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Let G = (V , E) be a graph in which every vertex v ∈ V has a weight w(v) � 0 and a cost
c(v) � 0. Let SG be the family of all maximum-weight stable sets in G . For any integer
d � 0, a minimum d-transversal in the graph G with respect to SG is a subset of vertices
T ⊆ V of minimum total cost such that |T ∩ S| � d for every S ∈ SG . In this paper, we
present a polynomial-time algorithm to determine minimum d-transversals in bipartite
graphs. Our algorithm is based on a characterization of maximum-weight stable sets in
bipartite graphs. We also derive results on minimum d-transversals of minimum-weight
vertex covers in weighted bipartite graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Problems of safety and reliability occur in many practical contexts and adequate formulations of such issues have opened
the way to possible treatments by mathematical optimization procedures.

It is in particular the case in situations where a complex system has to be protected against attacks and for this purpose
one may have to identify the “most vital” elements of the system.

Such issues have been presented in [5] and [7] where various examples are sketched and combinatorial optimization
models are established for a collection of such situations.

To be concrete assume we have a finite system S (collection of components) which can be operated in different ways.
Each operating mode is characterized by the subsets S of components it uses. In order to find the most vital components
of S we may want to identify a smallest possible subset T of components in S which is such that every operating mode S
has at least d components in T .

Also in a game-theoretic context, we may have the case in which a player A has a collection of possible actions; each
action is represented by a given subset S of a finite set S . An opponent B wants to prevent the moves of A by destroying
from S a smallest possible subset T of elements in S in such a way that each possible decision S of A has lost at least d
elements. Such subsets T will be called d-transversals.
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This is the kind of problems which we intend to discuss here. The system may for example be represented by a weighted
graph, and this will be the case in the instances which will be considered, where each action (or operating mode) will be
associated with a maximum-weight stable set of the graph.

The problem of finding a d-transversal of minimum cardinality with respect to optimal combinatorial structures has been
recently studied by several authors [1,3,7,9]. In [3] it was shown that a d-transversal of minimum cardinality with respect
to maximum stable sets can be found in polynomial time in (unweighted) bipartite graphs. Further combinatorial structures
have been considered in [3,7].

In this paper, we consider weighted bipartite graphs in which a nonnegative cost is assigned to every vertex. We show
that a d-transversal of minimum total cost with respect to maximum-weight stable sets can be determined in polynomial
time. Notice that finding d-transversals of minimum cardinality with respect to maximum stable sets is NP-hard in line
graphs of bipartite graphs. This immediately follows from a result of [9].

Our paper is organized as follows. In Section 2 we present the notions and definitions that will be used throughout the
paper. In addition, we give some preliminary results which will be useful in the rest of the paper. In Section 3 we present a
characterization of maximum-weight stable sets in bipartite graphs. This characterization is then used in Section 4 to derive
a polynomial-time algorithm for finding minimum d-transversals in weighted bipartite graphs. In Section 5 we deal with
the case of d-transversals of minimum-weight vertex covers in bipartite graphs. Finally we conclude with Section 6.

For all graph theoretical terms not defined here the reader is referred to [8].

2. Preliminaries

All graphs we consider here are undirected, simple and loopless. Let G = (V , E) be a graph. For any vertex v ∈ V , we
denote by N(v) the neighborhood of v , i.e., the set of vertices which are adjacent to v . For a subset V ′ ⊆ V , we denote by
G − V ′ the graph obtained from G by deleting all vertices in V ′ together with all the edges incident to at least one vertex
in V ′ . If V ′ consists of a single vertex v , we will simply write G − v instead of G − V ′ . For an edge e ∈ E , G − e is the graph
obtained from G by deleting the edge e. The subgraph induced by a set V ′ ⊆ V will be denoted by G[V ′].

Now consider a graph G = (V , E) in which every vertex v ∈ V has a weight w(v) � 0. We will refer to such a graph as a
weighted graph. A stable set in G is a set S ⊆ V of pairwise nonadjacent vertices. The weight of a set V ′ ⊆ V in G is defined
as w(V ′) = ∑

v∈V ′ w(v). We denote by SG the family of all maximum-weight stable sets in G . The weighted stability number
αw(G) is the maximum weight of a stable set in G . We denote by δG the minimum cardinality of a maximum-weight stable
set, i.e., δG = min{|S|: S ∈ SG}. A matching M in G is a set of pairwise nonadjacent edges. The maximum cardinality of a
matching in G is denoted by μ(G).

