baumann 2012). In the current study, mean percent 

sleep was evaluated to determine if experimental brain injury resulted in 

hypersomnia. After diffuse brain injury, an increase in overall mean percent of 

sleep, hypersomnia, was observed only in the first week post-injury in brain-

injured mice compared to uninjured shams. This increase did not extend in to the 

chronic period 2-5 weeks post-injury. To investigate excessive daytime 

sleepiness, sleep propensity was analyzed during the dark phase, as mice 

typically have prolonged wakefulness at night. Brain-injured mice slept 

significantly more during the dark phase compared to uninjured shams only 

within the first week post-injury. Taken together, injury-induced increases in sleep 

are restricted to the first week post-injury. The first week becomes a critical 

window for future investigations of brain-injury induced sleep. Sleep may 

contribute to the natural recovery process following injury, which may be most 

salient in the first week post-injury. Further investigation of the increase in sleep 

observed over the first week may continue to inform clinical decisions and 

improve treatment of TBI survivors.  
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In the current study, mean bout length was analyzed as an indicator of 

sleep fragmentation. Sleep fragmentation, an increase in awakenings during 

sleep, leads to excessive daytime sleepiness and can cause changes in daytime 

function similar to those found following sleep deprivation (Stepanski et al. 1984; 

Stepanski 2002). Interruptions in sleep may prevent the benefit of the period of 

sleep prior to the arousal (Bonnet 1985; Bonnet 1986; Stepanski 2002). Short 

sleep bout lengths are indicative of arousals during the sleep cycle and could 

potentially confound the reparative processes following brain injury. In this study, 

sleep bout lengths in diffuse brain-injured mice were significantly longer than 

sham mice during the first week post-injury, but not beyond. Hence, brain-injured 

mice had longer periods of uninterrupted sleep compared to uninjured shams; 

whether this is beneficial to outcome remains unknown. After controlled cortical 

impact in mice, electroencephalography (EEG) recordings showed in the first 

three days post-injury, brain-injured mice exhibit reduced ability to maintain 

prolonged wakefulness (Willie et al. 2012). Together, these data indicate 

experimental TBI increases sleep bout length and decreases prolonged 

wakefulness, which could contribute to recovery from brain injury. It is possible 

sleep bout length is only increased during the first week post-injury, because the 

bulk of cellular recovery occurs during this period; an increase in sleep beyond 

this time point may not be necessary.  

The exact pathophysiology of post-traumatic sleep-wake disturbances 

remains elusive. Excessive daytime sleepiness has been correlated to the injury 

itself, concomitant with other pathophysiology associated with TBI, including 
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damage to the hippocampus (Baumann et al. 2007; Baumann 2012). A 

prospective patient study showed as many as 43% of patients have sleep wake 

disturbances directly related to the injury itself (Baumann et al. 2007). The 

secondary injury processes which affect sleep following diffuse TBI likely include 

processes such as ATP depletion, an increased reactive oxygen species (ROS), 

higher intracellular concentrations of free radicals, and elevated inflammation 

mediating cytokines (Fan et al. 1995; Werner and Engelhard 2007). Impaired 

signalling of sleep-wake modulating systems such as the hypocretin (orexin) 

neuropeptide system, may also contribute to both acute and chronic sleepiness 

following TBI (Baumann et al. 2005; Baumann et al. 2007; Willie et al. 2012). 

Future studies can focus on the relationship between these signalling process 

and sleep in the first week post-injury. 

The reparative function of sleep is associated with increased brain ATP 

levels (Dworak et al. 2010; Chikahisa and Sei 2011). Blocking ATP depletes 

energy and increases sleep (Kalinchuk et al. 2003), suggesting that increases in 

sleep following TBI may result from depletions in ATP. Decreases in ATP alter 

cellular function contributing to cell death, as demonstrated in experimental TBI 

(Headrick et al. 1994; Signoretti et al. 2001; Lifshitz et al. 2003; Aoyama et al. 

2008). Fluid percussion injury decreases ATP levels in both the cortex and 

hippocampus of rats starting as early as two hour post-injury with declines 

remaining up to 24 hours post-injury (Lifshitz et al. 2003; Aoyama et al. 2008). 

Similarly, an impact acceleration model of TBI decreases ATP levels in rats two 

hours following a moderate injury and as early as ten minutes following a severe 
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injury (Signoretti et al. 2001). If decrease in ATP is an immediate response to 

brain injury, post-traumatic sleep may increase brain ATP levels. Similar 

secondary injury mechanisms after brain injury increase oxidative stress through 

enhanced production of ROS, reactive radicals, and lipid peroxidation (Ansari et 

al. 2008), which could increase sleep. Sleep subsequently could remove 

accumulated free radicals (Reimund 1994; Gopalakrishnan et al. 2004).  

In diffuse brain injury, cortical levels of interleukin 1-beta (IL-1β) 

immediately increased and then normalized by 12 hours post-injury through 1 

week (Rowe et al. 2013c). In controlled cortical impact in the rat, interleukins (IL-

4, IL-5, IL-13) and tumour necrosis factor alpha (TNF-α) levels increased acutely 

and recovered to baseline levels by three days post-injury (Dalgard et al. 2012). 

A temporal profile of inflammatory cytokines following human TBI confirms the 

translational relevance of these findings with peak levels of IL-1β, IL-6 and TNF 

occurring within the first three days post-injury(Helmy et al. 2011). The pro-

inflammatory cytokines, such as IL-1β, IL-6, and TNF, have dual roles as sleep 

regulatory substances (Krueger and Majde 1995; Krueger et al. 2001b; Krueger 

et al. 2007), which may contribute to the acute increase in sleep post-injury.  

A limitation of the present study is the inability to distinguish between REM 

(rapid eye movement) and nonREM sleep. While overall percent sleep and bout 

length were not impacted at chronic time points, injury-induced alterations in 

sleep architecture could occur, but not be measured by the non-invasive 

monitoring system used in this study. Clinical studies show brain injury 

contributes to changes in both types of sleep (Prigatano et al. 1982; Frieboes et 
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al. 1999). Increases in REM sleep in the second sleep cycle have been reported 

close to a year after TBI (Frieboes et al. 1999), while data suggest TBI patients 

have less stage one nonREM sleep (Prigatano et al. 1982). Further analysis of 

REM and nonREM sleep may reveal more subtle injury-induced chronic sleep 

disturbances.  

Our literature search showed numerous clinical reports of chronic sleep-

wake disturbances associated with TBI (Ouellet and Morin 2006; Verma et al. 

2007; Kempf et al. 2010; Baumann 2012), however, experimental studies to date 

have been terminated too early to evaluate chronic sleep disturbances (Helmy et 

al. 2011; Willie et al. 2012; Rowe et al. 2013c) . To more completely understand 

chronic sleep disorders in TBI survivors, future studies could investigate 

secondary injury processes at chronic time points, focusing on processes that 

may confound sleep physiology (e.g. ATP, free radicals, cytokines). A secondary 

insult, such as a second brain injury, may be necessary to induce chronic sleep 

disturbance in the mouse. Moreover, the present study disregarded the 

contraindications of psychiatric sequelae, such as depression and anxiety, which 

contribute to the development, if not maintenance, of sleep-wake disturbances in 

TBI patients (Baumann 2012).  

Conclusion 

In conclusion, sleep was increased following diffuse TBI during the first 

week post-injury. These injury-dependent changes in sleep were not maintained 

thereafter. Further studies are needed to understand the contribution of sleep on 

recovery following TBI, as well as other neurological conditions. 
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Chapter Three: Figures 
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Figure 3.1 Diffuse TBI impacted percent sleep and mean bout length in the 

first week post-injury 

(A) Overall, brain-injured mice slept significantly more than shams during the first 

week post-injury (mean ±SEM; F(1,10)=17.61, p=0.0018; sham n=5, injury n=7). 

Percent sleep was calculated by averaging the percent sleep at each of 24 hours 

for all days of a given week post-injury, and this average is represented in the 

graph. Differences between brain-injured mice and uninjured shams as indicated 

(Sidak’s multiple comparison test, *, p<0.05). (B) Percent sleep in brain-injured 

mice increased significantly compared to uninjured shams (two-way ANOVA, 

mean ±SEM; F(1, 10)=11.29, p=0.0072; sham n=5, injury n=7) during the dark 

cycle, with significant differences at 01:00 and 06:00 (Sidak’s multiple 

comparison test; *, p<0.05). (C) Overall, the average bout length of sleep was 

significantly longer in brain-injured mice compared to uninjured shams during the 

first week post-injury (mean ±SEM; F(1, 10)=5.186, p=0.0460; sham n=5, injury 

n=7), with significantly longer sleep bouts in the middle of the dark cycle for 

brain-injured compared to uninjured mice (Sidak’s multiple comparison test; *, 

p<0.05). 
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Figure 3.2 Diffuse TBI did not chronically impact percent sleep. 

Daily percent sleep was calculated by averaging the percent sleep at each hour 

for all days of week two (A), three (B), four (C), and five (D) post-injury. No 

significant differences in daily percent sleep were found between brain-injured 

and sham mice during week two (F(1,10)=2.206, p=0.1683), week three 

(F(1,10)=0.4557, p=0.5150), week four (F(1,10)=0.7659, p=0.4020), or week five 

(F (1, 10) = 0.1282, p=0.7277). 
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Figure 3.3 Diffuse TBI did not chronically impact percent sleep during the 

dark cycle. 

The mean percent sleep was evaluated during the dark cycle by calculating the 

average percent sleep at each hour of the dark cycle for all days of week two (A), 

three (B), four (C), and five (D). No injury-dependent effect during the dark cycle 

on percent sleep was detected in brain-injured mice compared to sham mice 

during post-injury week two (F(1,10)=0.07426, p=0.7908), week three 

(F(1,10)=0.2760, p=0.6108), week four F(1,10)=0.01892, p=0.8933), or week five 

(F (1, 10) = 0.4322, p=0.8395). 
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Figure 3.4 Diffuse TBI did not chronically impact mean bout length. 

Daily mean bout length was calculated by averaging the mean bout length at 

each hour for all days of week two (A), week three (B), week four (C), and week 

five (D). No significant differences in average bout length slept were found 

between brain-injured and sham mice during week two (F(1,10)=0.3694, 

p=0.5569), week four (F(1,10)=0.8686, p=0.3733), or week five (F(1,10)=0.2344, 

p=0.6387). Overall during week three, brain-injured mice slept significantly longer 

average bouts than shams (F(1,10)=8.437, p=0.0157). 
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Preface to Chapter Four  

In the previous chapters, it has been demonstrated that diffuse brain injury 

resulted in increased post-traumatic sleep over the first six hours following injury. 

The aim of the experiments in Chapter Four was to examine the relationship 

between immediate disruption of post-traumatic sleep and functional outcome in 

the diffuse brain injured mouse. Using a gentle handling method of sleep 

disruption, we showed short duration disruption of post-traumatic sleep did not 

affect functional outcome, measured by motor and cognitive performance.  

Chapter Four: Recovery of neurological function despite immediate sleep 

disruption following diffuse brain injury in the mouse: clinical relevance to 

medically untreated concussion  

Summary 

In this study we investigate the relationship between immediate disruption 

of post-traumatic sleep and functional outcome in the diffuse brain-injured 

mouse. Adult male C57BL/6 mice were subjected to moderate midline fluid 

percussion injury (n=65; 1.4 atm; 6-10 min righting reflex time) or sham injury 

(n=44). Cohorts received either intentional sleep disruption (minimally stressful 

gentle handling) or no sleep disruption for six hours following injury. Following 

disruption, serum corticosterone levels (ELISA) and post-traumatic sleep (non-

invasive piezoelectric sleep cages) were measured. For 1-7 days post-injury, 

sensorimotor outcome was assessed by Rotarod and a modified Neurological 

Severity Score (NSS). Cognitive function was measured using Novel Object 

Recognition (NOR) and Morris water maze (MWM) in the first week post-injury. 
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Disrupting post-traumatic sleep for six hours did not affect serum corticosterone 

levels or functional outcome. In the hour following the first dark-onset, sleep 

disrupted mice exhibited a significant increase in sleep, however, this increase 

was not sustained; there was no rebound of lost sleep. Regardless of sleep 

disruption, mice showed a time-dependent improvement in Rotarod performance, 

with brain-injured mice having significantly shorter latencies on day 7 compared 

to sham. Further, brain-injured mice, regardless of sleep disruption, had 

significantly higher NSS scores post-injury compared to sham. Cognitive 

behavioral testing showed no group differences among any treatment group 

measured by MWM and NOR. Short duration disruption of post-traumatic sleep 

did not affect functional outcome, measured by motor and cognitive performance. 

These data may refute post-traumatic sleep as a mechanism of recovery from 

diffuse brain injury and impact TBI survivors not seeking medical attention. 

Introduction 

TBI is a major cause of death and disability throughout the world with few 

pharmacological treatments available for individuals suffering from lifelong 

neurological morbidities associated with TBI. Vascular, cellular and molecular 

pathological processes initiated at the time of injury can compound the injury and 

manifest into functional impairments. In the United States alone, the Centers for 

Disease Control and Prevention estimated that between 2002 and 2006 there 

were on average 52,000 deaths, 275,000 hospitalizations, and 1,365,000 

emergency department visits related to TBI each year (Faul M 2010). Beyond 

this, it is estimated that as high as 42% of TBIs are not included in these 
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statistics, because approximately 1.2-4.2 million survivors of mild TBI do not seek 

medical attention (Setnik and Bazarian 2007). A common neurological 

consequence of mild TBI is excessive sleepiness immediately following injury 

(Castriotta et al. 2007). However, discordant opinions suggest that individuals 

should not be allowed to sleep or should be frequently awoken following mild 

brain injury. The intentional sleep disruption employed outside of medical care 

(e.g. at home) contrasts the unintentional sleep disruption associated with 

diagnostic procedures in a clinical setting. This controversy is not supported by 

peer-reviewed biomedical literature and the impact of sleep disruption 

immediately following TBI upon functional recovery is not understood. 

For the first time, this study investigates the contribution of acute post-

traumatic sleep on the recovery of neurological function after diffuse TBI. Post-

traumatic sleep may be beneficial to recovery from injury, because prevailing 

hypotheses suggest the function of sleep is restorative, conservative, and 

adaptive (Tononi and Cirelli 2006; Chokroverty 2010).  To investigate the 

relationship between TBI and acute sleep, the current study uses gentle handling 

to disrupt sleep after mFPI, an animal model of concussion (Dixon et al. 1987). 

Following mFPI, with and without sleep disruption, mice can be evaluated for 

performance in cognitive, neurological, and motor function, using standard 

behavioral tests (Nakamura et al. 1999; Longhi et al. 2004; Schoch et al. 2012).  

Our previous findings indicated an increase in sleep during the first six 

hours following diffuse brain injury in mice—a period we have defined as post-

traumatic sleep (Rowe et al. 2013c). During this period brain-injured mice are 
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responsive, capable of movement, and eat and groom themselves, indicating 

they are not in a comatose state of unresponsiveness. Following TBI, secondary 

injury processes are triggered including the production of cytokines, some of 

which have dual roles as sleep regulatory substances (SRSs) (Krueger and 

Majde 1995; Krueger et al. 2007; Krueger 2008). Similar increases in cytokine 

signaling have been observed across experimental models and in human TBI, 

highlighting their involvement in pathological and reparative processes triggered 

by injury (Morganti-Kossmann et al. 2001; Frugier et al. 2010; Semple et al. 

2010; Ziebell and Morganti-Kossmann 2010). The increases in sleep promoting 

cytokines suggest post-traumatic sleep is a natural process. Whether this natural 

process is beneficial to functional outcome remains to be seen. 

Clinical recommendations and at home practices with regard to sleep after 

TBI cover an array of interventions including total deprivation, frequent 

awakening, and encouraging sleep. Experimentally, multiple techniques can 

disrupt or deprive sleep. Sleep deprivation is the complete disruption of one or 

both types of sleep (rapid eye movement (REM), non-rapid eye movement 

(NREM)), compared to sleep disruption in which minimal sleep may occur. 

