1,572 research outputs found

    Perancangan Dan Simulasi Full Bridge Inverter Lima Tingkat Dengan Dual Buck Converter Terhubung Jaringan Satu Fasa

    Full text link
    Inverter merupakan perangkat elektronika daya yang berfungsi mengonversi sumber searah menjadi bolak-Balik. Full bridge inverter adalah satu jenisnya yang mampu menghasilkan tegangan tiga tingkat jika menggunakan teknik modulasi unipolar. Penambahan sirkuit dual buck converter pada full bridge inverter mampu menghasilkan tegangan dalam lima tingkat. Dua saklar pada rangkaian dual buck converter switching pada frekuensi tinggi 20 kHz, sedangkan empat saklar pada full bridge inverter switching pada frekuensi rendah 50 Hz. Teknik modulasi in phase disposition PWM (PDPWM) digunakan untuk mengatur penyalaan saklar dual buck converter. Keluaran inverter lima tingkat dibandingkan dengan tiga tingkat. Total harmonic distortion tegangan (THDV) dan arus (THDi) inverter lima tingkat bernilai 23.2281 % dan 23.0975 %, sedangkan inverter tiga tingkat sebesar 51.9302 % dan52.2458 %. Ketika daya 1004.08 watt disumbangkan ke jala-jala, inverter lima tingkat menghasilkan power factor senilai 0.99 dan THDi 4.1 %. Pada sumbangan daya yang sama, inverter tiga tingkat menghasilkan power factor sebesar 0.919 dan THDi bernilai 45.64 %

    Design And Development Of Unipolar SPWM Switching Pulses For Single Phase Full Bridge Inverter Application [TK7871.85. B151 2008 f rb].

    Get PDF
    Tesis ini menerangkan rekabentuk dan pembangunan denyut pensuisan SPWM unipolar yang dibangunkan secara kaedah digital untuk penyongsang satu fasa tetimbang penuh. In this thesis, a design and development of unipolar SPWM switching pulses with digital technique for single phase full bridge inverter is presented

    Novel Single Phase Dc-Ac Inverter Topology With Enhanced Power Quality

    Get PDF
    Inverters are widely employed in many application such as photovoltaic (PV), uninterruptable power supply (UPS) etc for the conversion of direct current (DC) power to alternating current (AC) power. The key challenges in design and implementation of inverters are the realization of higher efficiency and good quality output power. To achieve these, this thesis presents a novel single phase DC-AC inverter topology with enhanced power quality. In this topology, a switch is connected at the lower arm of the full-bridge switches to control the output voltage across the full-bridge inverter. The switch at the lower arm of the full-bridge controls the output of full-bridge inverter by increasing or reducing the voltage level at the lower arm of the bridge. This switch of lower arm is controlled by a high frequency sinusoidal pulse width modulation (SPWM) switching signal. While the power switches of full-bridge inverter operate with square wave switching signal at a frequency of 50 Hz. The proposed topology produces a clean sinusoidal output waveform with low distortion and with minimum switching losses, thus yielding high quality output at high efficiency. Next, a random switching hybrid pulse width modulation (HPWM) inverter is developed in order to give a comparison between the proposed inverter and the random switching HPWM inverter. Both computer simulation and experiment were carried out to verify the performance of proposed topology. From the presented results, it is shown that proposed topology has superior performance compared to its conventional counterpart

    SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS

    Get PDF
    The paper presents a single-stage high-power-factor electronic ballast for metal halide lamps. The proposed ballast integrates a buck-boost converter, a buck converter and a full-bridge inverter into a single power conversion circuit. The buck-boost converter served as a power factor corrector (PFC) is designed to operate at discontinuous conduction mode (DCM) to achieve nearly a unity power factor at the input line. By adjusting the duty-ratio of the active switches of the PFC, the lamp power is remained at rated value for universal input voltage ranged from 90 Vrms to 264 Vrms. The four active switches of the full-bridge inverter, an inductor and a capacitor form a bidirectional buck converter which supplies a low frequency square-wave currentfor the lamp at to avoid the lamp from happing acoustic resonance. The circuit operation is analyzed in detail to derive the design equations. A prototype electronic ballast for a 70 W metal halide lamp is built and tested

