TREEWIDTH REDUCTION FOR CONSTRAINED SEPARATION AND BIPARTIZATION PROBLEMS

DÁNIEL MARX ${ }^{1}$ AND BARRY O’SULLIVAN ${ }^{2}$ AND IGOR RAZGON ${ }^{2}$
${ }^{1}$ Tel Aviv University
E-mail address: dmarx@cs.bme. hu
${ }^{2}$ Cork Constraint Computation Centre, University College Cork
E-mail address: \{b.osullivan, i.razgon\}@cs.ucc.ie

Abstract

We present a method for reducing the treewidth of a graph while preserving all the minimal $s-t$ separators. This technique turns out to be very useful for establishing the fixedparameter tractability of constrained separation and bipartization problems. To demonstrate the power of this technique, we prove the fixed-parameter tractability of a number of well-known separation and bipartization problems with various additional restrictions (e.g., the vertices being removed from the graph form an independent set). These results answer a number of open questions in the area of parameterized complexity.

1. Introduction

Finding cuts and separators is a classical topic of combinatorial optimization and in recent years there has been an increase in interest in the fixed-parameter tractability of such problems $[19,11,15,28,16,13,5,20]$. Recall that a problem is fixed-parameter tractable (or FPT) with respect to a parameter k if it can be solved in time $f(k) \cdot n^{O(1)}$ for some function $f(k)$ depending only on $k[10,12,21]$. In typical parameterized separation problems, the parameter k is the size of the separator we are looking for, thus fixed-parameter tractability with respect to this parameter means that the combinatorial explosion is restricted to the size of the separator, but otherwise the running time depends polynomially on the size of the graph.

The main technical contribution of the present paper is a theorem stating that given a graph G, two terminal vertices s and t, and a parameter k, we can compute in a FPT-time a graph G^{*} having its treewidth bounded by a function of k while (roughly speaking) preserving all the minimal $s-t$ separators of size at most k. Combining this theorem with the well-known Courcelle's Theorem, we obtain a powerful tool for proving the fixed parameter tractability of constrained separation and bipartization problems. We demonstrate the power of the methodology with the following results.

- We prove that the minimum stable $s-t$ cut problem (Is there an independent set S of size at most k whose removal separates s and t ?) is fixed-parameter tractable. This problem

[^0](C) D.Marx, B.O'Sullivan, and I.Razgon
(c) Creative Commons Attribution-NoDerivs License
received some attention in the community. Our techniques allow us to prove various generalizations of this result very easily. First, instead of requiring that S is independent, we can require that it induces a graph that belongs to a hereditary class \mathcal{G}; the problem remains fPt. Second, in the multicut problem a list of pairs of terminals are given $\left(s_{1}, t_{1}\right), \ldots$, $\left(s_{\ell}, t_{\ell}\right)$ and the solution S has to be a set of at most k vertices that induces a graph from \mathcal{G} and separates s_{i} from t_{i} for every i. We show that this problem is FPT parameterized by k and ℓ, which is a very strong generalization of previous results [19, 28]. Third, the results generalize to the mULTICUT-UNCUT problem, where two sets T_{1}, T_{2} of pairs of terminals are given, and S has to separate every pair of T_{1} and should not separate any pair of T_{2}.

- We prove that the exact stable bipartization problem (Is there an independent set of size exactly k whose removal makes the graph bipartite?) is fixed-parameter tractable (FPT) answering an open question posed in 2001 by Díaz et al. [9]. We establish this result by proving that the STAble bipartization problem (Is there an independent set of size at most k whose removal makes the graph bipartite?) is FPT, answering an open question posed by Fernau [7].
- We show that the edge-induced vertex cut (Are there at most k edges such that the removal of their endpoints separates two given terminals s and t ?) is FPT, answering an open problem posed in 2007 by Samer [7]. The motivation behind this problem is described in [27].
We believe that the above results nicely demonstrate the message of the paper. Slightly changing the definition of a well-understood cut problem usually makes the problem NP-hard and determining the parameterized complexity of such variants directly is by no means obvious. On the other hand, using our techniques, the fixed-parameter tractability of many such problems can be shown with very little effort. Let us mention (without proofs) three more variants that can be treated in a similar way: (1) separate s and t by the deletion of at most k edges and at most k vertices, (2) in a 2 -colored graph, separate s and t by the deletion of at most k black and at most k white vertices, (3) in a k-colored graph, separate s and t by the deletion of one vertex from each color class.