Deprivation of REM sleep can be achieved using methods that operate when 

muscle tone is lost as REM sleep begins. In these methods, muscle tone is 

required for an animal to balance on a platform in water; with the onset of atonia, 

the animal would fall off the platform into water and wake the animal. Frequently 

used REM deprivation methods include the flower pot and variations of the 

multiple platform method (Cohen and Dement 1965), which may also 
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compromise slow wave sleep (SWS) (Machado et al. 2004). Acute injury-induced 

motor deficits prevented the use of these deprivation methods. Thus, total 

disruption of post-traumatic sleep was implemented, allowing only minimal sleep 

during the disruption period. Experimental methods for disrupting sleep include 

forced wheel running and gentle handling. Investigations have shown forced and 

voluntary exercise can positively and negatively affect behavioral and histological 

outcomes following brain injury (Zhang et al. 2010; Griesbach 2011; Crane et al. 

2012; Griesbach et al. 2012; Yang et al. 2012b; Silva et al. 2013). To disrupt 

sleep, we used the gentle handling method along with cage tapping whenever 

animals began falling asleep (Patti et al. 2010), which disrupts all stages of sleep. 

 We are extending our investigations into sleep as a natural response to 

TBI. Increased post-traumatic sleep, paired with inconsistent recommendations 

for sleep after TBI, make understanding the role of post-traumatic sleep an 

important public health concern. Understanding the impact of post-traumatic 

sleep on functional outcome could inform home care recommendations for the 

large number of TBI survivors not seeking medical attention. We hypothesize that 

post-traumatic sleep disruption would result in poor functional outcome following 

TBI. To test this hypothesis, we used mFPI to model diffuse TBI in mice, 

disrupted post-traumatic sleep for six hours post-injury, and assessed cognitive, 

motor and sensorimotor functional outcome over one week post-injury. The goal 

of this study is to add knowledge for evidence-based clinical recommendations in 

the treatment of mild TBI. 
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Methods 

Animals 

 Male C57BL/6 mice (Harlan Laboratories, Inc., Indianapolis, IN) were used 

for all experiments (n=109). The animals were housed in a 12 h light/12h dark 

cycle at a constant temperature (23°C ± 2° C) with food and water available ad 

libitum according to the Association for Assessment and Accreditation of 

Laboratory Animal Care International. Animals were acclimated to their 

environment following shipment for at least three days prior to any experiments. 

After surgery, animals were evaluated daily for post-operative care by a physical 

examination and documentation of each animal’s condition. Animal care was 

approved by the Institutional Animal Care and Use Committees at the University 

of Kentucky and the St. Joseph’s Hospital (Phoenix, AZ). 

Housing 

 All mice used in this study were singly housed. Mice used for the MWM 

and NOR studies were housed in standard individually ventilated cages. Mice for 

all other studies were housed in the non-invasive sleep-monitoring cage system 

(Signal Solutions, Lexington, KY). 

Midline Fluid Percussion Injury (mFPI) 

Mice (20-24g) were subjected to midline fluid percussion injury (mFPI) 

consistent with methods previously described (Lifshitz 2008). Animal numbers 

are indicated in the results section and figure legends for individual studies. Mice 

were anesthetized using 5% isoflurane in 100% oxygen for five minutes and the 

head of the animal was placed in a stereotaxic frame with continuously delivered 
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isoflurane at 2.5% via nosecone. While anesthetized, the animal’s body 

temperature was maintained using a Deltaphase® isothermal heating pad 

(Braintree Scientific Inc., Braintree, MA). A midline incision was made exposing 

bregma and lambda, and fascia was removed from the surface of the skull. A 

trephine (3 mm outer diameter) was used for the craniotomy, centered on the 

sagittal suture between bregma and lambda without disruption of the dura. An 

injury cap prepared from the female portion of a Luer-Loc needle hub was fixed 

over the craniotomy using cyanoacrylate gel and methyl-methacrylate (Hygenic 

Corp., Akron, OH). The incision was sutured at the anterior and posterior edges 

and topical Lidocaine ointment was applied. The injury cap was closed using a 

Luer-Loc cap and animals were placed in a heated recovery cage and monitored 

until ambulatory before being returned to their sleep cage. 

For injury induction 24 hours post-surgery, animals were re-anesthetized 

with 5% isoflurane delivered for five minutes. The cap was removed from the 

injury-hub assembly and the craniotomy was visually inspected through the hub. 

The hub was then filled with normal saline and attached to a tube connected to 

the male end of the fluid percussion device (Custom Design and Fabrication, 

Virginia Commonwealth University, Richmond, VA). An injury of moderate 

severity (1.4 atm) was administered by releasing the pendulum onto the fluid-

filled cylinder. Sham-injured animals underwent the same procedure except the 

pendulum was not released. Animals were monitored for the presence of a 

forearm fencing response and righting reflex times were recorded for the injured 

animals as indicators of injury severity (Hosseini and Lifshitz 2009). The righting 
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reflex time is the total time from the initial impact until the animal spontaneously 

rights itself from a supine position. The fencing response is a tonic posturing 

characterized by extension and flexion of opposite arms that has been validated 

as an overt indicator of injury force magnitude (Hosseini and Lifshitz 2009). The 

injury hub was removed and the brain was inspected for uniform herniation and 

integrity of the dura. Animals in which the dura was compromised were excluded 

from all studies as technical failures. The incision was cleaned using saline and 

closed using sutures. Moderate brain-injured animals had righting reflex recovery 

times greater than six minutes and a positive fencing response. Sham injured 

animals recovered within 20 seconds. After spontaneously righting, animals were 

placed in a heated recovery cage and monitored until ambulatory (approximately 

5 to 15 minutes) before being returned to their sleep cage or subjected to sleep 

disruption. Adequate measures were taken to minimize pain or discomfort.  

Sleep Disruption 

Mice were randomly assigned to a sleep disruption or no sleep disruption 

group. The mice in the no sleep disruption group were returned to their individual 

cages as soon as they were ambulatory (approximately 5 to 15 minutes) 

following the brain injury or sham injury. Mice in the sleep disruption group were 

placed in individual cages and continuously sleep disrupted for six hours post-

injury, the duration over which the mFPI mice sleep in excess of sham controls, 

as previously observed in our model (Rowe et al. 2013c). Sleep disruption was 

accomplished using a minimally stressful gentle handling method (O'Hara et al. 

1993; Asikainen et al. 1995; Patti et al. 2010), which included tapping on the 



 75 

cages or gently touching the animal when visible signs (immobile, eyes closed) of 

sleep were present (Patti et al. 2010). After the disruption period, mice were 

returned to their individual cages and sleep activity was measured continuously 

for 24 hours (see below). 

Sleep Recordings  

The non-invasive sleep cage system (Signal Solutions, Lexington, KY) 

used in this study consisted of 16 separate units that could simultaneously 

monitor the sleep and wake states, as previously published (Rowe et al. 2013c). 

Each cage unit housed a single mouse inside 7x7 inch walled compartments with 

attached food and water structures (Donohue et al. 2008). The cages had open 

bottoms resting on Polyvinylidine Difluoride (PVDF) sensors serving as the cage 

floor (Donohue et al. 2008). The non-invasive high-throughput PVDF sensors 

were coupled to an input differential amplifier and pressure signals were 

generated and classified by an algorithm (see below) as motions consistent with 

either wake activity or the inactivity and regular breathing movements associated 

with sleep (Donohue et al. 2008). Briefly, sleep was characterized primarily by 

periodic (3 Hz) and regular amplitude signals recorded from the PVDF sensors, 

typical of respiration from a still mouse. In contrast, signals characteristic of wake 

were both the absence of characteristic sleep signals and higher amplitude, 

irregular spiking associated with volitional movements. The piezoelectric signals 

in two second epochs were classified by a linear discriminant classifier algorithm 

based on frequency and amplitude to assign a binary label of “sleep” or “wake” 

(Donohue et al. 2008). Mice sleep in a polycyclic manner (more than 40 sleep 
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episodes per hour) (McShane et al. 2010). For experimental studies, mouse 

sleep was quantified as the minutes spent sleeping per hour, presented as a 

percentage for each hour. Sleep activity data were binned over specified time 

periods (e.g. 5 minutes, 1 hour) to calculate the average of percent sleep. Data 

were binned by length of individual sleep bouts to calculate median bout length.  

Corticosterone assay 

Immediately following six hours of sleep disruption, mice were euthanized 

(between 14:00 and 17:00), by an overdose of sodium pentobarbital, and a 

cardiac blood sample was collected (sham n=2, injury n=4). A separate group of 

animals was not exposed to sleep disruption prior to blood collection (sham n=2, 

injury n=4). The blood samples were centrifuged (3000 rpm, 8 min) and the 

serum was stored at -20ºC. A commercially available competitive immunoassay 

was followed according to the manufacturer’s protocol for the quantitative 

determination of corticosterone (no. 900-097; Assay Designs, Inc. Ann Arbor, 

MI). The kit uses an anti-corticosterone polyclonal antibody to bind standards and 

samples. The enzyme reaction generates a yellow color that is inversely 

proportional to the corticosterone concentration and is read on a microplate 

reader (405 nm). All samples were diluted 1:5 (80%) in order to stay within the 

sensitivity of the assay (32–20,000 pg/ml). Data are presented as levels of serum 

corticosterone concentration in nanograms/milliliter. 
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Behavioral Testing 

Behavioral testing was performed on two cohorts of animals. One cohort was 

tested on the rotarod and neurological severity score. A separate cohort was 

tested by novel object recognition and the Morris water maze. 

Neurological Severity Score (NSS). Post-traumatic neurological impairments were 

assessed using an 8-point NSS paradigm adapted from those previously used in 

experimental models of TBI (Chen et al. 1996; Semple et al. 2010; Pleasant et al. 

2011; Ziebell et al. 2011). Animals were tested at selected time points post-injury 

(1, 3, 5, 7 days). One point was given for failure on an individual task, and no 

points were given if an animal completed a task successfully. Mice were 

observed for hind limb flexion, startle reflex, and seeking behavior (presence of 

these behaviors was considered successful task completion). Mice traversed in 

sequence, 3, 2, and 1 centimeter beams. The beams were elevated and mice 

were given 1 minute to travel 30 centimeters on the beams. The task was scored 

as a success if the mouse traveled 30 centimeters with normal forelimb and 

hindlimb position (forelimb/hindlimb did not hang from the beam). Mice were also 

required to balance on a 0.5 centimeter beam and a 0.5 centimeter round rod for 

3 seconds in a stationary position with front paws between hind paws. Non-

parametric data are presented as a composite score ranging from 1 to 8 

representing performance on all tasks combined. High final NSS scores were 

indicative of task failure and interpreted as neurological impairment.   

Rotarod. Sensorimotor function was assessed using the Economex Rotarod 

system from Columbus Instruments (Columbus, OH). Animals were pre-trained 
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(60 sec at 4 rpm for 3 trials) for three consecutive days including the day of the 

craniotomy. Animals were then tested at selected time points post-injury. Animals 

were tested either immediately and 1 hour after injury or tested on post-injury 

days 1, 3, 5, and 7. For the test, animals were placed on the rod with a starting 

speed of 4 rpm, and the speed was continuously accelerated up to 28 rpm over 5 

minutes (for 2 trials), as previously published (Bachstetter et al. 2013). The trial 

ended when the mouse fell from the rod or 5 minutes elapsed. Data are 

presented as latency to fall in seconds and total distance traveled in centimeters. 

Morris Water Maze (MWM). Learning ability was assessed in the MWM using a 

paradigm similar to those previously used in experimental models of TBI (Smith 

et al. 1995; Murai et al. 1998; Smith et al. 1998; Prins and Hovda 2001; Pleasant 

et al. 2011). The 1-meter diameter MWM was filled with water (19-21°C) and 

nontoxic white paint (Rich Art Co., Northvale, NJ) was added to hide the platform 

(6.3 centimeter diameter) that was submerged 0.5 centimeters. At selected time 

points post-injury (3, 4, 5, 6 days), mice were tested in sets of four trials per day. 

Mice started from one of four starting points (North, South, East, West) and used 

visual cues placed on the walls outside the tank to locate the platform. All trials 

were monitored using overhead video/tracking software (EZVideo version 

5.51DV, Accuscan Instruments Inc., Columbus, OH). The latency of the mouse to 

find the platform was recorded as well as the distance traveled. If a mouse did 

not find the platform within the 70 second trial, it was placed on the platform for 

10 seconds. Data are presented as latency to find the hidden platform in 

seconds. 
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Novel Object Recognition (NOR). Cognitive impairment was tested using the 

NOR test as previously published (Ennaceur and Aggleton 1997; Han et al. 

2011). The test consisted of three phases: habituation, training, and testing. On 

day 3 post-injury, mice were placed in an open field (42 cm, 21 cm, 21 cm) for 

one hour of habituation. Mice were removed and two identical objects were 

placed in opposing quadrants of the field for the training phase. Mice were placed 

in the center of the open field and given 5 minutes to explore the objects. 

Following training mice were returned to their home cages. Testing began 4 

hours after training. One familiar object and one novel object were placed in 

opposing quadrants of the field. Mice were placed into the center and given 5 

minutes to explore. On day 7 post-injury, mice were given 10 minutes of 

habituation to their previously used open field. After habituation, mice were 

removed and the familiar object from training and a novel object (distinct from the 

object on day 3) were placed in opposing quadrants of the field and mice were 

given 5 minutes to explore. For training and testing the percentage of time spent 

exploring the novel object was quantified. Exploration of an object included the 

mice sniffing, touching, or climbing onto an object while facing the object. If an 

animal climbed onto an object and sniffed into the air, this time was not 

calculated into the exploration of the novel object. During training and testing 

trials, mice were required to spend a minimum combined 10 seconds exploring 

objects. If this time was not met, trial time was extended for that animal until 10 

seconds of exploration was achieved (sham: 1 of 12, 30 sec; FPI: 5 of 24, mean 
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61 ± 17.5 sec). Data are presented as percent of total exploration time spent 

exploring the novel object. 

Statistical Analysis 

Data are shown as mean ± SEM and analyzed using statistical software 

(GraphPad-Prism 6). Differences in righting reflex times were determined by t-

test. Differences in rotarod performance immediately following TBI were 

determined with a repeated measure two-way analysis of variance (ANOVA) 

followed by Sidak’s multiple comparison test. Percent sleep following disruption 

was analyzed using a repeated measure two-way ANOVA. Differences in 

rebound sleep were determined using a one-way ANOVA followed by Tukey’s 

post-hoc analysis. Differences in functional performance over time post-injury 

measured by the rotarod, MWM, and NOR were all determined using a two-way 

ANOVA, followed by Tukey’s post-hoc analysis as needed. Non-parametric NSS 

data were analyzed by Kruskal-Wallis ANOVA, followed by Dunn’s comparison 

post-hoc test (see results). Statistical significance was assigned when p<0.05. 

Results 

Immediate neurological deficits following diffuse TBI.  

We have previously reported a suppression of the righting reflex response 

in rats following mFPI (Hosseini and Lifshitz 2009), as an injury-induced deficit. 

Diffuse brain injury resulted in a significant suppression of the righting reflex in 

brain-injured mice compared to anesthetized, uninjured shams (t31=3.351, 

p=0.0021; sham n=28, injury n=33; Figure 4.1A). To assess acute vestibulomotor 

deficits following diffuse TBI, we used the rotarod task immediately and 1 hour 
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after the return of the righting reflex (Fox et al. 1998; Hamm 2001; Laurer et al. 

2001). There was a significant injury-dependent motor deficit measured by 

latency on the Rotarod task in brain-injured mice compared to uninjured shams 

(F(1, 11)=83.93, p<0.0001; Figure 4.1B) both immediately and 1 hour after return 

of the righting reflex (sham n=6, injury n=7; Figure 4.1B). 

Intentional sleep disruption following diffuse TBI did not result in a 

rebound of lost sleep but alters activity response to dark-onset. 

  Corticosterone levels were measured at the conclusion of the six hour 

disruption period as an indicator of stress related to the sleep disruption. Sleep 

disruption did not significantly alter corticosterone levels in cardiac blood samples 

in either sleep disruption shams or sleep disruption injured mice impaired to no 

disruption shams and no disruption brain-injured mice (Figure 4.2A). Brain-

injured mice had significantly lower levels of corticosterone compared to 

uninjured shams regardless of sleep disruption at the conclusion of the testing 

period (F(1,8)=7.57, p=0.0250; Figure 4.2A). As intended, the sleep disruption 

method developed for these studies did not adversely impact corticosterone 

levels.  

