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REKABENTUK DAN PEMBANGUNAN DENYUT PENSUISAN SPWM 
UNIPOLAR UNTUK KEGUNAAN PENYONGSANG SATU FASA 

TETIMBANG PENUH 
 

 
ABSTRAK 

 
Tesis ini menerangkan rekabentuk dan pembangunan denyut pensuisan SPWM unipolar 

yang dibangunkan secara kaedah digital  untuk penyongsang satu fasa tetimbang penuh.  Satu 

strategi kawalan pensuisan diusulkan untuk digunakan pada penyongsang satu fasa. Kelebihan 

utama strategi kawalan pensuisan ini adalah ia tidak memerlukan litar tambahan untuk 

penjanaan masa mati (dead time) bagi suis penyongsang. Melalui teknik tersebut, satu 

persamaan untuk menentukan sudut denyut PWM diterbitkan dan kiraan sudut denyut pensuisan 

dilakukan. Denyut pensuisan dengan frekuensi gelombang pembawa 1 kHz hingga 5 kHz 

dengan nisbah pemodulatan amplitud antara 0.1 hingga 1 dikira berdasarkan persamaan yang 

diterbitkan. Mikropengawal jenis Atmel AT89S52 digunakan untuk menjana denyut pensuisan 

tersebut. Penyongsang satu fasa tetimbang penuh berkadaran 300W dibina untuk menguji 

keberkesanan  denyut pensuisan yang dijana melalui mikropengawal. Pengukuran bagi denyut 

yang terkecil dan terbesar bagi setiap frekuensi pembawa diukur bagi memastikan ia mengikut 

nilai kiraan.  Melalui ujikaji, didapati bahawa denyut pensuisan dengan gelombang pembawa 

berfrekuensi 5 kHz dengan nisbah pemodulatan amplitud  1 mempunyai profil jumlah herotan 

harmonik yang rendah iaitu 2.3% dan masa mati  yang lebih baik berbanding dengan denyut 

pensuisan yang lain. Denyut pensuisan tersebut digunakan untuk menguji prestasi penyongsang 

satu fasa tetimbang penuh yang dibina. Keputusan ekperimen menunjukkan bahawa jumlah 

herotan harmonik (THD) bagi gelombang arus keluaran adalah kurang daripada 3% dan 

kecekapan penyongsang pula adalah sekitar 89% pada beban rintangan 300W. Pengujian kesan 

masa mati terhadap jumlah herotan harmonik juga dilakukan dan didapati bahawa jumlah 

herotan harmonik  masih lagi di paras 3% walaupun tempoh masa mati ditingkatkan sebanyak 

seratus peratus.  
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DESIGN AND DEVELOPMENT OF UNIPOLAR SPWM SWITCHING PULSES 
FOR SINGLE PHASE FULL BRIDGE INVERTER APPLICATION 

 

ABSTRACT 

In this thesis, a design and development of unipolar SPWM switching pulses with 

digital technique for single phase full bridge inverter is presented. A switching strategy was 

proposed to be used for full bridge single phase inverter. The main advantage of this strategy is 

that it does not required additional circuit to generated inverter’s dead time. In this technique, 

the PWM equation was develop and the switching pulse was calculated. The PWM switching 

pulses with carrier frequency range from 1 kHz to 5 kHz and the amplitude modulation ratio 

range from 0.1 until 1 were calculated based on the equations derived. The AT89S52 Atmel 

microcontroller was used to program the switching pulses. The single phase full bridge inverter 

rated 300W has been developed in order to test the switching pulses generated by 

microcontroller. The measurement of the smallest and biggest pulse for each carrier frequency 

has been done in order to make sure the pulses follow the calculated value.  Based on the 

experiment, the switching pulse with carrier frequency of 5 kHz and amplitude modulation ratio 

of 1 produced THD value of 2.3% and better dead time period. This switching pulse is used to 

test the single phase full bridge inverter performance. The result shows that the THD of the 

output current is less than 3% and the efficiency was found to be 89% for 300W pure resistive 

load. The effect of dead time was also tested and the THD was found to be less than 3% even 

though the dead time period is increased by 100%.   
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CHAPTER 1 

INTRODUCTION 

 

1.0 Background 

 The application of semiconductor devices in electric power field has been steadily 

increasing with the passage of time. Power semiconductor devices constitute the heart of the 

modern power electronics, and are being extensively used in power electronic converters in the 

form of a matrix of on or off switches, and help to convert power from one form to another. There 

are four basic conversion functions that normally can be implemented such as AC to AC, AC to 

DC, DC to AC and DC to DC.  

