3 research outputs found

    Neuron-glia networks: integral gear of brain function

    Get PDF
    Astrocytes, the most abundant glial cell in the brain, play critical roles in metabolic and homeostatic functions of the Nervous System; however, their participation in coding information and cognitive processes has been largely ignored. The strategic position of astrocyte processes facing synapses and the astrocyte ability to uptake neurotransmitters and release neuroactive substances, so-called “gliotransmitters”, provide the scenario for prolific neuron-astrocyte signaling. From studies at single-cell level to animal behavior, recent advances in technology and genetics have revealed the impact of astrocyte activity in brain function from cellular and synaptic physiology, neuronal circuits to behavior. The present review critically discusses the consequences of astrocyte signaling on synapses and networks, as well as its impact on neuronal information processing, showing that some crucial brain functions arise from the coordinated activity of neuron-glia networks.This work was supported by grants from Ministerio de Economia y Competitividad, Spain, MINECO (Consolider, CSD2010-00045; Ramón y Cajal Program, RYC-2012-12014; and BFU2013-47265R) to Gertrudis Perea; grants from the NIH (EY007023), NSF (Award 1010363 and BRAIN EAGER) and the Simons Foundation to Mriganka Sur; and grants from MINECO (BFU2010-15832) and Cajal Blue Brain to Alfonso Araque.Peer reviewedPeer Reviewe

    Neuron-glia networks: integral gear of brain function

    Get PDF
    Astrocytes, the most abundant glial cell in the brain, play critical roles in metabolic and homeostatic functions of the Nervous System; however, their participation in coding information and cognitive processes has been largely ignored. The strategic position of astrocyte processes facing synapses and the astrocyte ability to uptake neurotransmitters and release neuroactive substances, so-called gliotransmitters, provide the scenario for prolific neuron-astrocyte signaling. From studies at single-cell level to animal behavior, recent advances in technology and genetics have revealed the impact of astrocyte activity in brain function from cellular and synaptic physiology, neuronal circuits to behavior. The present review critically discusses the consequences of astrocyte signaling on synapses and networks, as well as its impact on neuronal information processing, showing that some crucial brain functions arise from the coordinated activity of neuron-glia networks
    corecore