1,970 research outputs found

    THERMAL CONDUCTIVITY OF SOME GRANITE SAMPLES

    Get PDF
    This report discusses the research that has been done on order to understand Thermal Conductivity of Granite and starts to make a relationship on any occurrence in the reservoir Thermal conductivity is one of the important parameters that describe heat flow. The objective of this research is to measure thermal conductivity of several granite samples from two different locations which is from Ipoh-Lumut Highway and Lata Kinjang.and also to see the other parameters that affect thermal conductivity. Scientists from Newcastle University were investigating potential sources of geothermal energy, which is becoming increasingly popular in the search for lowcarbon energy resources. Granite can be particularly useful as it can be rich in radioactive elements that generate heat as they decay. Hopes have been raised for the viability of geothermal energy in the UK, after exploratory drilling in Weardale, County Durham, revealed record levels of permeability in granite. The scientists believe the find is not unique to the Weardale granite, as there are similar granites worldwide which may display equally high levels of permeability. This research focuses more on lab activities such as coring, thin section, XRD (X-ray Difrraction), XRF (X-ray fluorescence), Thermal Conductivity, Microscopy Polarization Image via Thin section and FE SEM

    New geochemical and isotopic constraints on the genesis of the Oliveira Azeméis granitoid melts (Porto-Tomar Shear Zone, Iberian Variscan Chain, Central-Western Portugal).

    Get PDF
    The Porto-Tomar Shear Zone (PTSZ) is a very important tectonic structure that separates, in central-western Portugal, two of the major tectonic units of the Iberian Variscan Chain: the Ossa-Morena Zone, to the west, and the Central Iberian Zone, to the east. The Oliveira de Azeméis area lies in the northern sector of the PTZC and it is characterized by the occurrence of strongly deformed granitoids. Country rocks are dominantly pelitic metasediments which, according to recent geological mapping (Pereira et al., 2007), belong to the Precambrian Lourosa Formation and the Ordovician São João de Ver Formation. Using Rb-Sr whole-rock isotopic data, Pinto (1979) proposed an age of 379 12 Ma for the Oliveira de Azeméis granitoids. In this work, new results were obtained on these granitoids in the area between the villages of Travanca and Curval, especially in the Sacramento quarry. In this critical outcrop, strongly deformed two-mica granite (displaying S-C structures, with dextral NNW-SSE shear planes) pass into diatexites and metatexites with garnet, cordierite and sillimanite-bearing melanosomes. Leucosomes seem to have mainly granitic s.s. compositions, but cm-thick bands of leucotonalite were also found. Major element geochemistry of granite samples shows the following ranges: 71.4% SiO2 74.2%; 0.74% Fe2O3t 2.48%; 0.35% MgO 0.60%; 0.49% CaO 1.32%; 2.90% Na2O 3.11%; 4.70% K2O 5.47%; 1.17 ASI 1.36. Trace element data reveal a strong fractionation between highly incompatible LILE and less incompatible HFSE (248 PM normalized Rb/Y 671) and between LREE and HREE (18.6 PM normalized La/Lu 54.7). These features, in particular the peraluminous composition, the high K contents and the distinct rare-earth fractionation suggest that the Oliveira de Azeméis granites are mostly the result of partial melting of metasediments with a large pelitic component and that garnet is a likely residual phase. Isotope geochemistry data show that the previously reported isochron should not correspond to a true age since the 87Sr/86Sr(380Ma) obtained in the granite samples analysed in the present work are very low, varying from 0.6978 to 0.7063, with an average value of 0.7023, which are unrealistic in S-type granitic melts. Probably, the 380 Ma date is the consequence of mixing of different melt source components in the samples used in its calculation. Using the granite whole-rock samples collected in this work, a 328 28 Ma errorchron (MSWD=4.0; initial 87Sr/86Sr=0,7106 0.0045) is now obtained. Assuming a typical syn-tectonic Variscan age of 320 Ma for the studied granites, 87Sr/86Sr and "Nd range from 0.7100 to 0.7133 and from -6.5 to -7.9, respectively. A micaschist sample collected in this area displays 87Sr/86Sr(320Ma) = 0.7146 and "Nd(320Ma) = -9.2. Therefore, the Sr and Nd isotope composition agrees with the clearly dominance of a melt component derived by anatexis of a metapelitic source. Two samples of a garnet-bearing (and comparatively zircon-rich) diatexite show 87Sr/86Sr(320Ma) values (0.7120 and 0.7102) similar to those found in granites, but have higher "Nd(320Ma): -2.0 and -1.6. This may be explained by either (a) the involvement of a different source in the genesis of this diatexite or (b) the occurrence of Nd isotope disequilibrium during the melting process, with the preservation of high 143Nd/144Nd ratios in refractory phases such as garnet and/or zircon. A Rb-Sr wr-feldspar-biotite-muscovite isochron of 301.2 5.6 Ma (MSWD=0.42; initial 87Sr/86Sr=0,71516 0.00074) in a granite sample is interpreted as recording the final stage of the operation of the shear zone, which was accompanied by mica recrystallization. Funding: projects Petrochron (PTDC/CTE-GIX/112561/2009) and Geobiotec (PEst-C/CTE/UI4035/2011). References Pereira E. et allia (2007) – Carta Geológica 1/50000 de Oliveira de Azeméis. INETI, Lisboa. Pinto M.S. (1979) – PhD Thesis. Univ. Leed

