13,179 research outputs found

    Mechanism of reduced sintering temperature of Al2O3–ZrO2 nanocomposites obtained by microwave hydrothermal synthesis

    Get PDF
    A novel method to obtain Al2O3–ZrO2 nanocomposites is presented. It consists of the co-precipitation step of boehmite (AlO(OH)) and ZrO2, followed by microwave hydrothermal treatment at 270 °C and 60 MPa, and by calcination at 600 °C. Using this method, we obtained two nanocomposites: Al2O3–20 wt % ZrO2 and Al2O3–40 wt % ZrO2. Nanocomposites were characterized by Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. Sintering behavior and thermal expansion coefficients were investigated during dilatometric tests. The sintering temperatures of the nanocomposites were 1209 °C and 1231 °C, respectively—approximately 100 °C lower than reported for such composites. We attribute the decrease of the sintering temperature to the specific nanostructure obtained using microwave hydrothermal treatment instead of conventional calcination. Microwave hydrothermal treatment resulted in a fine distribution of intermixed highly crystalline nanoparticles of boehmite and zirconia. Such intermixing prevented particle growth, which is a factor reducing sintering temperature. Further, due to reduced grain growth, stability of the θ-Al2O3 phase was extended up to 1200 °C, which enhances the sintering process as well. For the Al2O3–20 wt % ZrO2 composition, we observed stability of the zirconia tetragonal phase up to 1400 °C. We associate this stability with the mutual separation of zirconia nanoparticles in the alumina matrix

    Aminated TiO2 nanotube as a Photoelectrochemical Water Splitting photoanode

    Full text link
    The present work reports on the enhancement of TiO2 nanotubes photoelectrochemical water splitting rate by decorating the nanostructure with an amine layer in a hydrothermal process using diethylenetriamine (DETA). The aminate coated TiO2 tubes show a stable improvement of the photoresponse in both UV and visible light spectrum and under hydrothermal conditions, 4-fold increase of the photoelectrochemical water splitting rate is observed. From intensity modulated photocurrent spectroscopy (IMPS) measurements significantly faster electron transport times are observed indicating a surface passivating effect of the N-decoration.Comment: In Catalysis Today, Available online 21 July 201

    Structure, bonding and morphology of hydrothermally synthesised xonotlite

    No full text
    The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies

    Hydrothermal stability of Ru/SiO2-C: A promising catalyst for biomass processing through liquid-phase reactions

    Get PDF
    In this work, structural and morphological properties of SiO2-C composite material to be used as support for catalysts in the conversion of biomass-derived oxygenated hydrocarbons, such as glycerol, were investigated in liquid water under various temperatures conditions. The results show that this material does not lose surface area, and the hot liquid water does not generate changes in the structure. Neither change in relative concentrations of oxygen functional groups nor in Si/C ratio due to hydrothermal treatment was revealed by X-ray photoelectron spectroscopy (XPS) analysis. Raman analysis showed that the material is made of a disordered graphitic structure in an amorphous silica matrix, which remains stable after hydrothermal treatment. Results of the hydrogenolysis of glycerol using a Ru/SiO2-C catalyst indicate that the support gives more stability to the active phase than a Ru/SiO2 consisting of commercial silica

    Influence of temperature and time on the Eu3+ reaction with synthetic Na-Mica-n (n = 2 and 4)

    Get PDF
    Bentonite is accepted as the best clay material for the engineered barrier of Deep Geological Repositories (DGRs). The performance of clay as the main component of the engineered barrier in the DGR has been intensively studied and the structure of the selected clay mineral play a crucial role. In this sense, a new family of synthetic swelling silicates, Na-Mica-n, with tuned layer charge (n) values between 2.0 and 4.0 per unit cell has recently been synthesized and a general synthetic method has been reported. These swelling high-charge micas could be highly valuable for the decontamination of harmful cations. The ability of these micas to immobilize Eu3+ under subcritical conditions has been probed. The adsorption was in both non-specific sites (cation exchange mechanism) and specific sites (chemical reaction or surface defects adsorption). Moreover, its adsorption capacity, under the same conditions is higher than in saponite and far superior to the bentonites.Junta de Andalucía P12-FQM-567European Union 29178