 

Inverter is one of the converter families which are called DC to AC converter. It converts 

DC power to AC power to a symmetric AC output voltage at desired magnitude and frequency 

(Ahmed, 1999). Inverter is widely used in industrial applications such as variable speed AC motor 

drives, induction heating, standby power supplies and uninterruptible power supplies. The DC 

power input of inverter is obtained from the existing power supply network. It can be a battery, 

photovoltaic, wind energy, fuel cell or other DC sources.  

  

 One of the switching mode power conversion is inverter had been discussed and new 

techniques of switching strategies was implemented in circuit designed. All switching strategies 

mostly concentrate in term of reducing the power losses, reduce the total harmonic distortion and 

increasing the efficiencies of the inverter. For the purpose, many researchers have been studying 

and analyzing types of switches that can be used in inverter. The power semiconductor devices such 

as the diode, thyristor, triac and power transistor are widely used in power applications as switching 

devices (Cyril, 1993). Two types of power transistors used for switching devices are Bipolar 

Junction Transistor (BJT) and Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Both 
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of power transistors have a different characteristic where, MOSFET have faster switching speed and 

BJT have higher capability (Hua ,  1995). The important criteria of power transistors in circuit 

applications also depend on the parameters of rating, conduction losses, switching losses, switching 

times, control strategy and finally are cost (Cyril, 1993).  

 

 SPWM or sinusoidal pulse width modulation is widely used in power electronics to digitize 

the power so that a sequence of voltage pulses can be generated by the on and off of the power 

switches (Ismail , 2006a). The pulse width modulation inverter has been the main choice in power 

electronic for decades, because of its circuit simplicity and rugged control scheme (Bellar et al., 

1998). SPWM switching technique is commonly used in industrial applications (Ismail , 2006b) 

(Rashid, 2004). SPWM techniques are characterized by constant amplitude pulses with different 

duty cycle for each period. The width of this pulses are modulated in order to obtain inverter output 

voltage control and to reduce its harmonic content. Sinusoidal pulse width modulation or SPWM is 

the most common method in motor control and inverter application. Conventionally, to generate the 

signal, triangle wave as a carrier signal is compared with the sinusoidal wave, whose frequency is 

the desired frequency. 

 

The proposed method used in this design is to replace the conventional method with the use 

of Atmel microcontroller. The use of the microcontroller brings flexibility to change the real-time 

control algorithms without further changes in hardware. It will reduce the overall cost and has a 

small size of control circuit for the single phase full bridge inverter. 

 

1.1 Problem Statement 

 Inverter is one of power conversion device that widely used in the world to convert DC 

input voltage to AC output voltage. The output voltage waveforms of ideal inverters should be 
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sinusoidal. However, the waveform of practical inverter is non-sinusoidal and contains harmonics. 

Then, for this project, it should get closer sinusoidal waveform within +- 5% harmonics contains. 

Harmonic contents in inverter output depends more to number of pulses per cycle. As an example, 

square wave switching method will produce more harmonic contents in inverter output compared to 

pulse width modulation switching technique. This is due to number of pulses per cycle of pulse 

width modulation can be modified on the frequency of triangular carrier waveform. The frequency 

of triangular waveform can be modified from lower frequency to higher frequency. If higher 

frequency is used, the number of pulses per cycle also increased and at the same time it will reduce 

the harmonic contents of the inverter.   