As the examples above show, our method leads to the solution of several independent problems; it seems that the same combinatorial difficulty lies at the heart of these problems. Our technique manages to overcome this difficulty and it is expected to be of use for further problems of similar flavor. Note that while designing FPT-time algorithms for bounded-treewidth graphs and in particular the use of Courcelle's Theorem is a fairly standard technique, we use this technique for problems where there is no bound on the treewidth of the graph appearing in the input.
(Multiterminal) cut problems [19, 16, 13, 5] play a mysterious, and not yet fully understood, role in the fixed-parameter tractability of certain problems. Proving that bipartization [25], directed feedback vertex set [6], and almost 2-sat [23] are fpt answered longstanding open questions, and in each case the algorithm relies on a non-obvious use of separators. Furthermore, EDGE mULTICUT has been observed to be equivalent to FUZZY CLUSTER EDITING, a correlation clustering problem [3, 8, 1]. Thus aiming for a better understanding of separators in a parameterized setting seems to be a fruitful direction of research. Our results extend our understanding of separators by showing that various additional constraints can be accommodated. It is important to point out that our algorithm is very different from previous parameterized algorithms for separation problems $[19,16,13,5]$. Those algorithms in the literature exploit certain nice properties of separators, and hence it seems impossible to generalize them for the problems we consider here. On the other hand, our approach is very robust and, as demonstrated by our examples, it is able to handle many variants.

The paper assumes the knowledge of the definition of treewidth and its algorithmic use, including Courcelle's Theorem (see the surveys [2, 14]).

2. Treewidth Reduction

The main combinatorial result of the paper is presented in this section. We start with some preliminary definitions. Two slightly different notions of separation will be used in the paper:

Definition 2.1. We say that a set S of vertices separates sets of vertices A and B if no component of $G \backslash S$ contains vertices from both $A \backslash S$ and $B \backslash S$. If s and t are two distinct vertices of G, then an $s-t$ separator is a set S of vertices disjoint from $\{s, t\}$ such that s and t are in different components of $G \backslash S$.

In particular, if S separates A and B, then $A \cap B \subseteq S$. Furthermore, given a set W of vertices, we say that a set S of vertices is a balanced separator of W if $|W \cap C| \leq|W| / 2$ for every connected component C of $G \backslash S$. A k-separator is a separator S with $|S|=k$. The treewidth of a graph is closely connected with the existence of balanced separators:
Lemma 2.2 ([24], [12, Section 11.2]).
(1) If $G(V, E)$ has treewidth greater than $3 k$, then there is a set $W \subseteq V$ of size $2 k+1$ having no balanced k-separator.
(2) If $G(V, E)$ has treewidth at most k, then every $W \subseteq V$ has a balanced $(k+1)$-separator.

Note that the contrapositive of (1) in Lemma 2.2 says that if every set W of vertices has a balanced k-separator, then the treewidth is at most $3 k$. This observation, and the following simple extension, will be convenient tools for showing that a certain graph has low treewidth.

Lemma 2.3. Let G be a graph, C_{1}, \ldots, C_{r} subsets of vertices, and let $C:=\bigcup_{i=1}^{r} C_{i}$. Suppose that every $W_{i} \subseteq C_{i}$ has a balanced separator $S_{i} \subseteq C_{i}$ of size at most w. Then every $W \subseteq C$ has a balanced separator $S \subseteq C$ of size $w r$.

If we are interested in separators of a graph G contained in a subset C of vertices, then each component of $G \backslash C$ (or the neighborhood of each component in C) can be replaced by a clique, since there is no way to disconnect these components with separators in C. The notion of torso and Proposition 2.5 formalize this concept.

Definition 2.4. Let G be a graph and $C \subseteq V(G)$. The graph torso (G, C) has vertex set C and vertices $a, b \in C$ are connected by an edge if $\{a, b\} \in E(G)$ or there is a path P in G connecting a and b whose internal vertices are not in C.