A vertex v is called forced if every maximum-weight stable set contains v . A vertex v is called excluded if no maximum-
weight stable set contains v . A vertex which is neither forced nor excluded is called free. The set of all forced vertices in G
is denoted by V f (G). Similarly we denote by V e(G) (resp. by V fr(G)) the set of all excluded vertices (resp. free vertices)
in G . Clearly V f (G), V e(G) and V fr(G) form a partition of the vertex set V . This partition can be obtained in polynomial
time for bipartite graphs. This follows from a result of [2] about Kőnig–Egerváry graphs which include bipartite graphs.

Now consider a weighted graph G = (V , E) in which every vertex v ∈ V has a cost c(v) � 0. The cost of a set V ′ ⊆ V is
defined as c(V ′) = ∑

v∈V ′ c(v). Let d � 0 be an integer. A d-transversal in G with respect to SG is a subset of vertices T ⊆ V
such that |T ∩ S| � d for every S ∈ SG . A minimum d-transversal in G with respect to SG is a d-transversal with minimum
total cost. Notice that if c(v) = 1 for all v ∈ V , a minimum d-transversal in G with respect to SG is a d-transversal of
minimum cardinality.

A (minimum) d-transversal T in a graph G with respect to SG is called proper if for any v ∈ T , the set T \ {v} is not a
d-transversal in G with respect to SG .

In this paper we are interested in the following problem.

TRANS

Input: A weighted graph G = (V , E); a nonnegative cost function c for V ; an integer d � 0.
Output: A proper minimum d-transversal T with respect to SG .

The following proposition shows that we do not need to care about vertices having a weight equal to zero.

Proposition 2.1. Consider a weighted graph G. Let G ′ be the weighted graph obtained from G by removing any vertex v of weight
w(v) = 0 (together with the edges incident to v). Then T is a proper d-transversal in G if and only if T is a proper d-transversal in G ′ .

Proof. Consider a vertex v in G with w(v) = 0 and an arbitrary maximum-weight stable set S containing v . Since w(v) = 0,
the set S ′ = S \ {v} is a stable set with w(S ′) = w(S) and hence it is also a maximum-weight stable set.

If T is a proper d-transversal in G ′ , then |T ∩ S ′| � d and thus |T ∩ S| � d. So T is a proper d-transversal in G .
Now if T is a proper d-transversal in G , then v /∈ T . Indeed, since |T ∩ S ′| � d, it follows that if v ∈ T , then T ′ = T \ {v}

is a d-transversal in G , a contradiction. Thus T is a proper d-transversal in G ′ . �
It follows from Proposition 2.1 that we may assume from now on that for any weighted graph G = (V , E) we have

w(v) > 0 for all v ∈ V .
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3. Maximum-weight stable sets in bipartite graphs

In this section, we will present a characterization of the maximum-weight stable sets in bipartite graphs. This characteri-
zation appears in an implicit form in [2], Theorem 9. For this presentation to be self-contained we include a brief derivation
based on simple arguments of network flows.

Let G = (B, W , E) be a bipartite graph in which every vertex v has a weight w(v) > 0. We construct the following
associated network Ĝ = (V̂ , Ê): V̂ = B ∪ W ∪ {s, t} where s is a source and t is a sink; we add arcs (s, x) with capacity
k(s, x) = w(x) for each x ∈ B , arcs (y, t) with capacity k(y, t) = w(y) for each y ∈ W and arcs (x, y) with capacity k(x, y) =
∞ for each edge xy in E .

Proposition 3.1. Let G = (B, W , E) be a bipartite graph in which every vertex v has a weight w(v) > 0. Then all vertices in G are free
if and only if in Ĝ there exists a maximum flow f of value z( f ) = w(B) = w(W ).

Proof. Let f ∗ be a maximum flow in Ĝ . From [4] it follows that

αw(G) = w(B ∪ W ) − z
(

f ∗). (3.1)

Therefore, if z( f ∗) = w(B) = w(W ), then αw(G) = w(B) = w(W ). Thus B and W are maximum-weight stable sets and
hence all vertices are free.

Conversely, assume that z( f ∗) < w(B). Then there is an arc (s, x) such that f ∗(s, x) < k(s, x) = w(x). We will prove that
αw(G − x) < αw(G) which implies that x is forced. Indeed, let f ′ be the flow obtained from f ∗ by removing the f ∗(s, x)
units going through x, and let f ′ ∗ be a maximum flow in Ĝ − x. Then z( f ′ ∗) � z( f ′) = z( f ∗) − f ∗(s, x) > z( f ∗) − w(x) and
from (3.1) we have:

αw(G − x) = w
((

B − {x}) ∪ W
) − z

(
f ′ ∗) = w(B ∪ W ) − w(x) − z

(
f ′ ∗) < w(B ∪ W ) − z

(
f ∗) = αw(G). �

In Ĝ = (V̂ , Ê) we shall say that an arc (x, y) is forbidden if f (x, y) = 0 for any maximum flow f from s to t . Let F̂ ⊆ Ê
be the set of forbidden arcs.