Following six hours of intentional sleep disruption, using the gentle 

handling method (Patti et al. 2010), there was no significant change in percent 

sleep over six hours between sleep disruption brain-injured and sleep disruption 

shams compared to no disruption brain-injured and no disruption shams (F(3, 

32)=2.187, p=0.1087; no disruption sham n=7, no disruption injury n=8, sleep 

disruption sham n=8, sleep disruption injury n=13; Figure 4.2B). This indicated 
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that the sleep lost during the six hours of intentional disruption was not recovered 

by the sleep disrupted groups, at least in terms of total sleep time. However, 

there was a sleep disruption effect on activity response to dark-onset at 10h post-

injury (19:00) (F(3, 32)=0.9386, p=0.0024; Figure 4.2C). There was a significant 

difference between no disruption sham compared to both sleep disruption brain-

injured and sleep disruption sham mice (Figure 4.2C). Both the sleep disrupted 

brain-injured and sleep disrupted shams slept significantly more following dark-

onset compared to the no disruption brain-injured and no disruption shams. In 

the absence of sleep disruption, uninjured and brain-injured animals showed 

increased wake activity following dark onset, as is typical for nocturnal rodents. 

Diffuse TBI resulted in neurological impairments independent of acute 

sleep disruption.  

Overall, brain-injured mice showed significant neurological impairments 

measured by the neurological severity score (NSS) compared to uninjured 

shams, independent of sleep disruption (no disruption sham n=12, no disruption 

injury n=13, sleep disruption sham n=10, sleep disruption injury n=13; Figure 

4.3). On post-injury days 1, 3 and 5, both sham groups had significantly lower 

NSS scores compared to both brain-injured groups (Day 1 KW(4,48)=27.45, 

p<0.0001; Day 3 KW(4,48)=18.99, p=0.0003; Day 5 KW(4,48)=15.63, p=0.0013; 

Day 7 KW(4,48)=16.36, p=0.001; Kruskal-Wallis statistic with Dunn’s comparison 

post-hoc; Figure 4.3). There was no significant difference in neurological 

impairments measured by the NSS between the sleep disruption brain-injured 

mice and no disruption brain-injured mice at any post-injury time point.  
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Diffuse TBI reduced motor performance on the rotarod task independent of 

acute sleep disruption.  

To assess motor function we used the rotarod task as previously 

published (Bachstetter et al. 2013). Following diffuse brain injury, there was a 

significant injury-dependent effect on latency to stay on the rotarod (F(3, 

44)=3.367, p=0.0268) and a time-dependent improvement in latency (F(3, 

132=41.60, p<0.0001; Figure 4.4A; no disruption sham n=12, no disruption injury 

n=13, sleep disruption sham n=10, sleep disruption injury n=13). There was a 

significant injury and disruption effect on rotarod latency between sleep 

disruption brain-injured mice compared to no disruption sham on post-injury day 

7 (Figure 4.4A). There was no significant difference in latency on the rotarod task 

between the sleep disruption brain-injured mice and no disruption brain-injured 

mice (F(1,24)=0.5033, p=0.4849). Further analysis of rotarod performance 

showed a significant injury-dependent effect on distance traveled (F(3, 

44)=4.009, p=0.0132) and a time-dependent improvement in distance traveled 

(F(3, 132)=34.61, p<0.0001; Figure 4.4B). There was a significant injury effect 

between no disruption sham compared to both injury groups (no disruption and 

sleep disruption) on post-injury day 5 and 7. There was no significant difference 

in distance traveled on the rotarod task between the sleep disruption brain-

injured mice and no disruption brain-injured mice (F(1,24)=0.2592, p=0.6154).  
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Acute sleep disruption following diffuse TBI did not alter cognitive 

performance.  

Performance on the Morris water maze task indicated all groups had a 

significant time-dependent improvement in latency to find the hidden platform 

(F(3, 96)=17.40, p<0.0001; Figure 4.5; no disruption sham n=6, no disruption 

injury n=12, sleep disruption sham n=6, sleep disruption injury n=12). There was 

no significant injury-dependent effect or sleep disruption effect on cognitive 

performance measured by latency to find the platform at the selected acute post-

injury time points (days 3, 4, 5, 6). Performance on the novel object recognition 

task showed no significant injury-dependent effect or sleep disruption effect on 

recall of the familiar object at the selected acute post-injury time points (days 3, 

7). All groups showed significant increase in novel object exploration at 3 days 

post-injury compared to training (F(2,64)=15.61, p<0.001; Figure 4.6; no 

disruption sham n=6, no disruption injury n=12, sleep disruption sham n=6, sleep 

disruption injury n=12). There was no significant injury effect or sleep disruption 

effect on novel object recognition.   

Discussion 

 In the diffuse brain-injured mouse, immediate disruption of post-traumatic 

sleep does not worsen injury-induced motor or cognitive deficits. Our previous 

studies showed a significant increase in percent sleep of brain-injured mice 

compared to uninjured shams over the first six hours following diffuse TBI (Rowe 

et al. 2013c). Disrupting the six hours of post-traumatic sleep was hypothesized 

to worsen functional outcome after midline fluid percussion injury, because sleep, 



 85 

in general, is reparative and restorative (Walker et al. 2005; Tononi and Cirelli 

2006; Sheth et al. 2008; Cohen et al. 2009; Chokroverty 2010). In the current 

study, we show that gentle handling for six hours post-injury to disrupt sleep had 

no effect on stress measured by corticosterone levels at the end of the disruption 

period and did not result in rebound of lost sleep or worsened functional 

outcome. It remains possible that sleep disruption lead to an early surge in 

corticosterone, which was missed by measuring after six hours of disruption, 

regardless without functional consequences. Anesthetics used at the time of 

serum collection may have also contributed to alterations in corticosterone 

(Jacobsen et al. 2012). Our data provide the first evidence that sleep disruption 

(immediate, short duration) does not affect functional outcome following diffuse 

brain injury in mice.  

 Currently, investigations into acute sleep disruption after TBI are lacking, 

despite the common practice of disturbing sleep acutely following a concussion. 

Previous attempts to investigate sleep disruption as a neuroprotective 

intervention following TBI have been presented in short communication, but 

methodological issues compromise the interpretation of the data (Martinez-

Vargas et al. 2012). Following ischemia, however, acute intervention has been 

shown to be neuroprotective in the rat (Lay et al. 2010). Whisker stimulation in 

the immediate post-infarct period (within the first hour) can protect the cortex, 

suggesting a role for cortical activation through sensory stimulation in 

determining outcome following middle cerebral artery occlusion (Lay et al. 2010). 

Contradictory data after focal cerebral ischemia in the rat show that sleep 
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deprivation for 12 hours using a gentle handling protocol increased infarct area 

(Gao et al. 2010). Also, sleep disturbance (12 hours a day for three consecutive 

days) following focal cerebral ischemia in the rat worsened behavioral outcome 

assessed using the single pellet reaching test through 35 days post-ischemia 

(Zunzunegui et al. 2011). The findings of these studies suggest a role of sleep 

modulating recovery processes following stroke (Gao et al. 2010; Zunzunegui et 

al. 2011). Thus, sleep disturbance immediately following ischemia can worsen 

outcome, but activating discrete circuits through whisker stimulation can be 

neuroprotective (Gao et al. 2010; Lay et al. 2010; Zunzunegui et al. 2011), 

suggesting that additional systemic effects of behavioral sleep deprivation (e.g. 

elevated temperature and blood pressure) may counteract protective effects of 

local circuit activation. In this study, we pursued sleep disruption in a clinically 

relevant manner to model the acute period of post-traumatic sleep disruption and 

found limited impact on functional outcome. 

In midline fluid percussion, injury-induced histopathology is uncomplicated 

by contusion, cavitation, or overt hemorrhage (Povlishock and Katz 2005; 

McGinn et al. 2009) and microscopically the injury is characterized by traumatic 

axonal and vascular injury (Singleton et al. 2002; Kelley et al. 2006; Farkas and 

Povlishock 2007; Greer et al. 2011; Greer et al. 2012; Greer et al. 2013). Diffuse 

brain injury also leads to significant changes in behavioral and histological 

outcome (Semple et al. 2010; Bachstetter et al. 2013). We have previously 

shown that TBI increases sleep in mice over the first six hours post-injury 

regardless of injury severity (Rowe et al. 2013c). Since our previous data show 
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that mild and moderate diffuse TBI result in equivalent increases in sleep, the 

current study did not include mild TBI. Sleep bouts in brain-injured mice are 

longer in duration than in uninjured mice (Rowe et al. 2013c). Our previous report 

of the raw data produced by the non-invasive sleep monitoring cages showed 

sleep was interrupted by high amplitude and frequency signals corresponding to 

volitional movement in both brain-injured mice and uninjured shams (Rowe et al. 

2013c). Interruptions of sleep bouts by volitional movement indicate the brain-

injured animals terminate sleep bouts in a similar manner to uninjured mice, 

suggesting that brain-injured mice are responsive, capable of movement, and not 

in a comatose state of unresponsiveness.  

  For our method of sleep disruption, we used gentle handling to continually 

disrupt sleep for six hours. Immediate motor deficits following our diffuse injury 

model (Figure 4.1) make it impractical to use the flower pot or multiple platform 

method for sleep disruption, because the brain-injured animals cannot perform 

the task (i.e. balance on the flower pot). Previous studies have shown forced and 

voluntary exercise can positively and negatively affect behavioral and histological 

outcomes following brain injury (Zhang et al. 2010; Griesbach 2011; Crane et al. 

2012; Griesbach et al. 2012; Yang et al. 2012b; Silva et al. 2013) and for this 

reason, animals were not disrupted with forced wheel running. For example, 

treadmill exercise following fluid percussion injury in the rat reduced injury-

induced seizures but did not protect against neuronal injury (Silva et al. 2013). 

Similarly, voluntary wheel running following medial frontal cortical contusions in 

rats exacerbated TBI-induced deficits (Crane et al. 2012). Our data also indicate 
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that our method of sleep disruption did not significantly alter stress levels, as 

indicated by stable corticosterone levels at the conclusion of the disruption 

period. Corticosterone, a glucocorticoid, is released following stress and 

exposure to high level glucocorticoids may affect brain plasticity and recovery 

(Sapolsky and Pulsinelli 1985; McEwen 2008). To this end, a sleep disruption 

protocol minimized stress and thereby impact on outcomes.  

Immediately following the six hour disruption period, percent sleep was 

measured to determine whether sleep-disrupted mice displayed a rebound of lost 

sleep. A previous study using a similar sleep disruption protocol for six hours 

prior to ischemia in rats showed a significant rebound of sleep in the dark cycle 

following insult (Cam et al. 2013). Sleep was disrupted prior to insult to test if 

sleep rebound is neuroprotective after ischemia. However, in the present studies 

sleep disrupted mice did not show a rebound in sleep to compensate for the loss 

of six hours of sleep. Despite the lack of rebounded sleep, short-term disruption 

was insufficient to adversely affect outcome. It is likely that both rodent and man 

can recover from transient sleep disruption after brain injury without significant 

functional consequence. Sleep disruption prior to injury or for longer durations 

could worsen outcome. 

Clinical data suggest injury-induced circadian rhythm disturbances may 

contribute to the pathophysiological sequelae of TBI (Ayalon et al. 2007; Paul 

and Lemmer 2007; Castriotta and Murthy 2011) and inhibit neurogenesis, 

potentially compromising recovery (Meerlo et al. 2009). Lateral fluid percussion 

injury has been shown to alter circadian clock gene expression without producing 
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injury-dependent changes in activity during the first dark cycle post-injury (Boone 

et al. 2012). Similarly, in our study, we did not observe injury-dependent changes 

in activity during the first dark cycle. However, sleep disrupted brain-injured and 

uninjured shams exhibit a delayed activity response during the hour following the 

first dark-onset post-injury (10 hours post-injury), sleeping significantly more than 

non-sleep disrupted mice. Sleep disrupted mice slept 10-20% more during this 

hour, amounting to 6-12 minutes more sleep than the non-sleep disrupted mice. 

Sleep patterns of the disrupted mice become indistinguishable from the non-

disrupted mice by the first light onset (data not shown). 

 We found that sleep disruption immediately following brain injury did not 

affect functional outcome. It has been previously shown that experimental diffuse 

TBI results in significant motor impairment (Bachstetter et al. 2013; Yang et al. 

2013). We observed injury-induced sensorimotor impairments measured with the 

rotarod and neurological severity score tests. Acute sleep disruption, however, 

neither exacerbated nor attenuated the injury-induced deficits. In our literature 

evaluation, we found no published reports on the impact of acute sleep disruption 

on sensorimotor performance in mice.  

Similarly, diffuse TBI in mice has been shown to significantly impair 

cognition as early as two days post-injury with deficits lasting as long as 90 days 

post-injury (Zohar et al. 2011; Yang et al. 2013). However, cognitive outcome 

measures in mice following midline fluid percussion injury have not been 

previously reported. No cognitive impairment following diffuse TBI was measured 

using the Morris water maze or novel object recognition task, within the first week 
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post-injury. Following sleep disruption there was no significant change in 

cognitive performance. It has previously been reported that learning in the MWM 

is not impacted by six hours of rapid eye movement sleep deprivation (Walsh et 

al. 2011). Also, sleep disruption before acquisition had no effect on spatial 

learning and memory components of rodent cognition (Hagewoud et al. 2010; 

Yang et al. 2012a). These findings are in line with our data indicating six hours of 

sleep disruption did not alter cognitive function.  

Taken together, our data indicated that acute sleep disruption following 

diffuse TBI did not worsen functional outcome, which precluded further analysis 

of cellular repair benefits of sleep. These results were not unexpected, since 

previous studies have reported that six hours of sleep disruption did not impact 

functional outcome independent of brain-injury (Hagewoud et al. 2010; Walsh et 

al. 2011). A possible limitation of this study was the disruption of post-traumatic 

sleep only. Extending the duration of sleep disruption may negatively affect 

outcome, however, chronic sleep disruption would reduce clinical relevance for 

the large at-home, non-medically treated population. To address the controversy 

of whether non-hospitalized individuals should sleep or be frequently awoken 

following TBI, six hours of sleep disruption following TBI is translationally 

relevant. Further investigation is needed to determine the impact of sleep 

disruption on other aspects of post-traumatic symptomology including somatic 

and emotional function. 
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Conclusion 

 In conclusion, the current study demonstrated that disrupting acute post-

traumatic sleep following diffuse TBI did not worsen functional outcome. The 

sleep lost during the disruption period was not recovered by increased sleep 

time, and there were no long lasting circadian disturbances detected under 12:12 

light:dark conditions. Further studies are needed to fully understand the cellular 

benefit or detriment, if any, of acute post-traumatic sleep on recovery following 

TBI, as well as other neurological conditions. 

 

Chapter Four has been accepted to be published in the following manuscript:  
Rowe RK, Harrison JL, O’Hara BF, and Lifshitz J. (2013). Recovery of neurological 
function despite immediate sleep disruption following diffuse brain injury in the mouse: 
clinical relevance to medically untreated concussion. 
 
This is a copy of an article is accepted for publication in the [SLEEP] © [2013] [copyright 
SLEEP LLC]; [SLEEP] is available online at: http://www.journalsleep.org 

 

Copyright © Rachel Kathleen Rowe 2013 

 

 

 
  



 92 

Chapter Four: Figures 

 

Figure 4.1 Diffuse TBI led to immediate neurological deficits. 

 (A) Immediately following experimental diffuse TBI in mice there was significant 

suppression of the righting reflex (mean ±SEM; t(31)=3.351, p=0.0021; sham 

n=28, injury n=33). (B) Immediately following diffuse TBI there was a significant 

motor deficit measured by latency in the Rotarod task. A repeated-measure two-
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way ANOVA showed a significant decrease in latency on the Rotarod in brain-

injured mice compared to uninjured shams (mean ±SEM; F(1, 11)=83.93, 

p<0.0001). Sidak’s multiple comparison test showed a significant difference 

between brain-injured mice compared to uninjured shams both immediately after 

injury, and 1 hour after injury (*, p<0.05; sham n=6, injury n=7). 
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Figure 4.2 Intentional sleep disruption following diffuse TBI did not result in 

altered corticosterone levels or a rebound of lost sleep but altered activity 

response to dark-onset. 