Proposition 2.5. Let $C_{1} \subseteq C_{2}$ be two subsets of vertices in G and let $a, b \in C_{1}$ be two vertices. A set $S \subseteq C_{1}$ separates a and b in torso $\left(G, C_{1}\right)$ if and only if S separates these vertices in torso $\left(G, C_{2}\right)$. In particular, by setting $C_{2}=V(G)$, we get that $S \subseteq C_{1}$ separates a and b in $\operatorname{torso}\left(G, C_{1}\right)$ if and only if it separates them in G.

Analogously to Lemma 2.3, we can show that if we have a treewidth bound on torso $\left(G, C_{i}\right)$ for every i, then these bounds add up for the union of the C_{i} 's.
Lemma 2.6. Let G be a graph and C_{1}, \ldots, C_{r} be subsets of $V(G)$ such that for every $1 \leq i \leq r$, the treewidth of torso $\left(G, C_{i}\right)$ is at most w. Then the treewidth of torso (G, C) for $C:=\bigcup_{i=1}^{r} C_{i}$ is at most $3 r(w+1)$.

If the minimum size of an $s-t$ separator is ℓ, then the excess of an $s-t$ separator S is $|S|-\ell$ (which is always nonnegative). Note that if s and t are adjacent, then no $s-t$ separator exists, and in this case we say that the minimum size of an $s-t$ separator is ∞. The aim of this section is to show that, for every k, we can construct a set C^{\prime} covering all the $s-t$ separators of size at most k such that torso $\left(G, C^{\prime}\right)$ has treewidth bounded by a function of k. Equivalently, we can require that C^{\prime} covers every $s-t$ separator of excess at most $e:=k-\ell$, where ℓ is the minimum size of an $s-t$ separator.

If X is a set of vertices, we denote by $\delta(X)$ the set of those vertices in $V(G) \backslash X$ that are adjacent to at least one vertex of X. The following result is folklore; it can be proved by a simple application of the uncrossing technique (see the proof below) and it can be deduced also from the observations of [22] on the strongly connected components of the residual graph after solving a flow problem.
Lemma 2.7. Let s, t be two vertices in graph G such that the minimum size of an $s-t$ separator is ℓ. Then there is a collection $\mathcal{X}=\left\{X_{1}, \ldots, X_{q}\right\}$ of sets where $\{s\} \subseteq X_{i} \subseteq V(G) \backslash(\{t\} \cup \delta(\{t\}))$ ($1 \leq i \leq q$), such that
(1) $X_{1} \subset X_{2} \subset \cdots \subset X_{q}$,
(2) $\left|\delta\left(X_{i}\right)\right|=\ell$ for every $1 \leq i \leq q$, and
(3) every $s-t$ separator of size ℓ is a subset of $\bigcup_{i=1}^{q} \delta\left(X_{i}\right)$.

Furthermore, such a collection \mathcal{X} can be found in polynomial time.
Proof. Let $\mathcal{X}=\left\{X_{1}, \ldots, X_{q}\right\}$ be a collection of sets such that (2) and (3) holds. Let us choose the collection such that q is the minimum possible, and among such collections, $\sum_{i=1}^{q}\left|X_{i}\right|^{2}$ is the maximum possible. We show that for every i, j, either $X_{i} \subset X_{j}$ or $X_{j} \subset X_{i}$ holds, thus the sets can be ordered such that (1) holds.

Suppose that neither $X_{i} \subset X_{j}$ nor $X_{j} \subset X_{i}$ holds for some i and j. We show that after replacing X_{i} and X_{j} in \mathcal{X} with the two sets $X_{i} \cap X_{j}$ and $X_{i} \cup X_{j}$, properties (2) and (3) still hold, and the resulting collection \mathcal{X}^{\prime} contradicts the optimal choice of \mathcal{X}. The function δ is well-known to be submodular, i.e.,

$$
\left|\delta\left(X_{i}\right)\right|+\left|\delta\left(X_{j}\right)\right| \geq\left|\delta\left(X_{i} \cap X_{j}\right)\right|+\left|\delta\left(X_{i} \cup X_{j}\right)\right| .
$$