Fact 3.2. In Ĝ there exists a maximum flow f ∗ from s to t with f ∗(a) > 0 for every a ∈ Ê \ F̂ .

Proof. Take consecutively each arc ai ∈ Ê \ F̂ and consider any maximum flow f i from s to t with f i(ai) > 0; such a flow
exists by definition of ai . Then the flow f ∗ defined for each arc a by f ∗(a) = (

∑
i f i(a)/|Ê \ F̂ |) is the required flow. �

Proposition 3.3. Let G = (B, W , E) be a connected weighted bipartite graph in which all vertices are free. Then B and W are the only
two maximum-weight stable sets if and only if in Ĝ we have F̂ = ∅.

Proof. Since all vertices in G are free, it follows from Proposition 3.1 that there exists a maximum flow f in Ĝ saturating
all arcs (s, x) and (y, t), for x ∈ B and y ∈ W . Furthermore, it follows from the proof of Proposition 3.1 that B and W are
both maximum-weight stable sets in G .

Assume that F̂ 
= ∅. Then there exists an arc (u, v) with f (u, v) = 0 for any maximum flow f in Ĝ . Take a maximum
flow f ∗ with f ∗(a) > 0 for every arc a in Ê \ F̂ , such as the one given in Fact 3.2. In Ĝ , every cycle C with V (C) ⊆ B ∪ W
which contains the forbidden forward arc (u, v) must also contain a forbidden backward arc (u′, v ′) otherwise we could
transform f ∗ into another feasible maximum flow f ′ such that f ′(u, v) > 0. We take the first such backward arc when
following the cycle C starting at vertex u and ending with vertex v . Notice that u′ is necessarily reached after following an
even number of arcs from u, and that all the backward arcs among these arcs are nonforbidden arcs.

Now we remove the corresponding edge u′v ′ from G and we repeat this for every such cycle C of Ĝ containing the arc
(u, v) if any. Notice that the resulting graph G ′ is still connected. Finally, the corresponding edge uv belongs to no cycle
anymore in G ′ . So the graph G ′ − uv is disconnected. Let G1, G2 be the two connected components of G ′ − uv with vertex
sets V 1, V 2 respectively. Without loss of generality, we may assume that u ∈ V 1 ∩ B and v ∈ V 2 ∩ W .

Since we only removed edges u′v ′ in G whose corresponding arcs (u′, v ′) satisfy f ∗(u′, v ′) = 0, in Ĝ the flow f ∗ may
be partitioned into two flows f ∗

1 and f ∗
2 such that f ∗

i corresponds to f ∗ in Ĝ i = Ĝ[{s, t} ∪ V i], for i = 1,2. Clearly f ∗
i is a

maximum flow in Ĝ i , for i = 1,2, which saturates all arcs (s, x) and (y, t) with x ∈ B ∩ V i and y ∈ W ∩ V i . Thus we have
z( f ∗

i ) = w(B ∩ V i) = w(W ∩ V i) for i = 1,2. From Proposition 3.1 all vertices in Gi are free, for i = 1,2. Now (3.1) implies
that B ∩ V i and W ∩ V i are maximum-weight stable sets in Gi for i = 1,2. By construction u′ ∈ V 1 ∩ B . Since G ′ − uv is
disconnected, there is no edge xy with x ∈ V 1 ∩ W and y ∈ V 2 ∩ B in G ′ − uv . This is also the case in G because we only
removed edges between V 1 ∩ B and W . So (V 1 ∩ W )∪(V 2 ∩ B) is a stable set S of G with w(S) = w(V 1 ∩ W )+ w(V 2 ∩ B) =
w(V 1 ∩ W ) + w(V 2 ∩ W ) = w(W ) = αw(G). This contradicts the fact that W and B are the only maximum-weight stable
sets in G .

Conversely, assume that Ĝ contains no forbidden arc, i.e., F̂ = ∅. We consider a maximum flow f with f (a) > 0 for every
arc a in Ĝ . From Fact 3.2 such a flow exists. Suppose there is a maximal (inclusionwise) stable set S in G with S ∩ B 
= ∅
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and S ∩ W 
= ∅. Then clearly S ∩ B 
= B and S ∩ W 
= W . Since S is inclusionwise maximal, we have B \ S = N(S ∩ W ) and
W \ S = N(S ∩ B). Since G is a connected graph there must be an edge x̄ ȳ with x̄ ∈ N(S ∩ W ) ⊆ B and ȳ ∈ N(S ∩ B) ⊆ W .
We have:

w(S ∩ B) =
∑

x∈S∩B

k(s, x) =
∑

x∈S∩B; y∈N(S∩B)

f (x, y) <
∑

x∈S∩B; y∈N(S∩B)

f (x, y) + f (x̄, ȳ)

�
∑

y∈N(S∩B)

k(y, t) = w
(
N(S ∩ B)

)
.