 (A) Sleep disruption for six hours following diffuse TBI did not alter levels of 

corticosterone in cardiac blood samples. In both no disruption and sleep 

disruption groups the brain-injured mice had significantly lower levels of 

corticosterone compared to uninjured shams (mean +SEM; F(1,8)=7.57, 

p=0.0250). There was no significant difference between sleep disruption and no 

disruption groups. (B) Following six hours of intentional sleep disruption (see 

methods), a two-way ANOVA showed no significant change in percent sleep 

between groups (mean ±SEM; F(3, 32)=2.187, p=0.1087) indicating no rebound 

of lost sleep. Bar indicates light/dark transition. Box in panel B is enlarged in 

panel C. (C) At dark-onset, a one-way ANOVA showed an effect of sleep 

disruption (mean ±SEM; F(3, 32)=0.9386, p=0.0024). Tukey’s post-hoc test 

indicated a difference between no disruption sham compared to both sleep 

disruption brain-injured and sleep disruption sham mice (*, p<0.05; no disruption 

sham n=7, no disruption injury n=8, sleep disruption sham n=8, sleep disruption 

injury n=13). 
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Figure 4.3 Diffuse TBI resulted in neurological impairments independent of 

acute sleep disruption. 

Overall, brain-injured mice showed significant neurological impairments 

measured by the neurological severity score compared to uninjured shams 

independent of sleep disruption. Sleep disruption shams showed a significantly 

lower NSS score compared to both injury groups (sleep disruption injury, no 

sleep disruption injury) on post-injury days 1,3 and 5 (*; p<0.05). On post-injury 

day 7, sleep disruption shams had a significantly lower NSS score compared to 

sleep disruption brain-injured mice (*; p<0.05). No disruption shams had a 

significantly lower NSS score compared to both injury groups (sleep disruption 

injury, no disruption injury) on post-injury days 1 and 7 (#; p<0.05). No disruption 

shams had significantly lower NSS scores compared to no disruption brain-

injured mice on post injury days 3 and 5 (#; p<0.05). See results for statistics. (no 

disruption sham n=12, no disruption injury n=13, sleep disruption sham n=10, 

sleep disruption injury n=13).  
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Figure 4.4 Diffuse TBI altered motor performance on the rotarod task 

independent of acute sleep disruption. 

(A) A two-way ANOVA showed a significant injury-dependent effect on latency to 

stay on the rotarod (mean ±SEM; F(3, 44)=3.367, p=0.0268) and a time-

dependent improvement in latency (mean ±SEM; F(3, 132=41.60, p<0.0001). 

Tukey’s post-hoc test indicated a difference between sleep disruption brain-

injured mice compared to no disruption sham on post-injury day 7 (*, p<0.05). 
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There was no significant difference in latency on the rotarod task between the 

sleep disruption brain-injured mice and no disruption brain-injured mice 

(F(1,24)=0.5033, p=0.4849). (B) A two-way ANOVA showed a significant injury-

dependent effect on distance traveled (mean ±SEM; F(3, 44)=4.009, p=0.0132) 

and a time-dependent improvement in distance traveled (mean ±SEM; F(3, 

132)=34.61, p<0.0001). Tukey’s post-hoc test indicated a difference between no 

disruption sham compared to both injury groups (no disruption and sleep 

disruption) on post-injury day 5 and 7 (*, p<0.05). There was no significant 

difference in distance traveled on the rotarod task between the sleep disruption 

brain-injured mice and no disruption brain-injured mice (F(1,24)=0.2592, 

p=0.6154). (no disruption sham n=12, no disruption injury n=13, sleep disruption 

sham n=10, sleep disruption injury n=13). 
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Figure 4.5 Acute sleep disruption following diffuse TBI did not alter 

cognitive performance on the Morris water maze (MWM) or novel object 

recognition (NOR) tasks. 

(A) A two-way ANOVA showed a significant time-dependent improvement in 

latency to the platform (mean ±SEM; F(3, 96)=17.40, p<0.0001). There was no 

significant injury-dependent effect or sleep disruption effect on cognitive 

performance at the selected acute post-injury time points. (no disruption sham 
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n=6, no disruption injury n=12, sleep disruption sham n=6, sleep disruption injury 

n=12). (B) There was no significant injury-dependent effect or sleep disruption 

effect on cognitive performance at the selected acute post-injury time points. All 

groups showed a time-dependent learning of the familiar object (mean ±SEM; 

F(2,64)=15.61, p<0.001). There was no significant injury effect or disruption 

effect. (no disruption sham n=12, no disruption injury n=13, sleep disruption 

sham n=10, sleep disruption injury n=13). 
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Preface to Chapter Five 

In the previous chapters, we showed an injury-induced increase in 

immediate post-traumatic sleep and demonstrated disrupting this post-traumatic 

sleep does not worsen functional outcome. The experiments in Chapter Five 

investigated the effect of acute administration of over-the-counter analgesics on 

neurological function, acute sleep profiles, and cortical cytokine levels after 

experimental diffuse TBI in the mouse. A one-time dose was given to replicate 

clinical settings in which a person sustains a concussion and treats immediate 

pain as a symptom of injury. Overall, we showed immediate pharmacological 

intervention did not attenuate or exacerbate TBI-induced functional deficits, but 

altered sleep profiles. These data may inform clinical recommendations for the 

at-home treated mildly concussed patient. A more comprehensive outline of the 

effects of drug intervention on TBI has been included in the Appendix. 

Chapter Five: Acute over-the-counter pharmacological intervention does 

not adversely affect behavioral outcome following diffuse traumatic brain 

injury in the mouse 

Summary 

 Survivors of mild TBI often do not seek medical attention and may self-

treat symptoms of concussion, including post-traumatic headache, by taking 

over-the-counter (OTC) analgesics. Common OTC analgesic medicines have 

varying anti-inflammatory properties which could impact acute functional 

outcomes thought to be related to inflammation, including neurological function 
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and post-traumatic sleep. Administering one dose of OTC analgesics 

immediately following experimental brain injury mimics the at-home treated 

population of concussed patients and may accelerate the understanding of the 

relationship between brain injury and OTC pharmacological intervention. In the 

current study, we investigate the effect of acute administration of OTC analgesics 

on neurological function, acute sleep profiles, and cortical cytokine levels after 

experimental diffuse TBI in the mouse. 

 Adult, male C57BL/6 mice were injured using a midline fluid percussion 

mFPI injury model of concussion (6-10 min righting reflex time for brain-injured 

mice). Experimental groups included mFPI paired with either ibuprofen (60mg/kg, 

i.p.; n=16), acetaminophen (40mg/kg, i.p.; n=9), or vehicle (15% ethanol (v/v) in 

0.9% saline; n=13) and sham injury paired OTC medicine or vehicle (n=7-10 per 

group). At 24 hours after injury, functional outcome was assessed using the 

rotarod task and a modified neurological severity score (NSS), and then related 

back to acute sleep profiles. Following behavior assessment, cortical cytokine 

levels were measured by multiplex ELISA. In the diffuse brain-injured mouse, 

immediate pharmacological intervention did not attenuate or exacerbate TBI-

induced functional deficits, but altered sleep profiles. Cortical cytokine levels 

were not affected by injury or treatment at 24 hours post-injury. These data 

indicate acute administration of OTC analgesics did not exacerbate or attenuate 

brain-injury deficits which may inform clinical recommendations for the at-home 

treated mildly concussed patient.    



 103 

Introduction 

TBI is a major cause of death and disability throughout the world (Langlois 

et al. 2006; Reilly 2007; Roozenbeek et al. 2013). In the United States between 

2002 and 2006, the Centers for Disease Control and Prevention estimated 

52,000 deaths, 275,000 hospitalizations, and 1,365,000 emergency department 

visits resulting from TBI each year (Faul et al. 2010b). It is also estimated that as 

high as 42% of TBIs are not included in these statistics because 1.2-4.3 million 

survivors of mild TBI annually do not seek medical attention (Setnik and Bazarian 

2007) and likely self-medicate.  

Headache is among the most frequently reported symptoms following 

diffuse brain injury in both adolescents (Butler 2013) and adults (Keidel and 

Diener 1997; Nicholson and Martelli 2004; Lew et al. 2006; Theeler et al. 2013). 

Clinical recommendations for treating headache after mild TBI suggest 

analgesics (e.g. acetaminophen) and warn against non-steroidal anti-

inflammatory drugs (NSAIDs) (e.g. aspirin and ibuprofen), because of risk for 

intracranial bleeding (Maiese 2008). Despite the large proportion of mild TBI 

survivors not seeking medical attention (Setnik and Bazarian 2007) who likely 

self-medicate for post-traumatic headache, the role of over-the counter pain relief 

medicines in the course of brain injury is not completely understood. 

The mechanical forces of TBI initiate a cascade of secondary injury 

processes, including inflammation, which continue for days to weeks following 

injury (Werner and Engelhard 2007). In conflicting studies, cerebral inflammation 

has been shown to contribute to either beneficial or deleterious effects after 
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traumatic insult (for review, see (Morganti-Kossmann et al. 2002)). TBI triggers a 

cascade of inflammation-mediating cytokines (Morganti-Kossmann et al. 2001; 

Frugier et al. 2010; Semple et al. 2010; Ziebell and Morganti-Kossmann 2010), 

which can elicit a range of responses including cell differentiation, immune 

activation, and cell death (Allan and Rothwell 2001). For the present study, mFPI 

experimental model in the mouse induces multifocal neuropathology with 

translational application to mild diffuse TBI, or concussion. Principally in the first 

day after mFPI in mice, we have reported significantly increased levels of pro-

inflammatory cytokine IL-1β in the cortex (Rowe et al. 2013c) along with acute 

neurological impairments manifested within one hour of injury (Rowe et al. 

2013a). In diffuse TBI, the effects of clinically relevant acute pharmacological 

inhibition of inflammation on functional outcome are not yet understood. 

Secondary injury processes initiated by traumatic brain injury, including 

inflammation, are tractable therapeutic targets. Inflammation in the wake of TBI 

is, in part, mediated by the conversion of membrane-released arachidonic acid 

into pro-inflammatory prostaglandins by cyclooxygenase-2 (COX-2) (Dash et al. 

2000). NSAIDs are widely available over-the-counter drugs used to treat acute 

pain and inflammation, with mechanisms of action to block COX-1 and/or COX-2, 

thereby slowing the production of prostaglandins (Vane 1971). Acetaminophen, 

on the other hand, is presented as an analgesic with actions on cannabinoid 

receptors (Ottani et al. 2006; Dani et al. 2007), without inflammatory properties. 

Previous studies suggest anti-inflammatory drugs improve outcome following 

brain injury as early as 72 hours post-injury (Gopez et al. 2005; Ng et al. 2012; 
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Thau-Zuchman et al. 2012; Chio et al. 2013; Gatson et al. 2013). Treatment with 

the highly specific COX-2 inhibitor DFU [5,5-dimethyl-3(3-fluorophenyl)-4(4-

methylsulfonyl)phenyl-2(5H)-furanone], administered daily for three days following 

lateral cortical impact in rats attenuated injury-induced prostaglandin production 

in the brain and improved functional recovery measured by the Morris water 

maze and neuroscore at 72 hours post-injury (Gopez et al. 2005). Carprofen, a 

COX-2 inhibitor, administered daily for seven days following closed head injury 

(CHI) in mice, also improved functional recovery (Thau-Zuchman et al. 2012). 

Recovery of function measured by the NSS, however, was not present until 72 

hours post-injury (Thau-Zuchman et al. 2012). Treatment with anti-inflammatory 

minocycline for fourteen days following CHI in mice resulted in improved NSS 

scores starting at 72 hours post-injury, with improvements lasting through day 7 

(Ng et al. 2012). These studies suggest that inhibiting inflammation after mild to 

severe TBI can improve functional recovery; however, there is evidence to 

suggest that treatment with ibuprofen over an extended timeframe may worsen 

cognitive outcome. Rats which were continuously treated with ibuprofen for four 

months following lateral fluid percussion injury performed significantly worse in 

the Morris Water Maze than non-treated brain-injured rats (Browne et al. 2006b). 

Taken together, previous reports indicate that repeated doses of OTC 

analgesics, depending on the timeframe, may be beneficial or detrimental to 

recovery from TBI. The acute nature of neurological impairments induced by the 

mFPI model necessitates acute behavioral analysis to assess the effects of 

pharmacological intervention (Rowe et al. 2013a). The current study delivers 
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ibuprofen and acetaminophen to determine if a single treatment with common 

over-the-counter (OTC) analgesics after diffuse TBI promotes recovery or 

worsens behavioral outcome. 

Several pro-inflammatory cytokines, including IL-1β, also have been 

characterized as sleep regulatory substances (SRSs) (Krueger and Majde 1995; 

Krueger et al. 2007). Cytokines with dual roles as SRSs can modulate sleep-

wake behavior by acting on sleep circuits of the brain (Krueger et al. 2001a; 

Krueger et al. 2007). Exogenous IL-1β increases non-REM sleep in rodent 

models and humans (Tobler et al. 1984; Dinarello 1991; Opp et al. 1991). 

Inhibiting endogenous IL-1 through the administration of IL-1 antagonists or IL-1 

soluble receptors has been shown to inhibit sleep (Opp and Krueger 1994; 

Takahashi et al. 1996; Fang et al. 1998). In mFPI in the mouse, increased IL-1β 

occurred concomitantly with a period of increased post-traumatic sleep (Rowe et 

al. 2013c). A recent study demonstrated that a single dose of ibuprofen 

administered two hours after TBI significantly lowered IL-1β levels in the brain 24 

hours after closed head injury (Keshavarzi et al. 2012). Together, these studies 

highlight the dynamic relationship between sleep and inflammation in the context 

of TBI. To this end, inflammation may contribute to acute post-traumatic sleep 

(Rowe et al. 2013c). 

The current study investigates the effects of acetaminophen and 

ibuprofen—two common analgesic drugs with different anti-inflammatory 

mechanisms—on neurological function, acute sleep profiles, and cortical cytokine 

levels after diffuse TBI in the mouse. We hypothesize acute pharmacological 
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inhibition of injury-induced inflammation will lead to a decrease in inflammatory 

cytokines and acute post-traumatic sleep, possibly altering functional outcome. 

Materials and Methods 

Animals 

 Male C57BL/6 mice (Harlan Laboratories, Inc., Indianapolis, IN) were used 

for all experiments (n=57). Mice were housed in a 12 h light/12h dark cycle at a 

constant temperature (23°C ± 2° C) with food and water available ad libitum 

according to the Association for Assessment and Accreditation of Laboratory 

Animal Care International. Mice were acclimated to their environment following 

shipment for at least three days prior to any experiments. After surgery, mice 

were evaluated daily for post-operative care by a physical examination and 

documentation of each animal’s condition. Animal care was approved by the 

Institutional Animal Care and Use Committees at St. Joseph’s Hospital and 

Medical Center (Phoenix, AZ). 

Housing 

All mice used in this study were singly housed. Mice were housed in 

standard individually ventilated cages or housed in the non-invasive sleep-

monitoring cage system (Signal Solutions, Lexington, KY). 

Midline Fluid Percussion Injury (mFPI) 

Mice (20-24g) were subjected to midline fluid percussion injury (mFPI) 

consistent with methods previously described (Lifshitz 2008). Group sizes are 

indicated in the results section and figure legends for individual studies. Mice 
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were anesthetized using 5% isoflurane in 100% oxygen for five minutes and the 

head of the mouse was placed in a stereotaxic frame with continuously delivered 

isoflurane at 2.5% via nosecone. While anesthetized, body temperature was 

maintained using a Deltaphase® isothermal heating pad (Braintree Scientific Inc., 

Braintree, MA). A midline incision was made exposing bregma and lambda, and 

fascia was removed from the surface of the skull. A trephine (3 mm outer 

diameter) was used for the craniotomy, centered on the sagittal suture between 

bregma and lambda without disruption of the dura. An injury cap prepared from 

the female portion of a Luer-Loc needle hub was fixed over the craniotomy using 

cyanoacrylate gel and methyl-methacrylate (Hygenic Corp., Akron, OH). The 

incision was sutured at the anterior and posterior edges and topical Lidocaine 

ointment was applied. The injury cap was closed using a Luer-Loc cap and mice 

were placed in a heated recovery cage and monitored until ambulatory before 

being returned to their sleep cage. 