Both $\delta\left(X_{i} \cap X_{j}\right)$ and $\delta\left(X_{i} \cup X_{j}\right)$ are $s-t$ separators (because both $X_{i} \cap X_{j}$ and $X_{i} \cup X_{j}$ contain s) and hence have size at least k. The left hand side is 2ℓ, hence there is equality and $\left|\delta\left(X_{i} \cap X_{j}\right)\right|=$ $\left|\delta\left(X_{i} \cup X_{j}\right)\right|=\ell$ follows. This means that property (2) holds after the replacement. Observe that $\delta\left(X_{i} \cap X_{j}\right) \cup \delta\left(X_{i} \cup X_{j}\right) \subseteq \delta\left(X_{i}\right) \cup \delta\left(X_{j}\right)$: any edge that leaves $X_{i} \cap X_{j}$ or $X_{i} \cup X_{j}$ leaves either X_{i} or X_{j}. We show that there is equality here, implying that property (3) remains true after the replacement. It is easy to see that $\delta\left(X_{i} \cap X_{j}\right) \cap \delta\left(X_{i} \cup X_{j}\right) \subseteq \delta\left(X_{i}\right) \cap \delta\left(X_{j}\right)$, hence we have $\left|\delta\left(X_{i} \cap X_{j}\right) \cup \delta\left(X_{i} \cup X_{j}\right)\right|=2 \ell-\left|\delta\left(X_{i} \cap X_{j}\right) \cap \delta\left(X_{i} \cup X_{j}\right)\right| \geq 2 \ell-\left|\delta\left(X_{i}\right) \cap \delta\left(X_{j}\right)\right|=\left|\delta\left(X_{i}\right) \cup \delta\left(X_{j}\right)\right|$, showing the required equality.

If $X_{i} \cap X_{j}$ or $X_{i} \cup X_{j}$ was already present in \mathcal{X}, then the replacement decreases the size of the collection, contradicting the choice of \mathcal{X}. Otherwise, we have that $\left|X_{i}\right|^{2}+\left|X_{j}\right|^{2}<\left|X_{i} \cap X_{j}\right|^{2}+$ $\left|X_{i} \cup X_{j}\right|^{2}$ (to verify this, simply represent $\left|X_{i}\right|$ as $\left|X_{i} \cap X_{j}\right|+\left|X_{i} \backslash X_{j}\right|,\left|X_{j}\right|$ as $\left|X_{i} \cap X_{j}\right|+\left|X_{j} \backslash X_{i}\right|$, $\left|X_{i} \cup X_{j}\right|$ as $\left|X_{i} \cap X_{j}\right|+\left|X_{i} \backslash X_{j}\right|+\left|X_{j} \backslash X_{i}\right|$ and do direct calculation having in mind that both $\left|X_{i} \backslash X_{j}\right|$ and $\left|X_{j} \backslash X_{i}\right|$ are greater than 0), again contradicting the choice of \mathcal{X}. Thus an optimal collection \mathcal{X} satisfies (1) as well.

To construct \mathcal{X} in polynomial time, we proceed as follows. It is easy to check in polynomial time whether a vertex v is in a minimum $s-t$ separator, and if so to produce such a separator S_{v}.

Let X_{v} be the set of vertices reachable from s in $G \backslash S_{v}$. It is clear that X_{v} satisfies (2) and if we take the collection \mathcal{X} of all such X_{v} 's, then together they satisfy (3). If (1) is not satisfied, then we start doing the replacements as above. Each replacement either decreases the size of the collection or increases $\sum_{i=1}^{t}\left|X_{i}\right|^{2}$ (without increasing the collection size), thus the procedure terminates after a polynomial number of steps.

Lemma 2.7 shows that the union C of all minimum $s-t$ separators can be covered by a chain of minimum $s-t$ separators. It is not difficult to see that this chain can be used to define a tree decomposition (in fact, a path decomposition) of torso (G, C). This observation solves the problem for $e=0$. For the general case, we use induction on e.

Lemma 2.8. Let s, t be two vertices of graph G and let ℓ be the minimum size of an $s-t$ separator. For some $e \geq 0$, let C be the union of all minimal $s-t$ separators having excess at most e (i.e. of size at most $k=\ell+e)$. Then, for some constant d, there is an $O\left(f(\ell, e) \cdot|V(G)|^{d}\right)$ time algorithm that returns a set $C^{\prime} \supseteq C \cup\{s, t\}$ such that the treewidth of torso $\left(G, C^{\prime}\right)$ is at most $g(\ell, e)$, where functions f and g depend only on ℓ and e.