 

 In switching losses problem, the number of pulses per cycle also affected. The use of high 

switching technique will contribute to the high power losses and it also needs to take care on the 

inverter switching design.  The following factors are to be considered in order to meet the 

requirement. 

i. Cost of equipment 

ii. Size of filter 

iii. Total harmonic distortion 

iv. Power loss in switching elements 

 

In order to fulfill the requirement, the new switching technique had been analyzed and 

recommended in this thesis, namely SPWM which is generated by Atmel microcontroller. The 

various frequency triangular carriers with different amplitude modulation ratio SPWM signal had 

been programmed and tested in single phase inverter circuit in order to find the best switching 

signal. 
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1.2 Objective of the project  

 The aim of this research is mainly to design and develop the SPWM switching pulse for 

single phase full bridge inverter application. The main objectives of this research can be 

summarized as:  

i. To  design and implement switching strategy for inverter application,  which are 

simple, reliable, low cost and high efficiency 

ii. To use the power electronics simulation software, SIMCAD or PeSIM version 4.1 to 

simulate the designed circuits with variety switching conditions to obtain optimum 

performance 

iii. To develop Sinusoidal Pulse Width Modulation switching pulses with Unipolar Voltage 

Switching using Atmel microcontroller. 

iv. To develop a complete prototype of inverter with 300W power rating for photovoltaic 

application 

v. To compare and analyze the simulated results and the prototype inverter unit. 
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1.3 Methodology 

 The flowchart as shown in Figure 1.1 indicates the methodology process used in this 

research which consist of five main stages.  

 

 

                                     Figure 1.1: The research methodology 

 

1.4 Thesis Outline 

 This thesis consists of six chapters, including this chapter and appendices.  

Chapter 1 introduces the background of the research, problem statement, objective of the project, 

methodology and the overall thesis outline.  

 

 Chapter 2 discusses on the operation of a single phase inverter, pulse width modulation 

(PWM) scheme including natural sampling, regular symmetrical, asymmetrical sampling and PWM 

switching scheme including bipolar voltage switching and unipolar voltage switching scheme. In 

this chapter also, review of the previous methods for single phase inverter will discuss.  
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 Chapter 3 it will discuss on the design of switching pulses for single phase inverter, 

including inverter switching strategy and its operation, designing the SPWM switching pulses for 

digital technique implementation and results of the calculated pulse for carrier frequency from 1 

kHz to 5 kHz with amplitude modulation ratio from 0.1 to 1.  

 

 Chapter 4 will discuss on the design software and hardware for prototype single phase 

inverter. It is involved software and hardware development. The flow of the software development 

for switching pulses is given detail in this chapter. It is including AT89S52 Atmel microcontroller, 

designing the switching pulses with microcontroller, software development, assembler and ISP 

programmer. In this chapter also, hardware development prototype for single phase inverter is 

clearly described. It is including switching element, gate driver, low-pass filter and transformer.  

 

 In Chapter 5 experimental and simulation results are compared to verify the usefulness of 

the switching pulses and single phase inverter. Finally, conclusion and a suggestion will be 

presented in Chapter 6.  
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CHAPTER 2 

SINGLE PHASE INVERTER AND ITS SWITCHING SCHEME 

 

2.0 Introduction 

   In this chapter, types of inverter, inverter topology and its operation will be reviewed. The 

concept of Pulse Width Modulation (PWM) technique on single phase inverter is described and it 

covered different types of PWM strategies which were applied in inverter circuit.  

 

2.1 Inverter 

 Inverters can be found in a variety of forms, including half bridge or full bridge, single 

phase or three phase, current source (CSI) or voltage source (VSI) and two-level or multilevel. The 

single phase voltage-source inverters can be further divided into three general categories, pulse 

width modulation type, square wave type ( also known as six step inverters) and single phase 

inverters with voltage cancellation. 

 

 In pulse width modulated (PWM) inverters, the input DC voltage is essentially constant in 

magnitude and the AC output voltage has controlled magnitude and frequency. Therefore the 

inverter must control the magnitude and the frequency of the output voltage. This is achieved by 

PWM of the inverter switches and hence such inverters are called PWM inverters. 

 

 For square-wave inverters, the input DC voltage is controlled in order to adjust the 

magnitude of the output AC voltage. Therefore the inverter has to control only the frequency of the 

output voltage. The output AC voltage has a waveform similar to a square-wave.  

 

In single phase inverter with voltage cancellation, it is possible to control the magnitude and 

the frequency of the inverter output voltage with a constant DC input voltage for a different switch 
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mode that is not pulse width modulated. The inverter output voltage waveform is similar to square 

wave. This technique works only with single-phase inverters. 