Since N(S ∩ B) ∩ (S ∩ W ) = ∅ we obtain w(S) = w(S ∩ B) + w(S ∩ W ) < w(N(S ∩ B)) + w(S ∩ W ) = w(W ). Hence such a
set S is not a maximum-weight stable set, so B and W are the only maximum-weight stable sets in G . �

As a consequence, if in a weighted bipartite graph G all vertices are free, one may consider the connected subgraphs
G1, G2, . . . , Gq obtained by removing all edges xy of G corresponding to forbidden arcs (x, y) of Ĝ . Set V i = V (Gi) for each
i = 1, . . . ,q and let V = (V 1, . . . , Vq) be the partition of V obtained in this way. This partition is clearly unique and there
are at least two vertices in each V i . From Propositions 3.1 and 3.3, it follows that in each Gi all the vertices are free and
the only maximum-weight stable sets are B ∩ V i and W ∩ V i , for i = 1, . . . ,q. Clearly S = B is a maximum-weight stable
set with w(S) = w(B) = ∑q

i=1 w(B ∩ V i) = ∑q
i=1 αw(Gi). Since B ∩ V i and W ∩ V i are the only stable sets in Gi with

w(B ∩ V i) = w(W ∩ V i) = αw(Gi) for i = 1, . . . ,q, in G the maximum-weight stable sets S are all such that S ∩ V i = B ∩ V i
or S ∩ V i = W ∩ V i for all i = 1, . . . ,q.

So we obtain the following.

Theorem 3.4. Let G = (B, W , E) be a weighted bipartite graph containing only free vertices. Then S ⊆ B ∪ W is a maximum-weight
stable set if and only if S is a stable set and for any j ∈ {1, . . . ,q} either S ∩ V j = B ∩ V j or S ∩ V j = W ∩ V j .

Remark 3.1. Since B and W are disjoint maximum-weight stable sets, we deduce that, for any d � 0, a d-transversal T in G
must satisfy |T ∩ W | � d and |T ∩ B| � d, and hence |T | � 2d.

4. Minimum d-transversals of maximum-weight stable sets

In this section, we will present a polynomial-time algorithm for finding proper minimum d-transversals in bipartite
graphs.

First we need to introduce some additional notions. Let G = (B, W , E) be a weighted bipartite graph and let S ∈ SG be a
maximum-weight stable set in G . We say that V i ∈ V is black with respect to S if S ∩ V i = B ∩ V i , and that V i is white with
respect to S if S ∩ V i = W ∩ V i .

From the partition V of V , we define the following auxiliary digraph G∗ = (V ∗, A∗): V ∗ = {V 1, . . . , Vq} and A∗ =
{(V i, V j) | ∃uv ∈ E, u ∈ V i ∩ B, v ∈ V j ∩ W , i 
= j}.

Remark 4.1. It follows from Theorem 3.4 and from the definition of G∗ that if S ∈ SG and if V i is black with respect to S ,
then all successors of V i in G∗ are black with respect to S .

From G∗ we define the following relation (V ,�): for u ∈ W and v ∈ B , u � v if and only if either u, v ∈ V j for some
j ∈ {1, . . . ,q} or u ∈ V i , v ∈ V j , i 
= j, and there exists a directed path from V i to V j in G∗ .

Remark 4.2. It follows from Theorem 3.4 and Remark 4.1 that if u � v , then for any maximum-weight stable set S we have
S ∩ {u, v} 
= ∅.

Consider the bipartite graph G̃ = (B, W , Ẽ) with vertex set Ṽ = B ∪ W and edge set Ẽ = {uv: u ∈ W , v ∈ B, u � v}
and assign to each edge uv ∈ Ẽ the cost c(uv) = c(u) + c(v). Let M be a matching in G̃ . An edge uv ∈ M such that
u � v, u ∈ V i, v ∈ V j, i 
= j, is called a cross-edge. We say that v ∈ Ṽ is saturated by M if there exists a vertex w ∈ Ṽ such
that v w ∈ M . A vertex V i ∈ V ∗ is white deficient with respect to M if every vertex v ∈ V i ∩ B is saturated by M and there
exists u ∈ V i ∩ W which is not saturated by M . We denote by WM the set of white deficient vertices with respect to M
in G∗ . We define black deficient vertices with respect to M in a similar way. The set of black deficient vertices with respect to
M in G∗ is denoted by BM . Let EM the set of vertices in G∗ that are neither white deficient nor black deficient with respect
to M . Notice that, if M is a maximum matching, then BM ,WM ,EM form a partition of V ∗ .