Proof. We prove the lemma by induction on e. Consider the collection \mathcal{X} of Lemma 2.7 and define $S_{i}:=\delta\left(X_{i}\right)$ for $1 \leq i \leq q$. For the sake of uniformity, we define $X_{0}:=\emptyset, X_{q+1}:=V(G) \backslash\{t\}$, $S_{0}:=\{s\}, S_{q+1}:=\{t\}$. For $1 \leq i \leq q+1$, let $L_{i}:=X_{i} \backslash\left(X_{i-1} \cup S_{i-1}\right)$. Also, for $1 \leq i \leq q+1$ and two disjoint non-empty subsets A, B of $S_{i} \cup S_{i-1}$, we define $G_{i, A, B}$ to be the graph obtained from $G\left[L_{i} \cup A \cup B\right]$ by contracting the set A to a vertex a and the set B to a vertex b. Taking into account that if C includes a vertex of some L_{i} then $e>0$, we prove the key observation that makes it possible to use induction.

Claim 2.9. If a vertex $v \in L_{i}$ is in C, then there are disjoint non-empty subsets A, B of $S_{i} \cup S_{i-1}$ such that v is part of a minimal $a-b$ separator K_{2} in $G_{i, A, B}$ of size at most k (recall that $k=\ell+e$) and excess at most $e-1$.

Proof. By definition of C, there is a minimal $s-t$ separator K of size at most k that contains v. Let $K_{1}:=K \backslash L_{i}$ and $K_{2}:=K \cap L_{i}$. Partition $\left(S_{i} \cup S_{i-1}\right) \backslash K$ into the set A of vertices reachable from s in $G \backslash K$ and the set B of vertices non-reachable from s in $G \backslash K$. Let us observe that both A and B are non-empty. Indeed, due to the minimality of K, G has a path P from s to t such that $V(P) \cap K=\{v\}$. By selection of v, S_{i-1} separates v from s and S_{i} separates v from t. Therefore, at least one vertex u of S_{i-1} occurs in P before v and at least one vertex w of S_{i} occurs in P after v. The prefix of P ending at u and the suffix of P starting at w are both subpaths in $G \backslash K$. It follows that u is reachable from s in $G \backslash K$, i.e. belongs to A and that w is reachable from t in $G \backslash K$, hence non-reachable from s and thus belongs to B.

To see that K_{2} is an $a-b$ separator in $G_{i, A, B}$, suppose that there is a path P connecting a and b in $G_{i, A, B}$ avoiding K_{2}. Then there is a corresponding path P^{\prime} in G connecting a vertex of A and a vertex of B. Path P^{\prime} is disjoint from K_{1} (since it contains vertices of L_{i} and $\left(S_{i} \cup S_{i-1}\right) \backslash K$ only) and from K_{2} (by construction). Thus a vertex of B is reachable from s in $G \backslash K$, a contradiction.

To see that K_{2} is a minimal $a-b$ separator, suppose that there is a vertex $u \in K_{2}$ such that $K_{2} \backslash\{u\}$ is also an $a-b$ separator in $G_{i, A, B}$. Since K is minimal, there is an $s-t$ path P in $G \backslash(K \backslash u)$, which has to pass through u. Arguing as when we proved that A and B are non-empty, we observe that P includes vertices of both A and B, hence we can consider a minimal subpath P^{\prime} of P between a vertex $a^{\prime} \in A$ and a vertex $b^{\prime} \in B$. We claim that all the internal vertices of P^{\prime} belong to L_{i}. Indeed, due to the minimality of P^{\prime}, an internal vertex of P^{\prime} can belong either to L_{i} or to $V(G) \backslash\left(K_{1} \cup L_{i} \cup S_{i-1} \cup S_{i}\right)$. If all the internal vertices of P^{\prime} are from the latter set then there is a path from a^{\prime} to b^{\prime} in $G \backslash\left(K_{1} \cup L_{i}\right)$ and hence in $G \backslash\left(K_{1} \cup K_{2}\right)$ in contradiction to
$b^{\prime} \in B$. If P^{\prime} contains internal vertices of both sets then G has an edge $\{u, w\}$ where $u \in L_{i}$ while $w \in V(G) \backslash\left(K_{1} \cup L_{i} \cup S_{i-1} \cup S_{i}\right)$. But this is impossible since $S_{i-1} \cup S_{i}$ separates L_{i} from the rest of the graph. Thus it follows that indeed all the internal vertices of P^{\prime} belong to L_{i}. Consequently, P^{\prime} corresponds to a path in $G_{i, A, B}$ from a to b that avoids $K_{2} \backslash u$, a contradiction that proves the minimality of K_{2}.