 

As mentioned earlier, all inverters can be operated by controlled turn-on and turn-off 

semiconductor devices such as BJT, MOSFET, IGBT and others. Modern inverters used IGBT as 

the main power control devices (Mohan, 2003) but MOSFET is also used especially for lower 

voltage, power ratings and application that required high efficiency and high switching frequency. 

 

The output voltage waveform of ideal inverters should be sinusoidal but in reality, the 

waveforms of inverters are non sinusoidal and contain certain harmonics. The typical definition for 

a harmonic is a sinusoidal voltage and currents at frequencies that are integer multiples of the main 

generated (or fundamental) frequency ( Arrillaga, 2003). Harmonic distortion levels can be 

characterized by the complete harmonic spectrum with magnitudes and phase angles of each 

individual harmonic component (Lee, 1999). It is also common to use a single quantity that is 

known as Total Harmonic Distortion (THD) (Sankaran, 2001). It is measure of the magnitude of 

harmonic distortion. For current, the distortion values must be referred to a constant base ( e.g the 

rated load current or demand current ) rather than the fundamental component. This provides a 

constant reference while the fundamental can vary over a wide range. The problem of the harmonics 

in low voltage distribution systems is considered important. Harmonics now represent a major 

design consideration in power electronic applications.  

 In (Rashid, 2004), the harmonics contents in output voltage of inverter can be minimized 

significantly by switching techniques. Nowadays the best switching technique is still under 

investigation but pulse-width modulated (PWM) is chosen as a switching technique purposely to 

reduce the harmonics in inverter output.    
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2.2   Single Phase Inverter Topology 

 There are two circuit topologies commonly used in single phase inverter circuit. Half bridge 

and full bridge configuration are the main topologies used in low and high power applications. For 

certain low power application, the half bridge may suffice but the full bridge is more convenient for 

adjustment of the output voltage by pulse width modulation techniques (Mohan, 2003).   

 

2.2.1 Half Bridge Inverter 

 The power circuit topology and output example for half bridge inverter is shown in Figure 

2.1. The inverter circuit consists of two controlled static switching elements. The switching 

elements can be transistor, MOSFET, IGBT and extra. The switching elements are labeled S1 and 

S2 and each of switches has an anti-parallel diode. It is evident from the presence of the diodes that 

the switching devices S1 and S2 need not have the capability to block the reverse voltages. If the 

switching element is power MOSFET, there may not be a need to use the anti-parallel diodes 

because the devices structure has an anti-parallel diode (Joseph, 1995). 

 

 The basis operation of half bridge inverter can be divided into two operations. If switch S1 

turned on for period of 
2
T

, the instantaneous output voltage across the load equal to 
2
dcV

. If switch 

S2 turned on for period of 
2
T

 to T, the instantaneous output voltage 
2

dcV−
 will appear (Rashid, 

2004). The switching strategy for switch S1 and switch S2 must be designed to make sure both 

switches not turn on at the same time. If that happens, it is equivalent to a short circuit across the 

DC input, resulting in excessive current and possible damage to the switching elements (Joseph, 

1995).  
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                           Figure 2.1: Half bridge circuit topology and its output example  

 

2.2.2 Full Bridge Inverter 

 A single phase full bridge inverter circuit and its output example are shown in Figure 2.2. It 

consists of four switching elements and it is used in higher power ratings application. The four 

switches are labeled as S1, S2, S3 and S4. The operations of single phase full bridge inverter can be 

divided into two conditions. Normally the switches S1 and S4 are turned on and kept on for one half 

period and S2 and S3 are turned off.  At this condition, the output voltage across the load is 

equal to dcV . When S2 and S3 are turned on, the switches S1 and switches S4 are turned off, then at 

this time the output voltage is equal to dcV− . The output voltage will change alternately from 

positive half period and negative half period. Same like in half bridge inverter, to prevent short 

circuit across DC supply occurred, the switches S1 and S4 must be in ‘on’ state while S2 and S3 

must be in ‘off’ state. In order to prevent short circuit occurred, dead time mechanism has been used 

in gate driver circuit ( David , 1997).   
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                   Figure 2.2: Full bridge inverter topology and its output example 

