93 research outputs found

    d-Transversals of stable sets and vertex covers in weighted bipartite graphs

    Get PDF
    Let G = (V , E) be a graph in which every vertex v ∈ V has a weight w(v)>=0 and a cost c(v) >=0. Let SG be the family of all maximum-weight stable sets in G. For any integer d 0, a minimum d-transversal in the graph G with respect to SG is a subset of vertices T ⊆ V of minimum total cost such that |T ∩ S| d for every S ∈ SG. In this paper, we present a polynomial-time algorithm to determine minimum d-transversals in bipartite graphs. Our algorithm is based on a characterization of maximum-weight stable sets in bipartite graphs. We also derive results on minimum d-transversals of minimum-weight vertex covers in weighted bipartite graphs

    Graph Transversals for Hereditary Graph Classes: a Complexity Perspective

    Get PDF
    Within the broad field of Discrete Mathematics and Theoretical Computer Science, the theory of graphs has been of fundamental importance in solving a large number of optimization problems and in modelling real-world situations. In this thesis, we study a topic that covers many aspects of Graph Theory: transversal sets. A transversal set in a graph G is a vertex set that intersects every subgraph of G that belongs to a certain class of graphs. The focus is on vertex cover, feedback vertex set and odd cycle transversal. The decision problems Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal ask, for a given graph G and an integer k, whether there is a corresponding transversal of G of size at most k. These problems are NP-complete in general and our focus is to determine the complexity of the problems when various restrictions are placed on the input, both for the purpose of finding tractable cases and to increase our understanding of the point at which a problem becomes NP-complete. We consider graph classes that are closed under vertex deletion and in particular H-free graphs, i.e. graphs that do not contain a graph H as an induced subgraph. The first chapter is an introduction to the thesis. There we illustrate the motivation of our work and introduce most of the terminology we have used for our research. In the second chapter, we develop a number of structural results for some classes of H-free graphs. The third chapter looks at the Subset Transversal problems: there we prove that Feedback Vertex Set and Odd Cycle Transversal and their subset variants can be solved in polynomial time for both P_4-free and (sP_1+P_3)-free graphs, while for Subset Vertex Cover we show that it can be solved in polynomial time for (sP_1+P_4)-free graphs. The fourth chapter is entirely dedicated to the Connected Vertex Cover problem. The connectivity constraint requires additional proof techniques. We prove this problem can be solved in polynomial time for (sP_1+P_5)-free graphs, even when weights are given to the vertices of the graph. We continue the research on connected transversals in the fifth chapter: we show that Connected Feedback Vertex Set, Connected Odd Cycle Transversal and their extension variants can be solved in polynomial time for both P_4-free and (sP_1+P_3)-free graphs. In the sixth chapter we study the price of independence: can the size of a smallest independent transversal be bounded in terms of the minimum size of a transversal? We establish complete and almost-complete dichotomies which determine for which graph classes such a bound exists and for which cases such a bound is the identity

    Upper clique transversals in graphs

    Full text link
    A clique transversal in a graph is a set of vertices intersecting all maximal cliques. The problem of determining the minimum size of a clique transversal has received considerable attention in the literature. In this paper, we initiate the study of the "upper" variant of this parameter, the upper clique transversal number, defined as the maximum size of a minimal clique transversal. We investigate this parameter from the algorithmic and complexity points of view, with a focus on various graph classes. We show that the corresponding decision problem is NP-complete in the classes of chordal graphs, chordal bipartite graphs, and line graphs of bipartite graphs, but solvable in linear time in the classes of split graphs and proper interval graphs.Comment: Full version of a WG 2023 pape

    Round and Bipartize for Vertex Cover Approximation

    Get PDF
    The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a 2-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a round-and-bipartize algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair (?, S), consisting of a graph with an odd cycle transversal. If S is a stable set, we prove a tight approximation ratio of 1 + 1/?, where 2? -1 denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph ?? : = ?/S and satisfies ? ? [2,?], with ? = ? corresponding to the bipartite case. If S is an arbitrary set, we prove a tight approximation ratio of (1+1/?) (1 - ?) + 2 ?, where ? ? [0,1] is a natural parameter measuring the quality of the set S. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph ??, in combination with an understanding of the weight space where the fully half-integral solution is optimal. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we also obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals, connecting to the MinUncut and Colouring problems. Finally, we show that our analysis is optimal in the following sense: the worst case bounds for ? and ?, which are ? = 2 and ? = 1 - 4/n, recover the integrality gap of 2 - 2/n of the standard linear programming relaxation, where n is the number of vertices of the graph

    On Blockers and Transversals of Maximum Independent Sets in Co-Comparability Graphs

    Full text link
    In this paper, we consider the following two problems: (i) Deletion Blocker(α\alpha) where we are given an undirected graph G=(V,E)G=(V,E) and two integers k,d1k,d\geq 1 and ask whether there exists a subset of vertices SVS\subseteq V with Sk|S|\leq k such that α(GS)α(G)d\alpha(G-S) \leq \alpha(G)-d, that is the independence number of GG decreases by at least dd after having removed the vertices from SS; (ii) Transversal(α\alpha) where we are given an undirected graph G=(V,E)G=(V,E) and two integers k,d1k,d\geq 1 and ask whether there exists a subset of vertices SVS\subseteq V with Sk|S|\leq k such that for every maximum independent set II we have ISd|I\cap S| \geq d. We show that both problems are polynomial-time solvable in the class of co-comparability graphs by reducing them to the well-known Vertex Cut problem. Our results generalize a result of [Chang et al., Maximum clique transversals, Lecture Notes in Computer Science 2204, pp. 32-43, WG 2001] and a recent result of [Hoang et al., Assistance and interdiction problems on interval graphs, Discrete Applied Mathematics 340, pp. 153-170, 2023]

    Generating vertices of polyhedra and related problems of monotone generation

    Full text link

    On the NP-Completeness of the Perfect Perfect Matching Free Subgraph Problem

    Get PDF
    Given a bipartite graph G = (U υ V,E) such that |U| = |V | and every edge is labelled true or false or both, the perfect matching free subgraph problem is to determine whether or not there exists a subgraph of G containing, for each node u of U, either all the edges labelled true or all the edges labelled false incident to u, and which does not contain a perfect matching. This problem arises in the structural analysis of differential-algebraic systems. The purpose of this paper is to show that this problem is NP-complete. We show that the problem is equivalent to the stable set problem in a restricted case of tripartite graphs. Then we show that the latter remains NP-complete in that case. We also prove the NP-completeness of the related minimum blocker problem in bipartite graphs with perfect matching

    Treewidth reduction for constrained separation and bipartization problems

    Get PDF
    We present a method for reducing the treewidth of a graph while preserving all the minimal sts-t separators. This technique turns out to be very useful for establishing the fixed-parameter tractability of constrained separation and bipartization problems. To demonstrate the power of this technique, we prove the fixed-parameter tractability of a number of well-known separation and bipartization problems with various additional restrictions (e.g., the vertices being removed from the graph form an independent set). These results answer a number of open questions in the area of parameterized complexity.Comment: STACS final version of our result. For the complete description of the result please see version
    corecore