Finally, we show that K_{2} has excess at most $e-1$. Let K_{2}^{\prime} be a minimum $a-b$ separator in $G_{i, A, B}$. Observe that $K_{1} \cup K_{2}^{\prime}$ is an $s-t$ separator in G. Indeed, consider a path P from s to t in $G \backslash\left(K_{1} \cup K_{2}^{\prime}\right)$. It necessarily contains a vertex $u \in K_{2}$, hence arguing as in the previous paragraph we notice that P includes vertices of both A and B. Considering a minimal subpath P^{\prime} of P between a vertex $a^{\prime} \in A$ and $b^{\prime} \in B$ we observe, analogously to the previous paragraph that all the internal vertices of this path belong to L_{i}. Hence this path corresponds to a path between a and b in $G_{i, A, B}$. It follows that P^{\prime}, and hence P, includes a vertex of K_{2}^{\prime}, a contradiction showing that $K_{1} \cup K_{2}^{\prime}$ is indeed an $s-t$ separator in G. Due to the minimality of $K_{2}, K_{2}^{\prime} \neq \emptyset$. Thus $K_{1} \cup K_{2}^{\prime}$ contains at least one vertex from L_{i}, implying that $K_{1} \cup K_{2}^{\prime}$ is not a minimum $s-t$ separator in G. Thus $\left|K_{2}\right|-\left|K_{2}^{\prime}\right|=\left(\left|K_{1}\right|+\left|K_{2}\right|\right)-\left(\left|K_{1}\right|+\left|K_{2}^{\prime}\right|\right)<k-\ell=e$, as required. This completes the proof of Claim 2.9.

Now we define C^{\prime}. Let $C_{0}:=\bigcup_{i=0}^{q+1} S_{i}$. For $e=0, C^{\prime}=C_{0}$. Assume that $e>0$. For $1 \leq i \leq q+1$ and disjoint non-empty subsets A, B of $S_{i} \cup S_{i-1}$. Let $C_{i, A, B}$ be such a superset of the union of all minimal $a-b$ separators of $G_{i, A, B}$ of size most k and excess at most $e-1$ that $C_{i, A, B} \cup\{a, b\}$ satisfies the induction assumption with respect to $G_{i, A, B}$ (if the minimum size of an $a-b$ separator of $G_{i, A, B}$ is greater than k then we set $C_{i, A, B}=\emptyset$). We define C^{\prime} as the union of C_{0} and all sets $C_{i, A, B}$ as above. Observe that C^{\prime} is defined correctly in the sense that any vertex v participating in an $s-t$ minimal separator of size at most k indeed belongs to C^{\prime}. For $e=0$, the correctness of C^{\prime} follows from the definition of sets S_{i}. For $e>0$, the correctness follows from the above Claim if we take into account that since $\bigcup_{i=1}^{q+1} L_{i} \cup C_{0}=V(G), v$ belongs to some L_{i}.

We shall show that the treewidth of $\operatorname{torso}\left(G, C^{\prime}\right)$ is at most $g(\ell, e)$, a function recursively defined as follows: $g(\ell, 0):=6 \ell$ and $g(\ell, e):=3 \cdot\left(2 \ell+3^{2 \ell} \cdot(g(\ell, e-1)+1)\right)$ for $e>0$. We do this by showing that in graph G, every set $W \subseteq C^{\prime}$ has a balanced separator of size at most 2ℓ (for $e=0$) and at most $2 \ell+3^{2 \ell} \cdot(g(\ell, e-1)+1)$ (for $e>0$). By Proposition 2.5 , this will imply that in torso $\left(G, C^{\prime}\right), W$ has a balanced separator with the same upper bound. By Lemma 2.2(1), the desired upper bound on the treewidth will immediately follow.