 

2.3 Pulse Width Modulation (PWM) Scheme 

 Historically, pulse width modulation (PWM) switching strategy development has been 

largely prompted by the changes in technology that have occurred over the past 30 years. It started 

with the natural-sampled PWM analogue technique (Mekhlief, 1999) in early 60s, followed by the 

regular-sampled PWM digital techniques (Holtz, 1992) in the early 70s, through to the 

microprocessor-based harmonic elimination and optimized PWM techniques in the mid and late 70s 

and more recently the new optimal PWM strategies in the 1980s (Luo, 1996) (Holtz, 1994). It has 

been shown that since natural-sampled PWM techniques are essentially analogue, these are 

inappropriate for discrete digital hardware or microprocessor software implementation. The heart of 

any PWM converter scheme is undoubtedly the switching strategy used to generate the switching 

edges of PWM control waveform (DaSilva , 1992) (Mekhlief , 2000).  

 

 The reason for using PWM techniques is that they provide voltage and current wave 

shaping customized to the specific needs of the applications under consideration (Escalante, 1995). 

By using PWM techniques, the frequency spectra of input waveforms can be changed such that the 

major non-fundamental components are at relatively high frequency and also to reduce the 
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switching stress imposed on the power switching devices (Zmood,1998). Most PWM is generated 

by comparing a reference waveform with a triangular carrier waveform signal ( Pekik , 1995)  

( Ismail , 2007). However, the reference waveform may come in various shapes to suit the converter 

topology, such as sine wave and distorted sine wave. A sinusoidal waveform signal is used for 

PWM in DC to AC converter where it is used to shape the output AC voltage to be close to a sine 

wave.  

 

2.3.1 Natural Sampling 

The principle of natural sampling PWM is based on the comparison real time of sine wave 

waveform (reference waveform) with a triangular carrier waveform.  Figure 2.3 shows the basic 

concept comparison between reference waveform and carrier waveform and Figure 2.4 shows 

natural sampling pulse width modulation. A high frequency triangular carrier waveform cV  is 

compared with a sinusoidal reference waveform rV  of the desired frequency. The PWM signal is 

high when the magnitude of sinusoidal wave is higher than the triangular wave otherwise it is low. 

 

Figure 2.3: The basic concept of natural sampling PWM 
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                 Figure 2.4: Natural sampling pulse width modulation (half cycle) 

  

 The reference signal rV  is used to modulate the switch duty ratio and has a 

frequency referencef , which is the desired fundamental frequency of the inverter voltage output. 

Meanwhile the triangular carrier waveform cV  is at a switching frequency carrierf  which establishes 

the frequency with which the inverters are switched. The frequency modulation ratio mf is defined 

as the ratio of the frequencies of the triangular carrier waveform and the reference signals which is 

written as 

 
sinf

f
f
fmf tri

reference

carrier
==                              (2.1) 

Where; 

carrierf = trif =Triangular carrier waveform frequency 

referencef = sinf = Fundamental waveform frequency 
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The amplitude modulation ratio am is defined as the ratio of the amplitude of the reference and 

carrier signals and is given by 

 

 
carrierm

m

carrierm

referencem
a

V
V

V
Vm

,

sin,

,

,
==                           (2.2) 

Where; 

referencemV , = ,sinmV = Peak amplitude of reference waveform 

carriermV , = Peak amplitude of triangular carrier waveform 

 

 The amplitude of the PWM of the fundamental frequency output is controlled by am . This 

is significant for an unregulated DC voltage because the value of am  can be adjusted to compensate 

the variations in the DC voltage, thus producing a constant amplitude output. When  am  is greater 

than 1 or over modulation, the amplitude of the output increases with am , but not linear.   

 

2.3.2 Regular sampling PWM  

 One major limitation with natural sampling PWM is the difficulty of its implementation in a 

digital modulation system, because the intersection between the reference waveform and the 

triangular waveform is defined by a transcendental equation and is complex to calculate. An 

analogue circuit possesses the advantages of a low cost with a fast dynamic response, but suffers 

from a complex circuitry to generate complex PWM, limited function ability and difficulty to 

perform in circuit modifications (Mekhlief , 1999). To overcome this limitation the modern popular 

alternative is to implement the modulation system using a regular sampling PWM strategy. This 

technique was introduced to provide a more flexible way of designing the system. The system offers 

simple circuitry, software control and flexibility in adaptation to various applications. The two most 



 15

common regular sampling techniques are regular symmetrical and asymmetrical sampling 

(Ledwich,  1991). 