    Decoration of titania nanofibres with anatase nanoparticles as efficient photocatalysts for decomposing pesticides and phenols

    Get PDF
    Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO2-(B) fibres decorated with anatase nanocrystals were studied. It was found that anatase coated TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior photocatalysts but could also be readily separated from the slurry after photocatalytic reactions due to its fibril morphology

    Fiber structures from hydrothermal treatment of cellulose nanocrystalline

    Get PDF
    Cellulose is the most abundant and inexpensive material available for chemical synthesis. Hydrothermal treatment of cellulose nanocrystal can resemble the nature carbonization process of carbon species. Recently, carbon nanotubes are reported to be successfully synthesized from hydrothermal treatment of carbon species. We then carefully carry the hydrothermal treatment of cellulose nano crystalline and analysis the product. Fibers resemble single wall carbon nanotube structure were observed under Atomic Force Microscopy. Raman Spectroscopy and Transmission Electron Microscopy results show more information about the fibers, which may further prove our assumption to use cellulose nano crystalline to synthesis single wall nanotube in mild hydrothermal treatment conditions

    Biodiesel production from olive-pomace oil of steam-treated alperujo

    Get PDF
    Recently interest has been revived in the use of plant-derived waste oils as renewable replacements for fossil diesel fuel. Olive–pomace oil (OPO) extracted from alperujo (by-product of processed olives for olive oil extraction), and produced it in considerable quantities throughout the Mediterranean countries, can be used for biodiesel production. A steam treatment of alperujo is being implemented in OPO extraction industry. This steam treatment improves the solid–liquid separation by centrifugation and facilitates the drying for further extraction of OPO. It has been verified that the steam treatment of this by-product also increases the concentration of OPO in the resulting treated solid, a key factor from an economic point of view. In the present work, crude OPO from steam-treated alperujo was found to be good source for producing biodiesel. Oil enrichment, acidity, biodiesel yield and fatty acid methyl ester composition were evaluated and compared with the results of the untreated samples. Yields and some general physicochemical properties of the quality of biodiesel were also compared to those obtained with other oils commonly used in biodiesel production. As for biodiesel yield no differences were observed. A transesterification process which included two steps was used (acid esterification followed by alkali transesterification). The maximum biodiesel yield was obtained using molar ratio methanol/triglycerides 6:1 in presence of sodium hydroxide at a concentration of 1% (w/w), reaction temperature 60 °C and reaction time 80 min. Under these conditions the process gave yields of about 95%, of the same order as other feedstock using similar production conditions.Junta de Andalucía (P06-AGR- 01906)Dr. Guillermo Rodríguez is grateful to the JAE-Doc Programme (CSIC) co-funded by European Social Fund (Operational Programme ESF 2007-2013

    Microwave-Assisted Extraction of Brewers' Spent Grain Arabinoxylans

    Get PDF
    Brewers´ spent grain (BSG) is a by-product from beer industry that can be exploited as a source of arabinoxylo-oligosaccharides (AXOS) with prebiotic activity. In this study, microwave-assisted extractions were performed during 2 min at 140-210°Cin order to evaluate the feasibility of this extraction technology for quantitative extraction of the arabinoxylans (AX) or AXOS from BSG. The AX yield increasedwith the increase of the temperature in the range used. The best condition of extraction of the AXwas 210 ºC during 2 min, allowing the extraction of 43% of total AX. These AX showed structural variability which allow to define specific types of compounds for different applications and uses depending on the extraction conditions used

    Effect of Hydrothermal Treatment Temperature on the Properties of Sewage Sludge Derived Solid Fuel

    Full text link
    High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C) on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT) followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater
    corecore