    THERMAL CONDUCTIVITY OF SOME GRANITE SAMPLES

    Get PDF
    This report discusses the research that has been done on order to understand Thermal Conductivity of Granite and starts to make a relationship on any occurrence in the reservoir Thermal conductivity is one of the important parameters that describe heat flow. The objective of this research is to measure thermal conductivity of several granite samples from two different locations which is from Ipoh-Lumut Highway and Lata Kinjang.and also to see the other parameters that affect thermal conductivity. Scientists from Newcastle University were investigating potential sources of geothermal energy, which is becoming increasingly popular in the search for lowcarbon energy resources. Granite can be particularly useful as it can be rich in radioactive elements that generate heat as they decay. Hopes have been raised for the viability of geothermal energy in the UK, after exploratory drilling in Weardale, County Durham, revealed record levels of permeability in granite. The scientists believe the find is not unique to the Weardale granite, as there are similar granites worldwide which may display equally high levels of permeability. This research focuses more on lab activities such as coring, thin section, XRD (X-ray Difrraction), XRF (X-ray fluorescence), Thermal Conductivity, Microscopy Polarization Image via Thin section and FE SEM

    Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France)

    Get PDF
    Most of the hydrothermal uranium (U) deposits from the European Hercynian belt (EHB) are spatially associated with Carboniferous peraluminous leucogranites. In the southern part of the Armorican Massif (French part of the EHB), the Guérande peraluminous leucogranite was emplaced in an extensional deformation zone at ca. 310 Ma and is spatially associated with several U deposits and occurrences. The apical zone of the intrusion is structurally located below the Pen Ar Ran U deposit, a perigranitic vein-type deposit where mineralization occurs at the contact between black shales and Ordovician acid metavolcanics. In the Métairie-Neuve intragranitic deposit, uranium oxide-quartz veins crosscut the granite and a metasedimentary enclave. Airborne radiometric data and published trace element analyses on the Guérande leucogranite suggest significant uranium leaching at the apical zone of the intrusion. The primary U enrichment in the apical zone of the granite likely occurred during both fractional crystallization and the interaction with magmatic fluids. The low Th/U values (18Owhole rock = 9.7–11.6‰ for deformed samples and δ18Owhole rock = 12.2–13.6‰ for other samples) indicate that the deformed facies of the apical zone underwent sub-solidus alteration at depth with oxidizing meteoric fluids. Fluid inclusion analyses on a quartz comb from a uranium oxide-quartz vein of the Pen Ar Ran deposit show evidence of low-salinity fluids (1–6 wt.% NaCl eq.), in good agreement with the contribution of meteoric fluids. Fluid trapping temperatures in the range of 250–350 °C suggest an elevated geothermal gradient, probably related to regional extension and the occurrence of magmatic activity in the environment close to the deposit at the time of its formation. U-Pb dating on uranium oxides from the Pen Ar Ran and Métairie-Neuve deposits reveals three different mineralizing events. The first event at 296.6 ± 2.6 Ma (Pen Ar Ran) is sub-synchronous with hydrothermal circulations and the emplacement of late leucogranitic dykes in the Guérande leucogranite. The two last mineralizing events occur at 286.6 ± 1.0 Ma (Métairie-Neuve) and 274.6 ± 0.9 Ma (Pen Ar Ran), respectively. Backscattered uranium oxide imaging combined with major elements and REE geochemistry suggest similar conditions of mineralization during the two Pen Ar Ran mineralizing events at ca. 300 Ma and ca. 275 Ma, arguing for different hydrothermal circulation phases in the granite and deposits. Apatite fission track dating reveals that the Guérande granite was still at depth and above 120 °C when these mineralizing events occurred, in agreement with the results obtained on fluid inclusions at Pen Ar Ran. Based on this comprehensive data set, we propose that the Guérande leucogranite is the main source for uranium in the Pen Ar Ran and Métairie-Neuve deposits. Sub-solidus alteration via surface-derived low-salinity oxidizing fluids likely promoted uranium leaching from magmatic uranium oxides within the leucogranite. The leached out uranium may then have been precipitated in the reducing environment represented by the surrounding black shales or graphitic quartzites. As similar mineralizing events occurred subsequently until ca. 275 Ma, meteoric oxidizing fluids likely percolated during the time when the Guérande leucogranite was still at depth. The age of the U mineralizing events in the Guérande region (300–275 Ma) is consistent with that obtained on other U deposits in the EHB and could suggest a similar mineralization condition, with long-term upper to middle crustal infiltration of meteoric fluids likely to have mobilized U from fertile peraluminous leucogranites during the Late Carboniferous to Permian crustal extension events

