219,354 research outputs found

    Emergency Department Pain Management Following Implementation of a Geriatric Hip Fracture Program

    Get PDF
    Introduction: Over 300,000 patients in the United States sustain low-trauma fragility hip fractures annually. Multidisciplinary geriatric fracture programs (GFP) including early, multimodal pain management reduce morbidity and mortality. Our overall goal was to determine the effects of a GFP on the emergency department (ED) pain management of geriatric fragility hip fractures. Methods: We performed a retrospective study including patients age ≥65 years with fragility hip fractures two years before and two years after the implementation of the GFP. Outcomes were time to (any) first analgesic, use of acetaminophen and fascia iliaca compartment block (FICB) in the ED, and amount of opioid medication administered in the first 24 hours. We used permutation tests to evaluate differences in ED pain management following GFP implementation. Results: We studied 131 patients in the pre-GFP period and 177 patients in the post-GFP period. In the post-GFP period, more patients received FICB (6% vs. 60%; difference 54%, 95% confidence interval [CI] 45–63%; p<0.001) and acetaminophen (10% vs. 51%; difference 41%, 95% CI 32–51%; p<0.001) in the ED. Patients in the post-GFP period also had a shorter time to first analgesic (103 vs. 93 minutes; p=0.04) and received fewer morphine equivalents in the first 24 hours (15mg vs. 10mg, p<0.001) than patients in the pre-GFP period. Conclusion: Implementation of a GFP was associated with improved ED pain management for geriatric patients with fragility hip fractures. Future studies should evaluate the effects of these changes in pain management on longer-term outcomes

    Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    Get PDF
    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavio

    A novel expression cassette for the efficient visual selection of transformed tissues in florists' chrysanthemum (Chrysanthemum morifolium Ramat.).

    Get PDF
    Constructs carrying visual reporter genes coupled with efficient promoters could facilitate the process of identification and selection of stable transformants in recalcitrant crops. Here, a novel construct utilizing a ribulose-1,5-bisphosphate carboxylase (RbcS) promoter combined with the green fluorescent protein (GFP) reporter gene to initiate very high expression of GFP in florist's chrysanthemum (Chrysanthemum morifolium Ramat.) was described. Based on this expression cassette, a new regeneration protocol using leaf discs as explants was developed for the Agrobacterium-mediated transformation of Chrysanthemum genotype ‘1581’, and a transformation efficiency of 7% was obtained. The expression of two different GFP constructs targeted to either cytosol or plastids was compared in transgenic lines. Both GFP constructs were expressed at such a high level that the green fluorescence dominated red fluorescence in the leaf tissues, allowing easy observation and microdissection of transformed tissues even without a GFP filter. Under normal light, plants with GFP targeted to plastids had a light green phenotype deriving from the high GFP expression. Quantitative reverse transcriptional PCR analysis showed that the plastid targeted construct with intron had significantly higher steady state transcript levels of GFP mRNA. This novel expression cassette may allow direct visual selection of transformed tissues independent of antibiotic selection in a wide range of plant specie

    Protein Mobility in the Cytoplasm of Escherichia coli

    Get PDF
    The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock, and S. Leibler, Curr. Biol. 7:809-812, 1997). The apparent diffusion coefficient, Da, of GFP in E. coli DH5alpha was found to be 7.7 ± 2.5 µm^2/s. A 72-kDa fusion protein composed of GFP and a cytoplasmically localized maltose binding protein domain moves more slowly, with Da of 2.5 ± 0.6 µm^2/s. In addition, GFP mobility can depend strongly on at least two factors: first, Da is reduced to 3.6 ± 0.7 µm^2/s at high levels of GFP expression; second, the addition to GFP of a small tag consisting of six histidine residues reduces Da to 4.0 ± 2.0 µm^2/s. Thus, a single effective cytoplasmic viscosity cannot explain all values of Da reported here. These measurements have implications for the understanding of intracellular biochemical networks

    High-salinity growth conditions promote tat-independent secretion of tat substrates in Bacillus subtilis

    Get PDF
    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway

    A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications.

    Get PDF
    RNA research and therapy relies primarily on synthetic RNAs. We employed recombinant RNA technology toward large-scale production of pre-miRNA agents in bacteria, but found the majority of target RNAs were not or negligibly expressed. We thus developed a novel strategy to achieve consistent high-yield biosynthesis of chimeric RNAs carrying various small RNAs (e.g. miRNAs, siRNAs and RNA aptamers), which was based upon an optimal noncoding RNA scaffold (OnRS) derived from tRNA fusion pre-miR-34a (tRNA/mir-34a). Multi-milligrams of chimeric RNAs (e.g. OnRS/miR-124, OnRS/GFP-siRNA, OnRS/Neg (scrambled RNA) and OnRS/MGA (malachite green aptamer)) were readily obtained from 1 l bacterial culture. Deep sequencing analyses revealed that mature miR-124 and target GFP-siRNA were selectively released from chimeric RNAs in human cells. Consequently, OnRS/miR-124 was active in suppressing miR-124 target gene expression and controlling cellular processes, and OnRS/GFP-siRNA was effective in knocking down GFP mRNA levels and fluorescent intensity in ES-2/GFP cells and GFP-transgenic mice. Furthermore, the OnRS/MGA sensor offered a specific strong fluorescence upon binding MG, which was utilized as label-free substrate to accurately determine serum RNase activities in pancreatic cancer patients. These results demonstrate that OnRS-based bioengineering is a common, robust and versatile strategy to assemble various types of small RNAs for broad applications

    In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction

    Get PDF
    We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies

    Characterization of Pax3 and Sox10 Transgenic Xenopus Laevis Embryos as Tools to Study Neural Crest Development

    Get PDF
    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos
    corecore