Furthermore, notice that a matching M in G̃ corresponds to |M| disjoint pairs (u, v) with u ∈ W , v ∈ B and u � v . We
will show that any proper d-transversal T in a weighted bipartite graph G containing only free vertices, with 0 � d � δG ,
necessarily consists in d such pairs, and conversely that d such pairs always form a proper d-transversal. This will imply
that a proper d-transversal in G is equivalent to a matching of size d in G̃ . We first prove the following.
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Lemma 4.1. Let G = (B, W , E) be a weighted bipartite graph containing only free vertices. Then δG = μ(G̃).

Proof. It follows from Remark 4.2 that for every set T of d disjoint pairs of vertices (u, v) such that u � v and for every
maximum-weight stable set S we have |T ∩ S| � d. Since d such pairs correspond to a matching M of size d in G̃ , we
conclude that δG �μ(G̃).

Let us now prove that δG � μ(G̃). Consider a maximum matching M in G̃ such that the number of cross-edges in M is
minimum. Let V i, V j ∈ V ∗ , i 
= j, be such that there exists a path from V i to V j in G∗ . We observe the following:

(a) We cannot have V i ∈WM and V j ∈ BM .
If V i ∈WM and V j ∈ BM , then there exist two vertices u ∈ V i ∩ W , v ∈ V j ∩ B such that uv ∈ Ẽ which are not saturated
by M . Thus M would not be maximum, a contradiction.

(b) We cannot have V i ∈ BM and a cross-edge uv ∈ M with u ∈ V i , v ∈ V j .
If V i ∈ BM , there exists w ∈ V i ∩ B which is not saturated by M . Let u ∈ V i ∩ W , v ∈ V j ∩ B be such that uv ∈ M is a
cross-edge. Then M ′ = (M \ {uv}) ∪ {uw} is a maximum matching containing less cross-edges than M , a contradiction.

(c) We cannot have V j ∈WM and a cross-edge uv ∈ M with u ∈ V i, v ∈ V j .
We use the same argument as in (b).

We construct the following set S in G: if V i ∈ WM , then add V i ∩ B to S; if V i ∈ BM , then add V i ∩ W to S; if V i ∈ EM

and there exists V j which is black and a path from V j to V i in G∗ , then add V i ∩ B to S; if V i ∈ EM and there exists V j
which is black and a cross-edge uv with u ∈ V i , v ∈ V j , then add V i ∩ B to S; for all other V i ∈ EM , add V i ∩ W to S .

We claim that S is a maximum-weight stable set. From Theorem 3.4 it follows that we just have to prove that S is a
stable set. Suppose that S is not a stable set. Then it follows from Remark 4.1 that there exists V i, V j ∈ V ∗ such that V i is
black with respect to S , V j is white with respect to S and there exists a path from V i to V j in G∗ . From the construction
of S , it follows that V j ∈ BM . We deduce from (a) that V i /∈ WM , and hence V i ∈ EM . Furthermore, it follows from the
construction of S that there exists Vk ∈ WM and a sequence Σ = (Vk = V p1 , V p2 , . . . , V pr = V i, V pr+1 = V j) such that for
every V pl , 1 � l � r, either there exists a path from V pl to V pl+1 in G∗ or there exists a cross-edge uv with u ∈ V pl+1 and
v ∈ V pl . Let M and Σ be such that |Σ | is minimum. This minimality implies that we cannot have V pl−1 , V pl , V pl+1 , for
2 � l � r, such that there exists a path in G∗ from V pl−1 to V pl and a path from V pl to V pl+1 . Furthermore, we cannot
have V pl−1 , V pl , V pl+1 , for 2 � l � r − 1, such that there exists a cross-edge uv with u ∈ V pl , v ∈ V pl−1 and there exists a
cross-edge u′v ′ with u′ ∈ V pl+1 , v ′ ∈ V pl . Indeed, in such a case, we necessarily have u′ � v and u � v ′ . Then we simply
replace the edges uv, u′v ′ ∈ M by uv ′, u′v . This clearly gives us another maximum matching M ′ containing less cross-edges
than M , a contradiction. Notice that we necessarily have a path from V p1 = Vk to V p2 . Indeed, since Vk ∈WM , there exists
a vertex w ∈ Vk ∩ W which is not saturated by M . Thus if we had a cross-edge w ′b′ with w ′ ∈ V p2 and b′ ∈ Vk , then
M ′ = (M \ {w ′b′}) ∪ {wb′} would be a maximum matching containing less cross-edges than M , a contradiction.

Let C = {w2b2, w4b4, . . . , wr−1br−1} with wl ∈ V pl+1 and bl ∈ V pl , be the set of cross-edges mentioned above. Let u ∈
Vk ∩ W and v ∈ V j ∩ B be two vertices which are not saturated by M (recall that Vk ∈ WM and V j ∈ BM ). Then M ′ =
(M \ C) ∪ {ub2, w2b4, . . . , wr−3br−1, wr−1 v} is a matching in G̃ with |M ′| = |M| + 1, a contradiction. Thus S is a stable set,
and hence it follows from Theorem 3.4 that S is a maximum-weight stable set.