For injury induction 24 hours post-surgery, mice were re-anesthetized with 

5% isoflurane delivered for five minutes. The cap was removed from the injury-

hub assembly and the dura was visually inspected through the hub to make sure 

it was intact with no debris. The hub was then filled with normal saline and 

attached to a tube connected to the male end of the fluid percussion device 

(Custom Design and Fabrication, Virginia Commonwealth University, Richmond, 

VA). An injury of moderate severity (1.4 atm) was administered by releasing the 

pendulum onto the fluid-filled cylinder. Sham-injured mice underwent the same 

procedure except the pendulum was not released. Mice were monitored for the 
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presence of a forearm fencing response and righting reflex times were recorded 

for the injured mice as indicators of injury severity (Hosseini and Lifshitz 2009). 

The righting reflex time is the total time from the initial impact until the mouse 

spontaneously rights itself from a supine position. The fencing response is a tonic 

posturing characterized by extension and flexion of opposite arms that has been 

validated as an overt indicator of injury severity (Hosseini and Lifshitz 2009). The 

injury hub was removed and the brain was inspected for uniform herniation and 

integrity of the dura. The dura was intact in all mice, none were excluded as 

technical failures. The incision was cleaned using saline and closed using 

sutures. Moderate brain-injured mice had righting reflex recovery times greater 

than six minutes and a positive fencing response. Sham injured mice recovered a 

righting reflex within 20 seconds. After spontaneously righting, mice were placed 

in a heated recovery cage and monitored until ambulatory (approximately 5 to 15 

minutes) before being returned to their cage. Adequate measures were taken to 

minimize pain or discomfort.  

Pharmacological Intervention 

All mice received either vehicle or drug treatment immediately following 

induction of injury or sham. Drugs were administered intraperitoneally in 100µl of 

sterile vehicle solution of normal saline and 15% (v/v) ethanol. Drug-treated mice 

received either ibuprofen (60 mg/kg; Sigma-Aldrich, St. Louis, MO) or 

acetaminophen (40 mg/kg; Sigma-Aldrich, St. Louis, MO). These doses were 

chosen with respect to clinically relevant doses. Dose translations from human to 

mice were based on body surface area (Reagan-Shaw et al. 2008) and were 
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maintained within the maximum daily dose recommended by the United States 

Federal Drug Administration (www.fda.gov). Both drugs were compared to the 

same vehicle-treated control group treated with normal saline and 15% (v/v) 

ethanol. 

Behavioral Testing 

Rotarod. Sensorimotor function was assessed using the Economex Rotarod 

system from Columbus Instruments (Columbus, OH). Mice were pre-trained for 

three consecutive days. The first two days were acclimation (60 sec at 4 RPM for 

3 trials) and on day three baseline scores were collected using the test day 

procedures (see below). For the test at 24 hours post-injury, mice were placed on 

the rod with a starting speed of 4 RPM, and rod rotation speed was continuously 

increased over 5 minutes up to a max speed of 28 RPM, as previously published 

(Bachstetter et al. 2013). The trial ended when the mouse fell from the rod or 5 

minutes elapsed. Two trials were performed at each time point. Data are 

presented (average of two trials) as latency to fall in seconds and total distance 

traveled in centimeters. Improvement in performance is presented as the 

difference in each mouse’s baseline score and test day score, where positive 

numbers indicate improvement in the task. 

Neurological Severity Score (NSS). Post-traumatic neurological impairments 

were assessed at 24 hours post-injury using an 8-point NSS paradigm adapted 

from those previously used in experimental models of TBI (Chen et al. 1996; 

Semple et al. 2010; Pleasant et al. 2011; Ziebell et al. 2011). One point was 

given for failure on an individual task, and no points were given if a mouse 
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completed a task successfully. Mice were observed for hind limb flexion, startle 

reflex, and seeking behavior (presence of these behaviors was considered 

successful task completion). Mice traversed in sequence, 3, 2, and 1 centimeter 

beams. The beams were elevated and mice were given 1 minute to travel 30 

centimeters on the beams. The task was scored as a success if the mouse 

traveled 30 centimeters with normal forelimb and hindlimb position 

(forelimb/hindlimb did not hang from the beam). Mice were also required to 

balance on a 0.5 centimeter beam and a 0.5 centimeter round rod for 3 seconds 

in a stationary position with front paws between hind paws. Non-parametric data 

are presented as a composite score ranging from 0 to 8 representing 

performance on all tasks combined. High final NSS scores were indicative of task 

failure and interpreted as neurological impairment.   

Sleep Recordings  

The non-invasive sleep cage system (Signal Solutions, Lexington, KY) 

consisted of 16 separate units that could simultaneously monitor sleep and wake 

states, as previously published (Rowe et al. 2013c). Each cage unit housed a 

single mouse inside 18 x 18 centimeter walled compartments with attached food 

and water compartments (Donohue et al. 2008). The cages had open bottoms 

resting on Polyvinylidine Difluoride (PVDF) sensors serving as the cage floor 

(Donohue et al. 2008). The non-invasive high-throughput PVDF sensors were 

coupled to an input differential amplifier and pressure signals were generated 

and classified by an algorithm (see below) as motions consistent with either wake 

activity or the inactivity and regular breathing movements associated with sleep 



 112 

(Donohue et al. 2008). Briefly, sleep was characterized primarily by periodic (3 

Hz) and regular amplitude signals recorded from the PVDF sensors, typical of 

respiration from a still mouse. In contrast, signals characteristic of wake were 

both the absence of characteristic sleep signals and higher amplitude, irregular 

spiking associated with volitional movements. The piezoelectric signals in two 

second epochs were classified by a linear discriminant classifier algorithm based 

on frequency and amplitude to assign a binary label of “sleep” or “wake” 

(Donohue et al. 2008). Mice sleep in a polycyclic manner (more than 40 sleep 

episodes per hour) (McShane et al. 2010). For experimental studies, mouse 

sleep was quantified as the minutes spent sleeping per hour, presented as a 

percentage for each hour. Sleep activity data were binned over specified time 

periods (e.g. 1 hour) to calculate the average of percent sleep. 

Tissue preparation and cytokine quantification 

At 24 hours post-injury mice were given an overdose of sodium 

pentobarbital and transcardially perfused with ice cold phosphate buffered saline 

(PBS). Mice were decapitated and the brains were dissected on ice. Cortical 

biopsies (2mm diameter x 2mm thickness) were taken and snap frozen in 

methanol cooled over dry ice then stored at -80°C. The protein levels of a panel 

of inflammation-related cytokines were measured by Quansys Biosciences 

Mouse Cytokine IR Q-Plex assay (Quansys Biosciences, Logan, UT), according 

to manufacturer protocol. Cortical biopsies were bead-homogenized using a 

Precellys 24 in 200 µl of ice-cold Tris-buffered lysis solution supplemented with 

protease inhibitor cocktail (Complete Protease Inhibitor Cocktail Mini Tablet, 
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Roche Diagnostics, Mannheim, Germany). The cortical homogenate was 

centrifuged at 3000 RCF for 20 minutes at 4°C in a microcentrifuge. The resulting 

supernatant (25µl) was loaded per well of the Q-Plex plate, and cytokine levels 

were determined by Q-Plex assay. Cytokine levels in the cortex were normalized 

to the total amount of protein in the sample, as determined by BCA Protein Assay 

(Thermo Scientific, Rockford, IL). 

Statistical Analysis 

Data are shown as mean ± SEM and analyzed using statistical software 

(GraphPad-Prism 6). For analysis of behavior and sleep, uninjured shams from 

all drug treatment groups were combined and used as a single control (see 

results). Differences in rotarod performance following TBI were determined by 

one-way analysis of variance (ANOVA) followed by Sidak’s multiple comparisons 

test. Non-parametric NSS data were analyzed by Kruskal-Wallis ANOVA, 

followed by Dunn’s comparison post-hoc test (see results). Percent sleep was 

analyzed using a repeated measure two-way ANOVA followed by Sidak’s 

multiple comparisons test when appropriate. Differences in cytokine 

concentrations were analyzed by two-way ANOVA. Statistical significance was 

assigned when p<0.05. 

Results 

It was not anticipated that drug treatment would change functional 

outcome or mean percent sleep in the uninjured sham mice. Statistical analysis 

confirmed no significant change in rotatrod performance, neurological severity 

score, or mean percent sleep between any sham treatment groups. Vehicle-
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treated, ibuprofen-treated, and acetaminophen-treated shams were combined 

into a single control. As anticipated, anti-inflammatory treatment altered cytokine 

levels in sham treatment groups; cytokine data were analyzed without combining 

shams.  

Diffuse TBI reduced motor performance on the rotarod task regardless of 

pharmacological intervention. 

To assess motor function we used the rotarod task as previously 

published (Bachstetter et al. 2013).  Across groups, there was a significant effect 

on latency to stay on the rotarod (F(3, 53)=3.688, p=0.0174; Figure 5.1A; sham 

n=27, vehicle-treated injury n=10, ibuprofen-treated injury n=12, acetaminophen-

treated injury n=8). Rotarod latency was significantly reduced in vehicle-treated 

and ibuprofen-treated brain-injured mice compared to sham mice at 24 hours 

post-injury (Figure 5.1A). There was no significant latency reduction in 

acetaminophen-treated brain-injured mice compared to shams (Figure 5.1A). 

Further analysis of rotarod performance confirmed the latency data with distance 

traveled, showing similar significant effects on distance traveled (F(3, 53)=3.909, 

p=0.0135; Figure 5.1B). Distance traveled was significantly reduced in both 

vehicle and ibuprofen-treated brain-injured mice compared to uninjured sham. 

There was no difference in distance traveled by acetaminophen-treated brain-

injured mice compared to shams. To compensate for trial-based learning, 

improvement in motor performance was analyzed. Latencies (Figure 5.1C) and 

distances (Figure 5.1D) of each mouse at 24 hours post-injury were compared to 

their individual baseline scores at training. Brain-injured mice treated with vehicle 
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and ibuprofen showed significantly less improvement in latency to stay on the rod 

compared to the improvement of uninjured shams (F(3, 53)=4.553, p=0.0065; 

Figure 5.1C). Acetaminophen-treated brain-injured mice did not show a 

difference in improvement compared to uninjured shams (Figure 5.1C). All brain-

injured mice, regardless of treatment, showed significantly less improvement in 

distance traveled compared to shams (F(3, 53)=6.017, p=0.0013; Figure 5.1D). 

Overall, diffuse brain injury reduced motor performance measured on the rotarod 

task, without an effect of post-injury pharmacological treatment.  

Diffuse TBI resulted in neurological impairments regardless of 

pharmacological intervention. 

All brain-injured mice showed significant neurological impairments 

measured by the neurological severity score (NSS) compared to uninjured 

shams, regardless of pharmacological intervention (KW(4, 57)=27.37, p<0.001; 

Figure 5.2; sham n=27, vehicle- treated injury n=10, ibuprofen-treated injury 

n=12, acetaminophen-treated injury n=8). At 24 hours post-injury all brain-injured 

groups had significantly higher NSS scores compared to uninjured shams. There 

was no significant effect of post-injury pharmacological treatment. 

Pharmacological intervention led to increased post-traumatic sleep 

following diffuse brain injury. 

 Sleep-wake activity was recorded non-invasively immediately following 

diffuse brain injury or sham injury. Initial analysis focused on the first six hours, 

as post-traumatic sleep was increased in our previous reports (Rowe, 2013). 

Acetaminophen- treated brain-injured mice had significant increases in sleep 
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during the first six hours post-injury compared to uninjured shams (mean ±SEM; 

F(1, 29)=11.98, p=0.0017; Figure 5.3C). There was no significant increase in the 

vehicle-treated (F(1, 30)=0.8886, p=0.3534; Figure 5.3A) or ibuprofen-treated 

(F(1, 30)=1.853, p=0.1835; Figure 5.3B) groups compared to shams. Further 

analysis of sleep focused on the dark cycle following injury (the time the 

nocturnal mice should be awake), to evaluate the mouse equivalent of ‘human 

daytime sleepiness’. There was a significant increase in ibuprofen-treated brain-

injured mice (F(1, 30)=4.540, p=0.0410; Figure 5.4B) compared to uninjured 

shams. While the acetaminophen-treated brain-injured group showed an 

increase in mean percent sleep compared to sham, this increase failed to reach 

statistical significance (F(1, 29)=3.939, p=0.0567; Figure 5.4C). Unexpectedly, 

the vehicle-treated mice had a significant decrease in sleep (F(1, 30)=4.455, 

p=0.0432; Figure 5.4A) following brain injury compared to uninjured shams. 

Overall, brain-injured mice had increased mean percent sleep during the dark 

cycle following drug treatment.  

Inflammation-related interleukin cytokines were not increased in the cortex 

at 24 hours post-injury. 

 Upon brain dissection, no differences in hemorrhage or gross pathology 

were noted between groups. A panel of inflammatory related interleukin 

cytokines was evaluated at 24 hours post-injury in whole cortex. There was no 

statistically significant increase or decrease in protein concentrations of cytokines 

in the cortex of brain-injured mice compared to uninjured shams (Table 5.1). 

Cytokines evaluated included: IL-1α (F(1, 23)=1.996, p=0.1711), IL-1β (F(1, 



 117 

23)=0.01040, p=0.9197), IL-2 (F(1, 23)=0.2045, p=0.6554), IL-6 (F(1, 

23)=0.3326, p=0.5697), IL-10 (F(1, 23)=0.3581, p=0.5554) and IL-12 (F(1, 

23)=0.1672, p=0.6864). IFNγ, IL-4, and TNFα levels were also evaluated, but 

concentrations were undetectable. 

Discussion 

In the diffuse brain-injured mouse, immediate pharmacological 

intervention with over-the-counter analgesics did not adversely affect 

sensorimotor or neurological outcome. A single, clinically relevant dose of 

ibuprofen or acetaminophen was hypothesized to reduce early inflammation and 

prevent (or delay) the increased injury-induced sleep necessary for recovery, 

thereby leading to a worsened functional outcome. In the current study, we show 

immediate treatment with ibuprofen or acetaminophen increased sleep within the 

first 24 hours of injury, without impacting TBI-induced functional deficits 

measured by the rotarod and neurological severity score (NSS). We also show 

drug treatment did not alter expression of cortical cytokines at 24 hour post-

injury. 

 Given the majority of human TBI encompasses mild to moderate diffuse 

brain injury for which self-medication may be the primary treatment, the current 

study sought to investigate the clinical situation in which a survivor of mild TBI 

self-treats with a single dose of an OTC analgesic medicine. The most frequent 

symptom after TBI is post-traumatic headache TBI (Theeler et al. 2013), making 

ibuprofen and acetaminophen principal choices for self-medication. Administering 

one dose of over-the-counter (OTC) analgesics immediately following brain injury 
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mimics the at-home treated population of concussed patients and may accelerate 

the understanding of the relationship between brain injury and OTC 

pharmacological intervention. Administering ibuprofen, an NSAID and COX 

inhibitor, in opposition to administering acetaminophen, an analgesic with weak 

anti-inflammatory properties, allowed for the investigation of inflammation 

inhibition on brain injury-induced deficits.  

While clinical and experimental data suggest the chronic over-production 

of pro-inflammatory cytokines contributes to the progression of pathology in TBI 

(Schmidt et al. 2005; Lloyd et al. 2008; Cao et al. 2012), the role of immediate 

inflammation is less clear. Inflammation is critical to the repair process and health 

of the organism, however, inflammation that is excessive or prolonged can 

exacerbate damage after the primary injury (Bachstetter et al. 2013). Previous 

reports have shown that multiple doses of analgesics can alter not only functional 

outcome but also cellular mechanisms following experimental TBI, see review 

(Rowe et al. 2013b). In this study, a single dose of ibuprofen or acetaminophen 

given at the time of injury did not attenuate or exacerbate injury-induced 

sensorimotor or neurological deficits measured 24 hours post-injury. Previous 

studies suggest anti-inflammatory drugs can improve outcome following brain 

injury as early as 72 hours post-injury (Gopez et al. 2005; Ng et al. 2012; Thau-

Zuchman et al. 2012; Chio et al. 2013; Gatson et al. 2013). Treatment with the 

highly specific COX-2 inhibitor DFU [5,5-dimethyl-3(3-fluorophenyl)-4(4-

methylsulfonyl)phenyl-2(5H)-furanone], following lateral cortical impact in rats 

attenuated injury-induced prostaglandin production in the brain and improved 
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functional recovery measured by the Morris water maze and neuroscore at 72 

hours post-injury (Gopez et al. 2005). Carprofen, a COX-2 inhibitor, administered 

following closed head injury (CHI) in mice, also improved functional recovery 

(Thau-Zuchman et al. 2012). Recovery of function measured by the NSS, 

however, was not present until 72 hours post-injury (Thau-Zuchman et al. 2012). 