 

2.3.2.1 Symmetrical sampling PWM 

 In regular sampling technique, the reference waveform is sampled at regularly spaced 

intervals. Normally, the sampling take places at the triangular waveform peaks.  With one sample 

per carrier cycle the output is a double edge modulated waveform, which is symmetrical with 

respect to the centre point between the two consecutive samples. The modulation process is termed 

symmetrical modulation because the intersection of adjacent sides of the triangular carrier 

waveform with the stepped sine wave, about the non-sampled carrier peak, is equidistant about the 

carrier peak. Figure 2.5 illustrating the general features of symmetrical sampling PWM.  
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                         Figure 2.5 : Symmetrical regular PWM 

 

2.3.2.2 Asymmetrical Sampling PWM 

The asymmetrical modulation is produced when the triangular carrier waveform is 

compared with a stepped sine wave produced by sampling and holding at twice the carrier 

frequency. Each side of the triangular carrier waveform about a sampling point, intersect the 

stepped waveform at different step level (DaSilva , 1992). The resultant pulse width is asymmetrical 

about the sampling point as illustrate in Figure 2.6 . By using this technique the dynamic response 

can be improve and produces less harmonic distortion of the load current.  
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                                  Figure 2.6: Asymmetrical regular PWM 

 

2.4 PWM Switching Technique 

 The PWM switching can be divided into two switching scheme which are PWM with 

Bipolar voltage switching and PWM with Unipolar voltage switching (Mohan, 2003) ( Daniel , 

1997) ( David , 1997). 
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2.4.1 PWM with Bipolar Voltage Switching 

 The basic idea to produce PWM Bipolar voltage switching signal is shown in Figure 2.7. It 

comprises of a comparator used to compare between the reference voltage waveform rV  with the 

triangular carrier signal cV  and produces the bipolar switching signal. If this scheme is applied to 

the full bridge single phase inverter as shown in Figure 2.2, all the switch S1, S2, S3 and S4 are 

turned on and off at the same time. The output of leg A is equal and opposite to the output of leg B. 

The output voltage is determined by comparing the reference signal, rV  and the triangular carrier 

signal, cV .  

Comparison between these two signals and the resulting output waveform are clearly illustrated in 

Figure 2.8.   

 

Figure 2.7: Bipolar PWM generator 
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Figure 2.8: SPWM with Bipolar voltage switching (a) Comparison between reference waveform 

and triangular waveform (b) Gating pulses for S1 and S4 (c) Gating pulses for S2 and S3 (d) Output 

waveform 

 

 2.4.2 PWM with Unipolar Voltage Switching 

 In this scheme, the triangular carrier waveform is compared with two reference signals 

which are positive and negative signal. The basic idea to produce SPWM with Unipolar voltage 

switching is shown in Figure 2.9. The different between the Bipolar SPWM generators is that the 

generator uses another comparator to compare between the inverse reference waveform rV− . The 

process of comparing these two signals to produce the Unipolar voltage switching signal is 

graphically illustrated in Figure 2.10. In Unipolar voltage switching the output voltage switches 

between 0 and dcV , or between 0 and dcV− . This is in contrast to the Bipolar switching strategy in 

which the output swings between dcV  and dcV− . As a result, the change in output voltage at each 



 20

switching event is halved in the Unipolar case from 2Vdc to Vdc. The effective switching frequency 

is seen by the load is doubled and the voltage pulse amplitude is halved. Due to this, the harmonic 

content of the output voltage waveform is reduced compared to Bipolar switching. In Unipolar 

voltage switching scheme also, the amplitude of the significant harmonics and its sidebands is much 

lower for all modulation indexes thus making filtering easier, and with its size being significantly 

smaller ( David , 1997). 