It only remains to show that |S| � |M|. First observe that every v ∈ S is saturated by M (by definition of S). Furthermore,
consider a cross-edge uv in M with u ∈ V i, v ∈ V j . It follows from (a), (b) and (c) that either V i, V j ∈ EM or V i ∈ EM ,
V j ∈ BM or V i ∈ WM , V j ∈ EM . In all three cases, it follows from the construction of S and Remark 4.1 that either V i, V j

are both black or V i, V j are both white. Hence |S| � |M|. Thus we have δG �μ(G̃). �
Lemma 4.2. Let G = (B, W , E) be a weighted bipartite graph containing only free vertices. Then T ⊆ V is a proper d-transversal if
and only if T is a set of d disjoint pairs of vertices (u, v), with 0 � d � δG , such that u � v.

Proof. Let T be a set of d disjoint pairs of vertices (u, v), with 0 � d � δG , such that u � v . From Lemma 4.1, we can always
find such pairs. Let S be a maximum-weight stable set in G . It follows from Remark 4.2 that for every such pair (u, v) at
least one of u, v belongs to S . Thus T is a d-transversal. Since |T | = 2d, it follows from Remark 3.1 that T is a proper
d-transversal.

Now let us prove the converse. It follows from the above that if T is a d-transversal such that either μ(G̃[T ]) > d or
μ(G̃[T ]) = d, |T | > 2d, then T is not proper. Hence it is enough to show that if T is a proper d-transversal, then we cannot
have μ(G̃[T ]) < d.

For d = 1, let us suppose by contradiction that T = {w1, w2, . . . , w p} ∪ {b1,b2, . . . ,bq}, p,q � 1, wi ∈ W , b j ∈ B , 1 �
i � p, 1 � j � q is a proper 1-transversal such that μ(G̃[T ]) = 0. For any pair (wr,bs), wr ∈ W ∩ T ∩ V i , bs ∈ B ∩ T ∩ V j ,
we have that i 
= j and there is no path from V i to V j in T ∗ (otherwise wrbs would be an edge in G̃T ). Now consider
the maximum-weight stable set S defined as follows: Vk ∩ S = Vk ∩ B if there exists wr ∈ W ∩ T ∩ Vk or there exists
wr ∈ W ∩ T ∩ V i and a path from V i to Vk; otherwise Vk ∩ S = Vk ∩ W . We have T ∩ S = ∅ and thus T is not a 1-
transversal. Hence a proper minimum 1-transversal consists in one pair (w,b) of minimum total cost such that w ∈ W ,
b ∈ B and w � b (i.e. G̃[T ] = ({w,b}, {wb})).
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Suppose that the lemma holds up to d − 1. By contradiction suppose that T is a proper d-transversal with μ(G̃[T ]) �
d−1. Since T is proper, it follows that ∀v ∈ T , T \{v} is not a d-transversal, but clearly T \{v} is a (d−1)-transversal. Thus
by induction there exists a proper (d − 1)-transversal T ′ ⊂ T such that μ(G̃[T ′]) = μ(G̃[T ]) = d − 1 (i.e. T ′ corresponds
to a matching of size d − 1 in G̃). Since |T ∩ W | � d there exists u ∈ T ∩ W which is not saturated by some maximum
matching in G̃[T ].

Let M be a maximum matching in G̃[T ] (i.e. |M| = d − 1) such that the number of cross-edges in M is minimum. Let
u ∈ T ∩ W ∩ V i be a vertex which is not saturated by M . Let A ⊆ V be such that: V i ∈ A, and Vk ∈ A whenever there is a
cross-edge wb with w ∈ Vk,b ∈ V j, V j ∈ A, or there is a path from V j ∈ A to Vk . Note that if V j ∈ A, there is a sequence
Σ ′ = (V i = V p1 , V p2 , . . . , V ps = V j) such that for all 1 � k < s, either there exists a path from V pk to V pk+1 in G∗ or there
exists a cross-edge uv with u ∈ V pk+1 and v ∈ V pk .