Treatment with anti-inflammatory minocycline following CHI in mice resulted in 

improved NSS scores starting at 72 hours post-injury, with improvements lasting 

through day 7 (Ng et al. 2012). These studies suggest that inhibiting inflammation 

can improve functional recovery. While the administration of analgesics has been 

primarily shown to positively influence functional outcome, these studies have 

incorporated multiple dosing strategies either before or after TBI. While the 

results are experimentally valid, they do not address the situation faced by a 

mildly concussed individual not seeking medical attention. In this scenario, an 

individual would likely self-treat prominent symptoms, including headache, with 

OTC analgesics immediately post-injury. Experimentally, it would be expected 

that a single dose of OTC analgesics would have less profound effects upon 

outcome than a more aggressive dosing strategy. 

In the current study, we found that a single dose of OTC analgesics did 

not attenuate or exacerbate TBI induced functional deficits. Sensorimotor deficits 

measured by the Rotarod task were present in brain-injured groups compared to 

uninjured shams regardless of drug treatment at the time of injury. Similarly, 

brain-injured groups had neurological deficits measured by a modified NSS 

compared to uninjured shams regardless of drug treatment. Multiple studies have 
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shown analgesics to provide neuroprotection from TBI when administered 

continually, such that a single clinically relevant dose of OTC analgesics does not 

affect the pathophysiological and molecular cascades induced by diffuse brain 

injury. In this way, any initial inhibition of inflammation provided by a single 

analgesic dose may not prevent the development of neurological deficits by 24 

hours post-injury. It is also possible that the route of drug administration used in 

this study reduced the bioavailability of the compounds. Alternate administration 

routes could increase the bioavailability of the drugs, and should be considered 

for future studies, recognizing the reduced clinical applicability. Overall, this study 

shows one dose of OTC analgesics given immediately following injury does not 

alter functional outcome. Given that the OTC analgesics administered in the 

current study did not worsen behavioral outcome, they may be safe for the 

clinical treatment of post-traumatic symptoms. It is of note, though, that some 

anti-inflammatory drugs, including ibuprofen, are not indicated for clinical use 

after TBI due to their anti-coagulant effects increasing the possibility of 

intracranial bleeding (Maiese 2008).   

Using our injury model, we have previously demonstrated an injury-

induced increase in inflammatory cytokines which have dual roles as SRSs 

(Bachstetter et al. 2013; Rowe et al. 2013c) as well as an increase in post-

traumatic sleep starting at the time of injury and persisting for the first six hours 

(Rowe et al. 2013c). In the current study, we show a significant increase in post-

traumatic sleep over the first six hours following injury in the acetaminophen-

treated brain-injured mice compared to the uninjured shams. This increase in 
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sleep is not present in the ibuprofen-treated brain-injured mice. Ibuprofen, an 

NSAID, is used to treat both pain and inflammation (Wyatt et al. 2012). Ibuprofen 

may inhibit the injury-induced immediate increase of SRS cytokines, thereby 

preventing the increase of post-traumatic sleep in the first six hours post-injury. 

Acetaminophen, an analgesic with weak anti-inflammatory properties, would not 

inhibit the upregulation of pro-inflammatory cytokines as seen by an increase in 

inflammation-induced sleep. However, the study design precluded 

measurements of cytokines prior to 24 hours.  Unexpectedly, the vehicle-treated 

brain-injured mice did not have an injury-induced increase in post-traumatic sleep 

as previously published by our lab (Rowe et al. 2013c). It is possible that the 

vehicle itself or stress from the injections contributed to this unexpected sleep 

profile. It is possible that using low doses of ethanol as the vehicle contributed to 

decreases in mean percent sleep. Clinical studies indicate low doses of ethanol 

have contributed to decreases in total sleep (Roehrs et al. 1999; Geoghegan et 

al. 2012). 

Further analysis of sleep profiles examined mean percent sleep during the 

dark cycle following injury, a time when nocturnal mice are usually awake. 

Disturbances during this period would be compared to excessive daytime 

sleepiness in humans, which is a commonly reported clinically after TBI 

(Castriotta et al. 2007; Verma et al. 2007; Baumann 2012). Data indicate that 

vehicle-treated brain-injured mice slept significantly less than uninjured shams 

during this time. In contrast, increases in mean percent sleep were observed in 

both ibuprofen and acetaminophen-treated brain-injured mice compared to 
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uninjured shams, although mean percent sleep in acetaminophen treated mice 

failed to reach significance (p=0.0567). It is possible increasing the number of 

mice in each group would reduce variability and this increase would reach 

significance. This drug-injury interaction resulting in increased dark cycle sleep 

models excessive daytime sleepiness not seen in vehicle-treated brain-injured 

mice. 

Inflammatory cytokines such as IL-1β, IL-6, and TNF-α promote sleep 

(Krueger et al. 1995; Fang et al. 1998; Krueger et al. 2001a; Yasuda et al. 2005; 

Krueger 2008). Our experimental model of concussion has shown elevated levels 

of pro-inflammatory cytokines peaking between three and nine hours post-injury 

(Bachstetter et al. 2013; Rowe et al. 2013c). In the current study, we measured a 

panel of inflammation related interleukins at 24 hours post-injury to investigate 

the presence or absence of inflammation at the time behavioral testing was 

completed. As expected, based on previous temporal associations of injury-

induced cytokine levels in our injury model, there were no significant changes in 

cytokine levels at 24 hours post-injury in any brain-injured group compared to 

uninjured shams. Inflammation mediates behavioral, biochemical, and systemic 

changes which collectively make up the acute phase response, characterized by 

fever and changes in metabolism and sleep patterns (Gabay and Kushner 1999). 

Our study measured cytokines identified as key regulators of the acute phase 

response including IL-1β, IL-6, IL-8, and TNFα (Gabay and Kushner 1999). In 

line with previous findings (Keshavarzi et al. 2012), there were no significant 

changes in these cytokines at 24 hours post-injury, suggesting that acute 



 123 

inflammation following experimental diffuse brain injury has resolved, which may 

or may not emerge at later time points. 

Overall, immediate pharmacological intervention following brain injury did 

not adversely impact functional outcome as indicated by performance on the 

rotarod and NSS task. Further investigation is needed to determine if multiple 

doses of over-the-counter analgesics attenuate injury-induced deficits. It is 

possible that chronic treatment may impact the course of recovery following TBI. 

Ibuprofen administered chronically over a four month period to rats subjected to 

FPI led to a decline in cognitive function, as measured by the Morris water maze 

(Browne et al. 2006b). Future studies should extend the functional evaluation 

beyond 24 hours post-injury. It is possible that the single dose given in this study 

may have improved or worsened functional outcome at later post-injury time 

points. 

Conclusion 

In the diffuse brain-injured mouse, immediate pharmacological 

intervention altered sleep profiles, but did not attenuate or exacerbate TBI-

induced functional deficits. This study is significantly limited by the single 24 hour 

time point. Our previous studies document a rapid increase in inflammatory 

cytokines; however, this study only investigates inflammation-related interleukin 

cytokine levels at 24 hours after injury. At this time point it is not possible to 

conclude whether the anti-inflammatory drug affected the expression of 

inflammatory cytokines or not. Future studies should measure cytokine levels at 

earlier time points (i.e. 6, 9 hours) in order to identify the relationship between the 
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tested anti-inflammatory drugs and their effect on inflammatory cytokine. 

Furthermore, inflammation at later time points, including the 24 hour point, should 

be evaluated using the presence of microglia activation. This would be a more a 

useful measure of inflammation that extends beyond the initial cytokine surge. 

While the one-time drug dose offers clinical relevance, it is possible chronic 

administration would have improved functional outcome. There may also be a 

more optimal one time dosing of the OTC drugs that was overlooked in the 

preparation of this study. Previous work in a mouse model of TBI suggests a 

lower one-time dose following TBI was beneficial to neurological outcome (Hall 

1985). We conclude that inhibition of immediate injury-induced inflammation may 

prevent an early increase in post-traumatic sleep but does not adversely affect 

functional outcome. Further investigation is needed to examine the role of 

immediate post-traumatic sleep on recovery following TBI.  
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Chapter Five: Figures 

                                                                     

                  

Figure 5.1 No adverse effects of pharmacological intervention on injury-

induced motor deficits on the rotarod task. 

(A) Injury significantly impaired motor performance as indicated by reduced 

latency to stay on the rotarod (mean ±SEM; F(3, 53)=3.688, p=0.0174), with 

significant differences between vehicle-treated and ibuprofen-treated brain-

injured mice compared to uninjured shams at 24 hours post-injury. There was no 

significant difference between acetaminophen-treated brain-injured mice 

compared to uninjured shams. (B)  Reduced distance traveled on the rotarod 

also indicated a significant injury-induced impairment in motor function (mean 

±SEM; F(3, 53)=3.909, p=0.0135). There was a significant difference between 
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vehicle-treated and ibuprofen-treated brain-injured mice compared to uninjured 

shams at 24 hours post-injury. There was no difference in distance traveled by 

acetaminophen-treated brain-injured mice compared to uninjured shams. (C) 

Injury significantly impaired improvement in latency to stay on the rotarod from 

baseline (mean ±SEM; F(3, 53)=4.553, p=0.0065) indicated by a difference 

between vehicle-treated and ibuprofen-treated brain-injured mice compared to 

uninjured shams at 24 hours post-injury. (D) Injury also significantly impaired 

improvement in distance traveled (mean ±SEM; F(3, 53)=6.017, p=0.0013) 

between vehicle-treated, ibuprofen-treated, and acetaminophen-treated brain-

injured mice compared to uninjured shams at 24 hours post-injury. (sham n=27, 

vehicle-treated injury n=10, ibuprofen-treated injury n=12, acetaminophen-treated 

injury n=8; *, p<0.05; **, p<0.01).   
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Figure 5.2 No adverse effects of pharmacological intervention on injury-

induced neurological impairments. 

Significant neurological impairments were detected between groups, as 

measured by modified neurological severity score (mean ±SEM; KW(4, 

57)=27.37, p<0.001). Dunn’s multiple comparisons test indicated vehicle-treated, 

ibuprofen-treated, and acetaminophen-treated brain-injured mice showed 

significantly higher NSS scores compared to uninjured shams 24 hours post-

injury. There were no significant changes in function between any brain-injured 

groups regardless of treatment. (sham n=27, vehicle-treated injury n=10, 

ibuprofen-treated injury n=12, acetaminophen-treated injury n=8; *, p<0.05; ***, 

p<0.001).   
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Figure 5.3 Acetaminophen-treated mice slept significantly more than 

uninjured mice in the six hours immediately following diffuse TBI. 

In the first six hours post-injury no significant change was detected in percent 

sleep between (A) vehicle-treated brain-injured (mean ±SEM; F(1, 30)=0.8886, 

p=0.3534) as well as (B) ibuprofen-treated brain-injured mice (mean ±SEM; F(1, 

30)=1.853, p=0.1835) compared to uninjured sham groups. (C) Acetaminophen-

treated brain-injured mice slept significantly more compared to uninjured shams 

(mean ±SEM; F(1, 29)=11.98, p=0.0017). Additionally, the difference in percent 

sleep between injured and uninjured mice was detected at 14:00. (sham n=26, 
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vehicle-treated injury n=6, ibuprofen-treated injury n=6, acetaminophen-treated 

injury n=5; **, p<0.01) 
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Figure 5.4 Vehicle-treated mice slept significantly less and ibuprofen-

treated mice slept significantly more during the first dark-cycle post-injury 

compared to uninjured shams. 

(A) In the first dark cycle post-injury there was a significant decrease in percent 

sleep between vehicle-treated brain-injured mice (mean ±SEM; F(1, 30)=4.455, 

p=0.0432) compared to uninjured shams. (B) Ibuprofen-treated brain-injured 

mice had a significant increase in mean percent sleep (mean ±SEM; F(1, 

30)=4.540, p=0.0410) compared to uninjured shams. (C) Increases in mean 

percent sleep of acetaminophen-treated brain-injured mice compared to 

uninjured shams failed to reach significance (mean ±SEM; F(1, 29)=3.939, 
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p=0.0567). (sham n=26, vehicle-treated injury n=6, ibuprofen-treated injury n=6, 

acetaminophen-treated injury n=5). 
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Table 5.1 Inflammation-related interleukin cytokines were not altered in the 

cortex at 24 hours post-injury. 

Data are presented as concentration levels (mean ±SEM; pg/ml/mg). No injury-

induced increases or decreases in cortical interleukins were detected 24 hours 

post injury. There were also no changes in cortical cytokine levels among vehicle 

and drug treated groups. IL-1α (F(1, 23)=1.996, p=0.1711), IL-1β (F(1, 

23)=0.01040, p=0.9197), IL-2 (F(1, 23)=0.2045, p=0.6554), IL-6 (F(1, 

23)=0.3326, p=0.5697), IL-10 (F(1, 23)=0.3581, p=0.5554), IL-12 (F(1, 

23)=0.1672, p=0.6864). IFNγ, IL-4, and TNFα levels were evaluated, but found to 

be undetectable. (vehicle sham n=5, acetaminophen sham n=5, ibuprofen sham 

n=5, vehicle- treated injury n=4, ibuprofen-treated injury n=5, acetaminophen-

treated injury n=5). 
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Chapter Six: Overall Conclusions 

The physiological consequences of TBI often develop into neurological 

impairments which impact outcome and quality of life of survivors. While acute 

sleep disturbances are among one of the most commonly reported clinical 

neurological impairments following TBI, there is a lack of investigations into the 

duration, manipulation, and implications of this post-traumatic sleep. The work of 

this thesis was designed as a first step in identifying the role of post-traumatic 

sleep in recovery from diffuse brain injury. Data from these studies outline an 

animal model of diffuse TBI which produces an increase in acute sleep coinciding 

with the frequently reported symptom of excessive sleepiness post-concussion in 

man. Further, the studies included in this thesis manipulated aspects of post-

traumatic sleep in order to identify its contribution to the post-injury recovery 

process. Combined, this creates a framework of preliminary studies on which 

future work in the field of sleep and TBI can be built. 

In summary, we have shown diffuse brain injury promotes acute post-

traumatic sleep in the mouse, and the secondary injury related inflammatory 

processes coincide with this increase. Second, we determined the injury-induced 

increase in sleep was present during the first week post-injury, but was not 

maintained thereafter using this injury model. Third, disrupting acute post-

traumatic sleep following diffuse TBI did not worsen functional outcome. Fourth, 

immediate pharmacological intervention altered sleep profiles, but did not 

attenuate or exacerbate TBI-induced functional deficits.  
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Cumulatively, our studies indicate experimental diffuse brain injury 

increased sleep immediately following injury, extending through the first week 

post-injury. Data showed the injury-induced increase in sleep is not a primary 

event. Analyzing post-traumatic sleep in five minute intervals showed the 

increase in mean percent sleep over the first-hour post-injury was time 

dependent. This supports the conclusion that injury-induced cellular cascades 

contribute to the overall sleep increase. If the primary impact solely contributed to 

post-traumatic sleep, then an immediate increase in post-traumatic sleep to a 

maximum level would have been observed.  