 

 

Figure 2.9: Unipolar PWM generator 
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Figure 2.10: SPWM with Unipolar voltage switching (a) Comparison between reference waveform 

and triangular waveform (b) Gating pulses for S1 and S4 (c) Gating pulses for S2 and S3 (d) Output 

waveform 

 

2.5 Review of Previous Methods 

 The developments of a single phase inverter growth year by year as the technologies keep 

changing rapidly. All electronic devices is smaller, therefore the efficiency of power supply used in 

electronic devices should be improved from time to time. Most of the researcher especially those 

are experts in single phase inverter have studied and analyzed the performance of parameter like 

harmonic, power losses and efficiencies of the single phase inverter. The different switching 

techniques and switching elements were used in single phase inverter also considered when 

inverters become the best power supply for converting DC power to AC power. Based on studied, 

PWM techniques is a common method used in single phase inverter circuit.  
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 Taniguchi (1988) in his paper describe PWM technique for power MOSFET inverter. PWM 

method can move unwanted frequency components to a higher frequency region, i.e., the sidebands 

of a carrier frequency. Thus the output waveform of a PWM inverter is generally improves by using 

a high ratio between the carrier frequency and the output fundamental frequency.  

 

 Khanniche (1991) in his paper describe a novel switching strategy of a single phase 

microcontroller UPS system. The quality of the inverter output voltage waveform is dictated by the 

adopted switching method and the available switching devices in terms of speed and cost. One of 

the requirements in this application is the significant reduction in the hardware while achieving a 

high quality output regulated voltage. With his proposed method, only one passive component is 

used to obtain a pure sinusoidal voltage waveform. The method used is three level improved PWM 

switching techniques, where the switching angles are computed on line and in real time using the 

16-bit single chip microcontroller. The results were confirmed that the inverter efficiency is 80%.  

 

  Dimitriu (2003) in his paper described a control with microcontroller for PWM single 

phase inverter. The control principles for a PWM single phase inverter are using the capabilities of 

80C552 microcontroller. The powerful T2 timer gives its useful feature in this application. The 

carrier frequency used is 5 kHz. The result has confirmed the high quality of the control based on 

microcontroller techniques.  

 

 Meksarik (2005) developed a new switching strategy based on the SPWM technique 

combines with low frequency 50 Hz signal. The results were confirmed that the inverter could 

produce voltage and current waveform purely sinusoidal with THD less than 3%. The switching 

losses have been significantly reduced and the efficiency has been achieved up to 90%. 
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2.6 Summary 

 General discussion on the inverter operation and its switching scheme has been made 

throughout this chapter. Natural sampling and regular sampling is two PWM switching scheme. 

Nowadays regular sampling PWM is the popular technique to be implemented in digital technique. 

SPWM with Unipolar voltage switching scheme has better harmonic profile compare to Bipolar 

voltage switching. Because of that, SPWM with Unipolar voltage switching will use as a switching 

scheme for the single phase inverter. 
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CHAPTER 3 

DESIGN OF SWITCHING PULSES FOR SINGLE PHASE INVERTER  

 
3.0 Introduction 

 In this chapter, the design of the switching pulses for the single phase full bridge inverter is 

described clearly. Figure 3.1 shows the flowchart design of switching pulses for single phase 

inverter. This project can be divided into three main parts. The first part is inverter switching 

strategy and its operation.  The second part is development of the SPWM switching pulses equation 

by using volt-second concept. The third part is calculating the SPWM switching pulses based on the 

development equation.    

 

Figure 3.1: Flowchart design of switching pulses 

 

3.1 Inverter Switching Strategy and its Operation 

 The basic single phase full bridge inverter topology with the control strategy is shown in 

Figure 3.2. The control strategy is performed in such away a pair (S1 and S4 ) of switches is turn on 

during another pair (S2 and S3 ) is turn off. In this application, when a pair (S2 and S3) turn on the 

other pair (S1 and S4 ) is automatically turn off.  The sequences of on and off of the switches 

occurred continuously and sequentially. This produces an alternating output voltage across the load.   

 

In this design an Unipolar SPWM voltage switching scheme (Ismail, 2006b) (Mihalache , 

2002) (Mohan, 2003) is selected because this method offers the advantage of effectively doubling 

the switching frequency of the inverter voltage, thus making the output filter smaller, cheaper and  
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