We will show that every b ∈ T ∩ B ∩ V j , V j ∈ A, is saturated by M . Suppose that there exists b ∈ T ∩ B ∩ V j , V j ∈ A,
which is not saturated by M . Let M and Σ ′ be such that |Σ ′| is minimum. Notice that we necessarily have a path from
V ps−1 to V ps = V j . Indeed, if there was a cross-edge w ′b′ with w ′ ∈ V j and b′ ∈ V ps−1 , then M ′ = (M \ {w ′b′}) ∪ {w ′b} is
another maximum matching containing less cross-edges than M , a contradiction. Now using the same arguments as in the
proof of Lemma 4.1 for the sequence Σ , we obtain that Σ ′ has the same properties as Σ . Hence we conclude that M is
not maximum, a contradiction. Thus every b ∈ T ∩ B ∩ V j , V j ∈A, is saturated by M . Moreover b is matched with w where
w ∈ T ∩ W ∩ Vk and Vk ∈A by definition of A.

We know that there exists a maximum-weight stable set S such that V i is white with respect to S and |(T \ {u}) ∩ S| =
d − 1. Let S ′ be defined as follows: if V j ∈ A then V j is black with respect to S ′; otherwise V j remains as it was colored
with respect to S . Notice that it follows from Remark 4.1 and the definition of A that S ′ is a stable set and it follows from
Theorem 3.4 that S ′ has maximum weight. Clearly, we have |T ∩ S ∩ V j | = |T ∩ S ′ ∩ V j | for every V j /∈A.

We will show now that |T ∩ S ′ ∩A| < |T ∩ S ∩A|. We know that all black vertices in T ∩A are matched with vertices
in T ∩A. Let W M̄ be the set of white vertices in T ∩A which are not saturated by M . Hence u ∈ W M̄ ∩ V i ∩ S . So we have
|S ∩ W M̄ | > 0 and, since S ′ ∩ A ⊆ B , |S ′ ∩ W M̄ | = 0. Now let us consider an edge wb ∈ M with w ∈ Vk ∩ T ∩ W , Vk ∈ A
and b ∈ V j ∩ T ∩ B , V j ∈ A. Then {w,b} ∩ S ′ = {b} and |{w,b} ∩ S| � 1. Indeed, either Vk ∩ S ⊆ B and then V j ∩ S ⊆ B so
{w,b} ∩ S = {b} or Vk ∩ S ⊆ W and then |{w,b} ∩ S| � 1. Finally, |S ′ ∩T ∩A| = |S ′ ∩T ∩ (A \ W M̄)| � |S ∩T ∩ (A \ W M̄)| <
|S ∩ T ∩A| (since u ∈ W M̄ ).

Thus we have |T ∩ S ′| < |T ∩ S| = d, which is a contradiction. �
Let us now prove the main result.

Theorem 4.3. TRANS is polynomial-time solvable for weighted bipartite graphs.

Proof. Let G = (B, W , E) be a weighted bipartite graph with |V | = n and let c be a nonnegative cost function on B ∪ W .
The first step consists in determining the sets V f , V e , and V fr as shown in [2], Lemma 7. This can be done in O (|V |2|E|2)
for instance by simply solving |E| flow problems in a bipartite graph.

Then we delete the forced and the excluded vertices from G . Let G ′ be the resulting graph with connected components
G1, . . . , G p . Notice that every graph Gi contains only free vertices, for i = 1, . . . , p. Computing |E| maximum flows in a
bipartite network, we obtain the set of forbidden arcs F̂ in time O (|V |2|E|2). This gives us the graph G∗

i for each corre-
sponding Gi , i = 1, . . . , p. Clearly their corresponding graphs G̃ i can be built in time O (|V ||E|). Let G̃ = G̃1 ∪ · · · ∪ G̃ p ∪ H ,
where H consists of |V f | isolated edges e1, . . . , e|V f | such that every ei corresponds to a forced vertex vi in G and such

that c(ei) = c(vi), for i = 1, . . . , |V f |.
Now it follows from Lemmas 4.1 and 4.2 that a proper minimum d-transversal T , with 0 � d � δG , in G corresponds to

a matching of size d in G̃ with minimum total cost. Since such a matching can be found in polynomial time by a minimum
cost flow algorithm in O ((|E| log |V |)(|E| + |V | log |V |)), (see [6, Chapter 12]), it follows that TRANS is polynomial-time
solvable in O (|V |2|E|2). �
Remark 4.3. It is easy to see that, in a weighted bipartite graph G , a maximum-weight stable set of minimum size can be
obtained in polynomial time by first decreasing the weights in G by a sufficiently small amount ε > 0, and then finding
a maximum-weight stable set in this new graph. Lemma 4.1 and Theorem 4.3 provide an alternate way to compute the
minimum size δG of such a maximum-weight stable set.

5. Minimum d-transversals of minimum-weight vertex covers

A vertex cover in a graph G = (V , E) is a set S̄ ⊆ V such that for every edge uv ∈ E at least one of u, v belongs to S̄ .
Recall that a vertex cover is the complement of a stable set. We denote by S̄G the family of all minimum-weight vertex
covers in G , and by δ̄G the minimum cardinality of a minimum-weight vertex cover. In this section we will be interested in
the following problem.