Secondary injury responses were temporally associated with the observed 

increase in post-traumatic sleep. IL-1β increased immediately following injury and 

returned to baseline by twelve hours. We also show activation of microglia at six 

hours post-injury. Activated microglia can contribute to the production of IL-1β, 

which in turn acts locally to affect neuronal assemblies, altering their functional 

status and acting on sleep regulatory circuits (Krueger et al. 2007). Our injury 

model induces an activation of microglia for the first seven days post-injury 

(Ziebell et al. 2012). It is likely that activated microglia act as effectors of circuit 

disruption, extended beyond local circuits to sleep regulatory circuits contributing 

to an increase in sleep (Krueger and Majde 1995; Krueger et al. 2001a), which 

did not persist in our model.  

Evidence of microglia activation during the first week post-injury (Ziebell et 

al. 2012) supports the hypothesis that microglia signaling processes may 

contribute to the overall increase in sleep during the first week post-injury which 
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is not extended into weeks two through five.  Chapter Three concludes our injury 

model does not successfully produce chronic sleep disturbances documented by 

clinical studies. This discordance of mouse data with clinical data suggests this 

mouse model does not adequately reflect the human condition. It is possible that 

using an animal that does not exhibit polycyclic sleep pattern, may be more 

appropriate to model the chronic sleep disturbance reported by TBI survivors. It 

is also possible a more severe experimental brain injury may be necessary to 

induce secondary damage that develops into sleep disturbances at chronic time 

points.  

The present body of work also demonstrated disruption of immediate post-

traumatic sleep does not worsen injury-induced motor or cognitive deficits. It is 

likely that both rodents and humans can recover from transient sleep disruption 

after brain injury without significant functional consequence. It is possible that 

sleep disruption prior to injury of longer durations could contribute to a worsened 

outcome. The results from this dissertation suggest an increase in immediate 

post-traumatic sleep, extending throughout the first week post-injury, is a natural 

response to brain injury. In light of the progress toward understanding the role of 

post-traumatic sleep in the recovery from TBI, further experimentation is required 

to determine the cellular benefit or detriment, if any, of acute post-traumatic 

sleep. While sleep may aid in recovery, from Chapter Four we conclude 

disruption of immediate post-traumatic sleep does not worsen outcome in our 

injury model.  
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Limitations of Chapter Four include the lack of injury induced cognitive 

deficits. Following diffuse brain injury mice did not show a cognitive deficit within 

the 7 day time point. It is possible that our injury model induces circuit disruption 

and that the reorganization of these circuits at later time points (i.e. 28 days) 

post-injury may produce measurable injury-induced cognitive deficits. Following 

diffuse brain injury with our model, minimal damage to the hippocampus 

contributes to a lack in cognitive deficit at 7 days. The limited cognitive deficit 

prevents us from determining if disrupting post-traumatic sleep worsened 

cognitive outcome. Cognitive behavior needs to be evaluated at multiple time 

points extending chronically to investigate the possibility of late onset cognitive 

deficits with our injury model. Establishing a timeline of the development of 

cognitive deficits following diffuse brain injury would facilitate future studies in 

order to draw a conclusion whether sleep disruption after TBI worsens cognitive 

outcome following diffuse injury. 

The studies presented in this dissertation also showed a single dose of 

analgesics administered following TBI is not sufficient to prevent the 

development of injury-induced deficits, nor did the administration exacerbate 

impairments. Following a mild concussion, OTC drugs are taken to relieve 

headache associated with the injury. These studies focus on the individuals 

relieving immediate pain as opposed to survivors self-medicating to treat chronic 

headaches associated with TBI.  Drug administration did contribute to changes in 

sleep profiles, with acetaminophen-treated brain-injured mice sleeping 

significantly more than uninjured shams over the first six hours post-injury. 
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Ibuprofen-treated and vehicle treated brain-injured mice did not have an increase 

in sleep compared to uninjured shams over the first six hours post-injury. These 

differences in acute post-traumatic sleep did not contribute to differences in 

functional outcome measures which are in line with our findings from Chapter 

Four which suggest disrupting sleep in the first six hours does not contribute to a 

worsened outcome. We conclude from Chapter Five that a single dose of OTC 

analgesics does not affect outcome following experimental diffuse brain injury.  

In the Chapter Five the study is significantly limited by the single 24 hour 

time point. Chronic dosing may have a different effect on outcome. The 24 hour 

time point is also limiting in the conclusions that can be draw from the 

inflammatory cytokines. Our previous studies document a rapid increase in 

inflammatory cytokines; however, this study only investigates inflammation-

related interleukin cytokine levels at 24 hours after injury. At this time point it is 

not possible to conclude whether the anti-inflammatory drug affected the 

expression of inflammatory cytokines or not. Future studies should measure 

cytokine levels at earlier time points (i.e. 6, 9 hours) in order to identify the 

relationship between the tested anti-inflammatory drugs and their effect on 

inflammatory cytokine. Furthermore, inflammation at later time points, including 

the 24 hour point, should be evaluated using the presence of microglia activation. 

This would be a more a useful measure of inflammation that extends beyond the 

initial cytokine surge. 

In summary, the studies presented in this dissertation have made 

progress towards our goal of informing clinical recommendations for the at-home 
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treated population of mildly concussed individuals. With a lack of research on TBI 

and acute sleep, it is imperative that an animal model is established in which 

scientific questions can be investigated. The studies from this thesis outline an 

injury model that accurately models the acute increase in sleep reported by TBI 

survivors. The studies of this thesis will help future investigators test hypotheses 

in the field of sleep and TBI. 

Future Experiments 

 Throughout these experiments some questions have been answered, at 

the same time we are now positioned with several exciting opportunities for 

future investigations. Potential future experiments were recommended in the 

discussion sections for each chapter; however, there are additional studies that 

could further the advancement of post-traumatic sleep following diffuse brain 

injury. Foremost would be the extension of time points to investigate if immediate 

sleep disruption has implications in functional outcome at chronic time points; 

here our behavioral assessments were restricted to the first week post-injury. 

Likewise, extending the behavioral evaluation in drug studies, as well as 

increasing the dosing regimen, would more fully evaluate pharmacological 

interventions following diffuse TBI.  

Our current studies indicate interleukin-1, a pro-inflammatory cytokine with 

dual roles as a sleep regulatory substance, is part of the acute inflammatory 

response following TBI. In order to further investigate the mechanistic link 

between inflammation and post-traumatic sleep, future experiments should focus 

on the interleukin-1 receptor antagonist (IL-1ra), which modulates inflammatory 



 140 

cascades by blocking the binding of IL-1 to its signaling receptor. If the 

transgenic overexpression of IL-1ra prevents the injury-induced increase in IL-1 

(an SRS), then it is hypothesized mice would sleep less after TBI in comparison 

to wild type brain-injured mice. 

Additionally, adding a second injury in the six hour window where acute 

post-traumatic sleep occurs would allow further evaluation of vulnerable time 

periods post-injury. Studies could investigate repetitive head injury that occurs 

within the first six hours compared to a second insult after the first six hours. 

Clinical studies would allow for further analysis of post-traumatic sleep following 

TBI. Monitoring the sleep of patients admitted to the emergency room with a TBI, 

through electroencephalography recordings, may provide clinical insight for 

injury-induced sleep. Sleep measurements could be evaluated and conclusions 

could be drawn based on injury severity and sleep duration as well as on the 

overall impact sleep has on injury prognosis. If sleep is differentially promoted 

(duration, stage etc.) between injury severities, evaluation of immediate post-

traumatic sleep could become a potential diagnostic tool for TBI. 

 Controversy exists in both the medical and lay communities regarding 

opposing suggestions for individuals not being allowed to sleep or frequently 

awoken following injury. The controversy is fueled by an absence of peer-

reviewed biomedical literature on the topic of acute post-traumatic sleep. The 

data from this thesis begin to dispel the controversies regarding sleep and brain 

injury. Collectively, these data suggest sleep is part of the natural recovery 

process and self-medicating with acetaminophen or ibuprofen and falling asleep 
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immediately following a mild concussion is an appropriate at-home treatment 

plan. 
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Appendix 

 

Anesthetics and analgesics in experimental traumatic brain injury: 

Selection based on experimental objectives 

 

Summary 

The use of animal modeling in traumatic brain injury (TBI) research is 

justified by the lack of sufficiently comprehensive in vitro and computer modeling 

that incorporates all components of the neurovascular unit. Valid animal 

modeling of TBI requires accurate replication of both the mechanical forces and 

secondary injury conditions observed in human patients. Regulatory 

requirements for animal modeling emphasize the administration of appropriate 

anesthetics and analgesics unless withholding these drugs is scientifically 

justified. The objective of this review is to present scientific justification for 

standardizing the use of anesthetics and analgesics, within a study, when 

modeling TBI in order to preserve study validity. Evidence for the interference of 

anesthetics and analgesics in the natural course of brain injury calls for 

consistent consideration of pain management regimens when conducting TBI 

research. Anesthetics administered at the time of or shortly after induction of 

brain injury can alter cognitive, motor, and histological outcomes following TBI. A 

consistent anesthesia protocol based on experimental objectives within each 

individual study is imperative when conducting TBI studies to control for the 

confounding effects of anesthesia on outcome parameters. Experimental studies 
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that replicate the clinical condition are essential to gain further understanding and 

evaluate possible treatments for TBI. However, with animal models of TBI it is 

essential that investigators assure a uniform drug delivery protocol that 

minimizes confounding variables, while minimizing pain and suffering. 

Introduction 

TBI is a serious health epidemic contributing to death and permanent 

disability. The United States Centers for Disease Control and Prevention 

estimate that 1.7 million individuals sustain a TBI annually in the United States 

alone (Faul et al. 2010a). There is currently no pharmacological treatment for 

individuals who suffer the lifelong neurological morbidities associated with TBI 

and efforts to lower the high incidence are primarily preventive. Animal models 

have been designed to parallel pathological processes in humans to reproduce a 

consistent injury (O'Connor et al. 2003). The validity of TBI animal models to the 

clinical condition makes them powerful tools in evaluating post-traumatic 

morbidity and testing rational therapeutic interventions after brain injury. When 

using research animals, the consideration of animal welfare is vital and pain and 

distress should be minimized. However, the introduction of anesthetics during 

experimental TBI and the use of analgesics for post-traumatic pain management 

can interfere with post-injury processes and functional outcomes. In this 

overview, we discuss how the use of anesthetic and analgesic compounds can 

affect evaluation of functional and histopathological outcomes following 

experimental TBI and how their selection or exclusion should be established 

based on experimental objectives. 
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Need for TBI models 

Federal research regulations require that all reasonable alternatives which 

could adequately answer the proposed question be explored before considering 

a study that incorporates animals. The complex neurovascular responses after 

TBI require investigations that involve the immune, circulatory, and central 

nervous systems of live animals. The long term consequences of diffuse TBI 

include a host of emotional, cognitive, and sensory deficits that can degrade 

quality of life. Specific aspects of brain injury, such as cell death, have been 

successfully modeled with in vitro neural injury (Morrison et al. 1998; Geddes et 

al. 2003). However, in vitro models cannot be sustained over chronic time points 

to evaluate injury progression, and lack the complex interactions among systems 

that characterize TBI neuropathy. Additionally, current computer models cannot 

reproduce the complicated pathophysiology of TBI. A wide range of well-

accepted animal models are available for neurotrauma investigation (see table 

A.1), and the use of whole animal models is justified for TBI research and 

deemed appropriate for conduct of pre-clinical studies (Chen et al. 2008). 

Therefore, neurotrauma research necessitates live animal models of human TBI, 

which must be employed within the existing animal welfare regulatory 

environment.  

Experimental Animal Models of TBI 

Traumatic brain injury is a complex process characterized by two 

pathological phases: cellular injury resulting from a primary mechanical impact 

and the ensuing secondary injury mediated by pathological processes (Werner 
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and Engelhard 2007).  A range of experimental models of TBI are used in 

research differing in primary injury mechanisms. Biomechanical mechanisms of 

TBI can be classified as either focal or diffuse injury (see table A.1). Each model 

can be used to answer specific scientific questions. The majority of experimental 

brain injury research relates to mild and moderate human injuries, which do not 

involve coma. For this reason, rodents are rarely kept in drug induced sedation or 

coma after injury. All brain injury models have been carried out beyond six 

months to evaluate histopathology, behavior, and biochemistry. 

Animal Welfare in TBI Research  

The privilege of conducting research on living animals demands high 

levels of responsibility. The use of animals in research must be justified from an 

ethical cost-benefit perspective where animal pain, morbidity, and mortality must 

be outweighed or balanced by the potential benefits of the experimental findings 

to human or animal health, advancement of knowledge, or good of society. 

Investigators are obligated to minimize the amount of pain and distress in 

animals utilized for research. Withholding anesthetics, analgesics, or tranquilizers 

can only be allowed if it is scientifically justified by investigators and subsequently 

approved by an institutional animal care and use committee (IACUC). Studies in 

which animals are subjected to painful or stressful conditions without the use of 

anesthetics, analgesics, or tranquilizers are classified by the USDA and Animal 

Welfare Act as Category E. Category E studies must show that less painful or 

stressful alternatives are not available, or that less painful/stressful endpoints 

cannot be reasonably substituted. Since human TBI occurs in the absence of 
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anesthetics and analgesics, which can confound outcomes (see below), 

scientifically well-justified, complete, and accurate studies using in vivo models of 

TBI can be classified as Category E procedures in which drugs can be withheld. 

Pain and TBI  

By its nature, TBI is associated with acute and chronic pain both in animal 

models and man (Walker 2004; Nampiaparampil 2008). The initial trauma elicits 

somatic pain, and secondary injury mechanisms contribute to visceral and 

neuropathic pain (Walker 2004). Measures to reduce nociception and distress 

should be implemented before, during, and following surgical procedures (deep, 

general anesthesia) and scientific objectives must be balanced against the use of 

anesthetics and analgesics in experimental animal models of TBI to protect 

animal welfare and prevent unnecessary suffering. Administration of anesthetics 

and analgesics can both positively and negatively influence post-injury processes 

and elicit functional changes in animal models of TBI, thus, these drugs should 

be selected based on experimental objectives. Consistent control of anesthetics 

and analgesics (drug choice and dose) throughout a study will help alleviate 

confounding factors that may influence post-injury outcome measures. The 

standardization of pain management within a study will also permit cross study 

comparisons. Pharmacological pain management immediately following 

experimental TBI in animal models can influence post-injury outcomes (see 

below), therefore selection should be based on IACUC approved experimental 

objectives. This review is intended to aggregate examples of research-based 

instances of anesthetic and analgesic interference on TBI outcome measures. 
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Anesthetics in TBI Research 

Anesthetics induce a variety of reversible effects depending on the 

concentrations at which they are delivered (Campagna et al. 2003). At lower 

concentrations inhaled anesthetics induce euphoria, amnesia, and hyperreflexia, 

but as concentrations increase anesthetics can lead to deep sedation and 

diminished somatic and autonomic responses to stimuli (Campagna et al. 2003). 

Inhaled anesthetics target both the spinal cord and the brain with differing 

mechanisms of action. The amnesic actions of inhaled anesthetics are mediated 

within the brain, depressing blood flow and glucose metabolism, with greater 

levels of depression in regions such as the thalamus and midbrain reticular 

formation (Campagna et al. 2003). Most inhaled anesthetics alter receptor-

mediated synaptic signaling and consequently synaptic transmission (Franks 

2008). Absence of movement in response to painful stimuli can be mediated by 

anesthetic action on the spinal cord, whereas general anesthesia results from 

supraspinal sites of action (Eger 1984; Campagna et al. 2003; Antognini et al. 

2005). Local anesthetics are used for topical pain management by reversibly 

inhibiting sodium currents and thereby nerve impulses (Strichartz 1976).  

When using animal models to replicate clinical TBI, anesthetics are 

routinely administered during surgical procedures to minimize pain and 

discomfort as well as provide immobilization. However, anesthetics used during 

the induction of experimental TBI can interfere with histopathological and 

functional outcomes. Commonly used anesthetics can provide varying degrees of 

neuroprotection, suggesting that the choice of anesthetics used in TBI models 
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can greatly alter post-injury outcome (Statler et al. 2006b). For example, 

isoflurane, an inhaled anesthetic commonly used in veterinary medicine, has 

been shown to facilitate functional outcome in comparison to other anesthetics 

following the controlled cortical impact (CCI) model of TBI in rats, possibly 

through modulation of excitotoxicity or an increase of cerebral blood flow (Statler 

et al. 2000). Rats anesthetized with isoflurane and subjected to CCI performed 

better on motor tests (beam balance, beam walking) as well as cognitive tests 

(Morris Water Maze) compared to rats anesthetized intravenously with fentanyl 

(Statler et al. 2000). Isoflurane also attenuated hippocampal damage, specifically 

to the CA1 region when compared to fentanyl (Statler et al. 2000). A follow-up 

comprehensive study evaluated cognitive outcome following CCI in the rat with 

the administration of several anesthetics and provided support that different 

anesthetics in experimental TBI critically influence outcome (Statler et al. 2006a). 