    Design of FPGA- Based SPWM Single Phase Full-Bridge Inverter

    Get PDF
    Nowadays power inverters serve as an important emergency power supply system in events of main power supply failure. The AC output voltage of a power electronic inverter is usually non-sinusoidal and hence has a high harmonic content. Sinusoidal Pulse Width Modulation (SPWM) scheme is normally used to convert the DC power supply into AC power supply by comparing the reference voltage waveform with the triangular waveform known as carrier. SPWM provides a way to reduce the total harmonic distortion of load current. The objective of this paper is to demonstrate a SPWM switching scheme by using Altera DE2-70 board. In this SPWM technique, a sinusoidal reference voltage waveform is compared with the triangular carrier voltage to generate the on and off switching states. This switching scheme will trigger the gate of the power switch. In this paper, the SPWM switching strategies implemented using Altera DE2-70 (Cyclone II EP2C35F672C6) with 16 bit serial configuration devices. The switching between reference and carrier waveforms of SPWM is obtained by using Matlab software. Simulation on the design waveform is conducted using Quartus II software tools provided by Altera. The output frequency of SPWM is 50 Hz and the design is limited to two values of modulation indices which are 0.5 and 0.75

    Single Phase Full Bridge Inverter Control as Reactive Power Compensator

    Get PDF
    The drop of local load voltage on the distribution system is an indicator that the system experiences reactive power shortage. It can be overcome by an inverter controlled to compensate reactive power. The benefit of the inverter is that it is easily configured with a variety of functions. This paper presents the control configuration of inverter as reactive power compensators. The method used is a current control system of the proportional integrator (PI) – dq based transformation. This method generates reactive power by regulating the current domain (Id, ref = 0), while the current domain (Iq,ref) is set according to the need. Phase locked loop (PLL) is added so that the inverter can be synchronized well with the grid. According to the analysis of the PI current control, the local load voltage is stable at 219.88 Vrms and the reactive power generated by the inverter is 298 VAR with steady state error 0.11% of the reference power without oscillation

    Perancangan dan Simulasi Full Bridge Inverter Lima Tingkat dengan Dual Buck Converter Terhubung Jaringan Satu Fasa

    Get PDF
    Inverter merupakan perangkat elektronika daya yang berfungsi mengonversi sumber searah menjadi bolak-balik. Full bridge inverter adalah satu jenisnya yang mampu menghasilkan tegangan tiga tingkat jika menggunakan teknik modulasi unipolar. Penambahan sirkuit dual buck converter pada full bridge inverter mampu menghasilkan tegangan dalam lima tingkat. Dua saklar pada rangkaian dual buck converter switching pada frekuensi tinggi 20 kHz, sedangkan empat saklar pada full bridge inverter switching pada frekuensi rendah 50 Hz. Teknik modulasi in phase disposition PWM (PDPWM) digunakan untuk mengatur penyalaan saklar dual buck converter. Keluaran inverter lima tingkat dibandingkan dengan tiga tingkat. Total harmonic distortion tegangan (THDV) dan arus (THDi) inverter lima tingkat bernilai 23.2281 % dan 23.0975 %, sedangkan inverter tiga tingkat sebesar 51.9302 % dan52.2458 %. Ketika daya 1004.08 watt disumbangkan ke jala-jala, inverter lima tingkat menghasilkan power factor senilai 0.99 dan THDi 4.1 %. Pada sumbangan daya yang sama, inverter tiga tingkat menghasilkan power factor sebesar 0.919 dan THDi bernilai 45.64 %

    High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications

    Get PDF
    An isolated photovoltaic micro-inverter for standalone and grid-tied applications is designed and implemented to achieve high efficiency. System configuration and design considerations, including the proposed active-clamp forward-flyback resonant converter for the DC-DC stage and a dual-frequency full-bridge inverter for the DC-AC stage, are analyzed and discussed. A prototype microinverter system is built and tested. Experimental results verify the feasibility of the proposed system, which achieves 95% power conversion efficiency at full load

    Loss Unbalance Issue of the Full-bridge Inverter with Reactive Power Injection

    Get PDF

    A Cascaded Inverter For Transformerless Single Phase Grid Connected Photovoltaic Systems

    Get PDF
    The design and control issues associated with the development of single phase grid-connected photovoltaic system incorporating a multi-level cascaded inverter are discussed in this paper. The advantages of transformer less inverter over a full-bridge inverter in combination with a line frequency transformer which is a common topology has been described in this report. Attractive features of multi-level inverters have been studied and descriptive details of photovoltaic system along with control and grid synchronization has been given this paper. Simulation results are presented to demonstrate the suitability of the control method
    corecore