C. Bentz et al. / Journal of Discrete Algorithms 17 (2012) 95–102 101
TRANS-VC

Input: A weighted graph G = (V , E); a nonnegative cost function c for V ; an integer d � 0.
Output: A proper minimum d-transversal T with respect to S̄G .

In the same way as we defined forced, free and excluded vertices for the maximum-weight stable sets, we may define
forced, free and excluded vertices for the minimum-weight vertex covers. Notice that a vertex v which is forced for the
maximum-weight stable sets is excluded for the minimum-weight vertex covers, and vice versa. Furthermore a vertex is
free for the minimum-weight vertex covers if and only if it is free for the maximum-weight stable sets. Also, Theorem 3.4
gives a characterization of the minimum-weight vertex covers in a bipartite graph G in which all the vertices are free.

Theorem 5.1. Let G = (B, W , E) be a weighted bipartite graph containing only free vertices. Then S̄ ⊆ B ∪ W is a minimum-weight
vertex cover if and only if S̄ is a vertex cover and for any j ∈ {1, . . . ,q} either S̄ ∩ V j = B ∩ V j or S̄ ∩ V j = W ∩ V j .

It immediately follows that any d-transversal T with respect to S̄G contains at least 2d vertices.
From the partition V of V , we define the auxiliary digraph Ḡ∗ = (V ∗, Ā∗): V ∗ = {V 1, . . . , Vq} and Ā∗ = {(V i, V j) | ∃vu ∈

E, v ∈ V i ∩ W , u ∈ V j ∩ B, i 
= j}. Note that Ḡ∗ is obtained from G∗ by reversing the direction of each arc. We say that
V i ∈ V is white (resp. black) with respect to a minimum-weight vertex cover S̄ if S̄ ∩ V i = W ∩ V i (resp. S̄ ∩ V i = B ∩ V i).
As a consequence we obtain the following.

Remark 5.1. If S̄ ∈ S̄G and if V i is black with respect to S̄ , then all successors of V i in Ḡ∗ are black with respect to S̄ .

From Ḡ∗ we define the relation (V ,�) in the same way as in Section 4: for u ∈ W and v ∈ B , u � v if and only if either
u, v ∈ V j for some j ∈ {1, . . . ,q} or u ∈ V i , v ∈ V j , i 
= j, and there exists a path from V i to V j in Ḡ∗ . We define the graph
˜̄G = (B, W , ˜̄E) in the same way as G̃ , i.e., ˜̄E = {uv: u ∈ W , v ∈ B, u � v}. Given a matching M in ˜̄G , the cross-edges, and
the sets BM , WM , EM are defined as in Section 4.

Using exactly the same proofs as for Lemmas 4.1 and 4.2 (changing maximum-weight stable sets into minimum-weight
vertex covers, and so on) we obtain the following.

Lemma 5.2. Let G = (B, W , E) be a weighted bipartite graph containing only free vertices. Then δ̄G = μ( ˜̄G).

Lemma 5.3. Let G = (B, W , E) be a weighted bipartite graph containing only free vertices. Then T ⊆ V is a proper d-transversal with
respect to S̄G if and only if T is a set of d disjoint pairs of vertices (u, v), with 0 � d � δ̄G , such that u � v.

Finally, using the same construction as in Section 4 we obtain the following result.

Theorem 5.4. TRANS-VC is polynomial-time solvable for weighted bipartite graphs.

Remark 5.2. Notice that in a weighted bipartite graph, the minimum cardinality δ̄G of a minimum-weight vertex cover can
be determined in polynomial time (see [6, Chapter 17]). Lemma 5.2 and Theorem 5.4 provide an alternate way to compute
the minimum size of such a minimum-weight vertex cover. By taking the complements of the subsets of vertices considered,
the maximum cardinality of a minimum-weight vertex cover and the maximum cardinality of a maximum-weight stable set
can also be determined in polynomial time.

6. Conclusion

In this paper, we considered proper minimum d-transversals with respect to maximum-weight stable sets in bipartite
graphs and we gave a polynomial-time algorithm to find such transversals. Our algorithm relies on a characterization of
maximum-weight stable sets in bipartite graphs. Exploiting the complementarity between stable sets and vertex covers, we
have derived results on d-transversals of minimum-weight vertex covers.

A notion related to d-transversals is the one of d-blockers. A d-blocker with respect to maximum-weight stable sets in
a graph G is a subset of vertices B such that αw(G − B) � αw(G) − d. It is interesting to mention that the problem of
finding a d-blocker of minimum cardinality with respect to maximum-weight stable sets has been shown to be NP-hard
in bipartite graphs (see [1]).

It would be interesting to determine further classes of graphs in which TRANS can be solved in polynomial time.
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