In all cases, animals treated with anesthetics differed from untreated animals. 

Isoflurane-treated rats exhibited the most improved latency times in the Morris 

Water Maze compared to rats injected with fentanyl or diazepam, which trended 

toward longer latencies to locate the platform (Statler et al. 2006a). The analysis  

of cresyl violet staining to investigate neuronal survival in brain tissue following 

CCI provided evidence that different anesthetics protect against cell death to 

varying extents. Again, isoflurane treatment demonstrated the most 

neuroprotection against hippocampal cell death, whereas rats treated with 

ketamine following CCI demonstrated the least protection against hippocampal 

cell death (Statler et al. 2006a). Isoflurane modulates excitotoxicity by reducing 
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the release of glutamate (Patel et al. 1995) as well as blocking NMDA receptors 

(Bickler et al. 1994) which may mechanistically contribute to neuroprotection 

(Statler et al. 2006a).  

Although preconditioning with isoflurane has produced beneficial effects in 

animal models of TBI (Statler et al. 2000; Statler et al. 2003; Statler et al. 2006a; 

Statler et al. 2006b), Hertle et al. recently published data suggesting deep 

sedation using isoflurane negatively influences neurological outcome in a rat 

model of TBI (Hertle et al. 2012). Rats preconditioned with isoflurane and 

subjected to CCI demonstrated increased cortical damage assessed by apoptotic 

cell markers and a worsened neurological outcome measured by a standardized 

inclined plane test (Hertle et al. 2012). Investigating the cerebral protective 

effects of anesthetics used in combination with hypothermia following diffuse TBI 

has shown that propofol may be a better treatment for head injury than isoflurane 

(Kahveci et al. 2001). Propofol, a general injectable anesthetic similar to the 

inhalant isoflurane (both of which  modulate GABA receptors (Kahveci et al. 

2001; Krasowski et al. 2001)), used in combination with moderate hypothermia in 

rats subjected to diffuse impact-acceleration TBI significantly lowered intracranial 

pressure (ICP) and significantly raised cerebral perfusion pressure (CPP) 

compared to isoflurane combined with hypothermia (Kahveci et al. 2001). 

Investigation of ICP and CPP after diffuse impact-acceleration brain injury in rats 

has shown that sevoflurane, a general inhalational anesthetic, raised ICP and 

caused a more pronounced decrease in CPP than observed with isoflurane 

treated animals (Goren et al. 2001). The authors proposed that different 
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cerebrovasodilatatory effects of each anesthetic can account for the effects in 

ICP (Goren et al. 2001). Similarly, administration of anesthetics themselves can 

affect physiological conditions which influence outcome. Anesthetic delivery can 

affect normal ventilation and carbon dioxide levels which consequently alter ICP, 

CPP, and cerebral blood flow (CBF) (Reinert et al. 2003; Asgari et al. 2011; 

Haubrich et al. 2011).  

TBI initiates a cascade of secondary injury processes that define the 

disease. Studies including but not limited to the ones above have shown that 

administration of anesthetics shortly after experimental TBI can act on these 

secondary injury mechanisms to mitigate or possibly exacerbate damage. The 

administration of propofol in conjunction with the closed head injury model in rats 

alters the synthesis of nitric oxide, ultimately reducing lipid peroxidation (Ozturk 

et al. 2008). Yurdakoc et al. has shown similarly that, isoflurane given after 

closed head trauma may protect against lipid peroxidation (Yurdakoc et al. 2008). 

Altering lipid peroxidation, a secondary injury mechanism characteristic of TBI, 

provides evidence that specific anesthetics may have neuroprotective effects on 

head injuries through pathophysiological pathways and may change the natural 

course of brain injury in animal models.  

Anesthetic compounds which act as antagonists at the N-methyl-D-

aspartate (NMDA) receptor may also exhibit neuroprotective properties 

(McIntosh et al. 1990; Jevtovic-Todorovic et al. 1998; Kawaguchi et al. 2005) that 

improve outcome from TBI (Smith et al. 1993). Rats subjected to fluid percussion 

injury and administered ketamine, an injectable non-competitive NMDA receptor 
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antagonist, showed preserved memory function (Smith et al. 1993). However, 

intraperitoneal injections of ketamine given to rats before CCI did not prevent TBI 

induced intracerebral cytokine production and had minimal effect on the early 

local inflammatory response (Ward et al. 2011). Thus, ketamine can alter the 

course of brain injury through mechanisms other than inhibition of inflammation. 

The administration of anesthetics during TBI modeling interferes with 

neurological outcome. Anesthetics can be neuroprotective, making them 

beneficial treatments for TBI, however, contradicting studies conclude that 

anesthetic administration may worsen outcome. For this reason, the use of 

anesthetics in TBI modeling should be standardized within studies to provide 

consistent timing and dosage. Compounds should be selected based on specific 

experimental objectives for each study in accordance with local and federal 

regulations. It is suggested that anesthetics be carefully controlled in studies 

exploring the natural course of brain injury to preserve validity. 

Analgesics in TBI Research 

Ethical standards have been developed and enforced to protect the well-

being of animals used for biomedical research. This includes proper pain 

management following surgical procedures. However, post-surgical analgesics 

have been shown to be neuroprotective and may confound the evaluation of 

post-injury outcome measures (McIntosh et al. 1994; Raghupathi and McIntosh 

1998). Conversely, chronic administration of analgesics following TBI has led to 

worsened outcomes (Browne et al. 2006a). Comprehensive dosing paradigms of 

common analgesic drugs have not been determined in all experimental TBI 
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models. It is also not well known the degree of interference from drugs, whether 

subtle or substantial, on molecular, functional and behavioral outcomes. This 

inconsistency supports the claim that analgesics must be carefully considered 

and tested before being administered following TBI in order to maintain a valid 

and reproducible animal model.  

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly 

administered to mitigate inflammation and accompanying pain. During the 

inflammatory process, cyclooxygenase (COX) enzymes facilitate the conversion 

of arachidonic acid into inflammation-mediating prostaglandins (Choi et al. 2009; 

Strauss 2010). NSAIDs act to reduce prostaglandin synthesis by inhibiting the 

production of COX-1 and COX-2 (Simmons et al. 2004). NSAIDs and specific 

COX-2 inhibitors are effective in suppressing inflammation, possibly by interfering 

with secondary injury mechanisms. 

As an apparent contradiction to the acute neuroprotective actions of some 

NSAIDs, their chronic administration following TBI can negatively influence 

functional outcome (Browne et al. 2006a). Ibuprofen administered chronically 

over a 4 month period to rats subjected to fluid percussion injury led to a 

worsening in cognitive function measured by the Morris Water Maze (Browne et 

al. 2006a). These results show the complexity of analgesic administration post-

injury and lend caution to the selection and duration of analgesics in animal 

models of TBI.  
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Carprofen, an NSAID, administered to mice after a closed head injury 

(CHI) results in improvements in neurobehavioral function (Thau-Zuchman et al. 

2012). Mice receiving carprofen following TBI exhibited a more rapid and 

pronounced improvement of neurological deficits measured with the Neurological 

Severity Score when compared to mice receiving vehicle treatment (Thau-

Zuchman et al. 2012). In addition, rats receiving nimesulide, a COX-2 inhibitor, 

after a diffuse TBI using the impact acceleration model showed improvement in 

functional and motor deficits (Cernak et al. 2002). Treatment with nimesulide 

improved mean escape latencies over the post-injury assessment period in 

comparison to vehicle-treated controls using the Barnes circular maze to assess 

spatial reference memory. Motor deficits, measured using the rotarod test, were 

also attenuated after treatment with nimesulide following TBI (Cernak et al. 

2002). Similarly, 5,5-dimethyl-3(3-fluorophenyl)-4(4-methylsulfonyl)phenyl-2(5H)-

furanone (DFU), a selective COX-2 inhibitor, has been shown to improve 

neurological reflexes and memory when administered following cortical impact in 

the rat, as compared to administration of a vehicle control (Gopez et al. 2005). 

Thus, analgesics can interfere with the natural course of the injury toward an 

improved recovery of function. 

Endogenous and administered opioids attenuate responses to many 

painful stimuli in both humans and animals. TBI causes increased release of 

endogenous opiate receptor agonists which contribute to the trauma-induced 

secondary injury cascade (Hall et al. 1987; McIntosh et al. 1987a; Zohar et al. 

2006). For example, morphine administration immediately following TBI in the 
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mouse confounds the evaluation of cognitive deficits as measured in the Morris 

Water Maze task (Zohar et al. 2006), where mice treated with morphine 

immediately post-injury were protected from long–term but not short term 

cognitive deficits (Zohar et al. 2006). Morphine has also been shown to reduce 

behavioral deficits when given to rats just prior to diffuse brain injury induced by 

fluid percussion (Hayes et al. 1990; Hamm et al. 1993; Lyeth et al. 1993). 

Morphine given in combination with scopolamine, a muscarinic receptor 

antagonist, provided even greater protection on motor performance (Lyeth et al. 

1993). These results suggest that administering opioids following TBI alters the 

natural course of brain injury. 

Further, the administration of analgesics following TBI not only alters 

functional outcome, but also alters the pathophysiological course of the injury. 

Brain-injured mice treated with carprofen had a significant decrease in lesion size 

post-injury (Thau-Zuchman et al. 2012). Carprofen-treated mice showed 

increased cell proliferation and gliogenesis in comparison to vehicle-treated 

controls (Thau-Zuchman et al. 2012). The administration of other analgesics, 

such as nimesulide, has been shown to alter cellular mechanisms following 

experimental TBI (Cernak et al. 2002). Rats subjected to an impact acceleration-

induced TBI exhibited a marked increase in COX-2 protein expression in the 

hippocampus (Cernak et al. 2002). Based upon the hypothesis that COX-2 

mediates the production of prostanoids (including prostaglandins), inhibiting 

COX-2 expression with an analgesic should attenuate aspects of secondary 

injury and neurological deficits following experimental TBI (Cernak et al. 2002). 
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Administration of other analgesics following TBI in the rat attenuated the amount 

and intensity of immunoreactive COX-2 in the cortex as compared to vehicle-

treated controls (Gopez et al. 2005). Rats administered analgesics after TBI have 

also shown a decreased number of activated caspase-3-immunoreactive cells in 

both the injured cortex and hippocampus (Gopez et al. 2005). Thus, the 

administration of analgesics post-injury can prevent cell death and alter the 

pathophysiology of experimental TBI. For these reasons, it is imperative to 

design analgesic protocols for post-operative care that do not inhibit the 

processes being evaluated following experimental TBI. 

While analgesics and anesthetics have great potential to confound the 

natural of course brain injury, justified pain management in experimental animals 

remains of utmost concern. Investigators have the obligation to minimize animal 

pain and distress in their research protocols. Perioperative pain management 

should be based on experimental objectives in light of the potential confounds on 

assessment outcomes.  

Conclusions 

Valid animal modeling of TBI requires accurate replication of both the 

mechanical forces and secondary injury conditions experienced by human 

patients. The interference of anesthetics and analgesics in the natural course of 

brain injury calls for special consideration of pain management drugs when 

conducting TBI research. Our analysis of these studies indicates that anesthetics 

administered at the time of or shortly after the impact alter outcome following TBI. 

To protect animal welfare anesthetics cannot be completely avoided, however, a 
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consistent (drug and dose) intra-study anesthesia protocol is imperative when 

conducting TBI studies. Similarly, studies indicate the administration of 

analgesics to control perioperative pain may alter outcome following TBI. Due to 

the variability among traumatic brain injury models and experimental outcome 

measures, uniform recommendations for anesthesia and analgesia are not 

practical. For this reason, recommendations for specific drug choice and dosing 

were not included in this review. Investigators are urged to establish a standard 

of animal care specific to individual experimental objectives based on pilot study 

data. 

Additional Considerations 

Differences in outcome among physically similar individuals following 

equivalent traumatic brain injuries can be particularly noticeable. Minimizing 

confounds of analgesic and anesthetic drugs are only one step toward 

conducting valid and reproducible animal modeling of TBI. Differences in weight, 

sex, age at injury, and genetic background can influence recovery by altering 

how individuals sustain the mechanical forces and endure the secondary injury 

processes of brain injury. 

The Appendix is published in the following review:  
Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, and Lifshitz J. (2013). Using 
anesthetics and analgesics in experimental traumatic brain injury. 
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Appendix: Tables 

Model Description Refs 

Fluid Percussion 
Injury (FPI) 

Fluid pressure pulse delivers mechanical forces onto 
exposed brain. Can be performed laterally or centrally. 
Requires craniectomy. 

(McIntosh et 
al. 1987b; 

McIntosh et 
al. 1989; 

Thompson et 
al. 2005; 

Alder et al. 
2011) 

Controlled 
Cortical Impact 

(CCI) 

Computer controlled pneumatic piston drives into 
cortex, creating a focal injury. Requires craniectomy. 

(Lighthall 
1988; Dixon 
et al. 1991; 
Saatman et 

al. 2006) 

Blast Injury 
Compressed gas delivers pressure wave, resulting in 
a diffuse injury. Minimal surgical preparation. 

(Cheng et al. 
2010; Reneer 

et al. 2011; 
Risling and 
Davidsson 

2012) 

Impact 
Acceleration 

Injury 

Weight is dropped onto head supported by foam pad. 
Scalp incision may be required. 

(Heath and 
Vink 1995; 

Schmidt et al. 
2000; Pandey 

et al. 2009) 

Weight Drop 
Injury 

Weight is dropped onto head supported by metal 
base. Scalp incision may be required. 

(Feeney et al. 
1981; Foda 

and 
Marmarou 

1994; 
Marmarou et 

al. 1994; 
Kilbourne et 

al. 2009) 

Penetrating 
Injury 

Projectile is driven into the brain causing a focal injury. 
Requires craniectomy. 

(Williams et 
al. 2005; 

Williams et al. 
2006; 

Plantman et 
al. 2012) 

 

Table A.1 Traumatic brain injury models. 

Summary table of representative animal models of traumatic brain injury 

including mechanism of injury and degree of surgical invasiveness.  
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Drug 

TBI 

Model Behavioral Histological Physiological Refs 

Isoflurane CCI + +   
(Statler et al. 

2000; Statler et 

al. 2006b) 

Isoflurane CCI     + 

(Bickler et al. 

1994; Patel et 

al. 1995; Statler 

et al. 2006a) 

Isoflurane CCI - -   
(Hertle et al. 

2012) 

Isoflurane WD     + 
(Yurdakoc et al. 

2008) 

Propofol IA     + 
(Kahveci et al. 

2001) 

Sevoflurane IA     - 
(Goren et al. 

2001) 

Propofol WD     + 
(Ozturk et al. 

2005) 

Ketamine FPI +     
(Smith et al. 

1993) 

Ketamine CCI + + - 
(Ward et al. 

2011) 

Carprofen WD + +   
(Thau-Zuchman 

et al. 2012) 

Nimesulide IA +   + 
(Cernak et al. 

2002) 

DFU CCI +   + 
(Gopez et al. 

2005) 

Morphine WD +     
(Zohar et al. 

2003) 

Morphine FPI +     
(Lyeth et al. 

1993) 

Scopalamine FPI +     
(Lyeth et al. 

1993) 

Ibuprofen FPI -     
(Browne et al. 

2006a) 
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Table A.2 Anesthetic and Analgesic Effects 

Summary table of anesthetic and analgesic effects on the natural course of 

behavioral, histological, and physiological outcomes from experimental brain 

injury. Experimental objectives assessed using (+) to indicate improvement or 

positive outcome and (-) to indicate worsening or negative outcome. 

CCI=Controlled Cortical Impact, WD=Weight Drop, IA=Impact Acceleration, 

FPI=Fluid Percussion Injury. 
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