    Experimental study of the transport properties of rough self-affine fractures

    Get PDF
    An experimental study of the transport properties of fluid-saturated joints composed of two complementary rough fracture surfaces, translated with respect to each other and brought in contact, is reported. Quantitative roughness measurements on different fractured granite samples show that the surfaces have a self-affine geometry from which the dependence of the mean aperture on the relative displacement of fracture surfaces kept in contact can be predicted. Variations of the hydraulic and electrical conductances of the joint are measured as functions of its mean aperture. A simple parallel plane model accounts for the global trend of the measurements, but significant deviations are observed when a relative lateral displacement of the surfaces is introduced. A theoretical analysis of their origin shows that they are due both to the randomness of the aperture field and to a nonzero local slope of the surface near the injection hole; the corresponding conductivity fluctuation amplitudes have power law and linear variations with the lateral displacement, and are enhanced by the radial injection geometry

    REE Comparison Between Muncung Granite Samples and Their Weathering Products, Lingga Regency, Riau Islands

    Full text link
    DOI:10.17014/ijog.3.3.149-161The increasing demand for Rare Earth Elements (REE) is related to the continous development of technology, and these elements are used in modern equipments. REE can occur in igneous and sedimentary rocks in significant amounts as primary deposits, whereas the secondary REE deposit can be produced by intensive lateritic weathering of bedrocks under the tropical or subtropical climate. Lateritic process can increase REE concentration from sub-economic levels in host rocks to be more valuable. Muncung Granite is located in a tropical area of Lingga Regency, Riau Islands Province. REE occurs in the Muncung Granite and in weathered layers (saprolite, laterite, and soil). ICP-MS was applied to measure the REE content in all samples of this study. The average REE content of the Muncung Granite is 265 ppm with Eu anomaly in REE's spider diagrams. Lateritization process has increased REE content by more than four times compared to that in the Muncung Granite. Ce and Eu anomalies in weathered layers can be associated with weathering process and initial REE contents in the host rock. Ce anomaly in a laterite layer is found to have a negative correlation to REE total enrichment. The REE level in the Muncung Granite is higher than the content in the soil and saprolite layers, but lower than that in the laterite

    Strength, Toughness, Damage And Fatigue Of Rock

    Get PDF
    Assessment of rock mechanical properties depends on sample size and testing methodologies. Even for samples cored from the same rock outcrop the difference in properties appears to be sensitive to the local thermal and stress histories of the rock structure. Variations in the fracture toughness, unconfined compressive strength and tensile strength of a suite of granite samples, when tested using different procedures, are discussed in terms of experimental errors of the loading system as well as the thermal history

    Hydrofracturing tests on granite samples using a true triaxial device equipped with acoustic emission sensors

    Get PDF
    [Abstract:] We present a series of tests performed on granite samples using a true triaxial device designed and built at the Rock Mechanics Laboratory (University of A Coruña). The experiments were performed using cubic rock samples of 150 mm-edge, which were loaded to different stress conditions (σh < σh < σy < 45 MPa) on each loading axis. The device is based on a stiff steel frame that can be coupled to a servo-hydraulic testing machine that provides de vertical stress (av), while two high-pressure pumps are used to deliver the lateral stress (σh and ah). An additional high-pressure pump is used to inject the fluid (mineral oil) into the rock sample at a low constant-flow rate. The aluminium loading platens, which are bevelled at the edges to avoid interaction among adjacent faces, have holes and grooves to introduce acoustic emission sensors that allow the location of fracture propagation. The specimens were drilled using a 6 mm drill bit until reaching the geometrical centre. Then, a 1/8" (~3.18 mm) stainless steel tube is glued to the samples with epoxy. Strain measurements during the experiments were conducted using four strain gages attached to the orthogonal faces of the specimens. The system was further equipped with three LVDTs to account for the bulk displacement on each axis. Our results suggest a linear relationship between the breakdown pressure and the confining stress under hydrostatic conditions but no clear correlation in non-hydrostatic stress regime.Ministerio de Asuntos Económicos y Transformación Digital, MINECO; BIA2017- 87066-
    • …
    corecore