Let $W \subseteq C^{\prime}$ be an arbitrary set. Let $1 \leq i \leq q+1$ be the smallest value such that $\left|W \cap X_{i}\right| \geq$ $|W| / 2$. Consider the separator $S_{i} \cup S_{i-1}$ (whose size is at most 2ℓ). In $G \backslash\left(S_{i} \cup S_{i-1}\right)$, the sets X_{i-1}, L_{i}, and $V(G) \backslash\left(S_{i} \cup S_{i-1} \cup X_{i-1} \cup L_{i}\right)$ are pairwise separated from each other. By the selection of i, the first and the third sets do not contain more than half of W. If $e=0$, then C^{\prime} is disjoint from L_{i}, hence the treewidth upper bound follows for $e=0$. We assume that $e>0$ and, using the induction assumption, will show that $W \cap L_{i}$ has a balanced separator S of size at most $3^{2 \ell} \cdot(g(\ell, e-1)+1)$. This will immediately imply that $S \cup S_{i} \cup S_{i-1}$ is a balanced separator of W of size at most $2 \ell+3^{2 \ell} \cdot(g(\ell, e-1)+1)$, which, in turn, will imply the desired upper bound on the treewidth of torso $\left(G, C^{\prime}\right)$.

By the induction assumption, the treewidth of torso $\left(G_{i, A, B}, C_{i, A, B}\right)$ is at most $g(\ell, e-1)$ for any pair of disjoint subsets A, B of $S_{i} \cup S_{i-1}$ such that $G_{i, A, B}$ has an $a-b$ separator of size at most k. By the combination of Lemma 2.2(2) and Proposition 2.5, graph G has a balanced separator of size at most $g(\ell, e-1)+1$ for any set $W_{i, A, B} \subseteq C_{i, A, B}$. Let C^{*} be the union of $C_{i, A, B}$ for all such A and B. Taking into account that the number of choices of A and B is at most $3^{2 \ell}$, for any
$W^{*} \subseteq C^{*}, G$ has a balanced separator of size at most $3^{2 \ell} \cdot(g(\ell, e-1)+1)$ according to Lemma 2.3. By definition of $C^{\prime}, W \cap L_{i} \subseteq C^{*}$, hence the existence of the desired separator S follows.

We conclude the proof by showing that the above set C^{\prime} can be constructed in time $O(f(\ell, e)$. $\left.|V(G)|^{d}\right)$. In particular, we present an algorithm whose running time is $O(f(\ell, e) \cdot(|V(G)|-$ $2)^{d}$) (we assume that G has more than 2 vertices), where $f(\ell, e)$ is recursively defined as follows: $f(\ell, 0)=1$ and $f(\ell, e)=f(\ell, e-1) \cdot 3^{2 \ell}+1$ for $e>0$.

The set X_{i} can be computed as shown in the proof of Lemma 2.7. Then the set S_{i} can be obtained as in the first paragraph of the proof of the present lemma. Their union results in C_{0} which is C^{\prime} for $e=0$. Thus for $e=0, C^{\prime}$ can be computed in time $O(|V(G)|-2)^{d}$) (instead of considering s and t, we may consider their sets of neighbors). Since the computation involves computing a minimum cut, we may assume that $d>1$. Now assume that $e>0$. For each i such that $1 \leq i \leq q+1$ and $\left|L_{i}\right|>0$, we explore all possible disjoint subsets A and B of $S_{i} \cup S_{i-1}$. For the given choice, we check if the size of a minimum $a-b$ separator of $G_{i, A, B}$ is at most k (observe that it can be done in $O\left(\left|L_{i}\right|^{d}\right)$) and if yes, compute the set $C_{i, A, B}$. By the induction assumption, the computation takes $O\left(f(\ell, e-1) \cdot\left|L_{i}\right|^{d}\right)$. So, exploring all possible choices of A and B takes $O\left(f(\ell, e-1) \cdot 3^{2 \ell} \cdot\left|L_{i}\right|^{d}\right)$. The overall complexity of computing C^{\prime} is

$$
O\left((|V(G)|-2)^{d}+f(\ell, e-1) \cdot 3^{2 \ell} \cdot \sum_{i=1}^{q+1}\left|L_{i}\right|^{d}\right)
$$

Since all L_{i} are disjoint and $\bigcup_{i=1}^{q+1} L_{i} \subseteq V(G) \backslash\{s, t\}, \sum_{i=1}^{q+1}\left|L_{i}\right| \leq|V(G)|-2$, hence $\sum_{i=1}^{q+1}\left(\left|L_{i}\right|\right)^{d} \leq$ $(|V(G)|-2)^{d}$. Taking into account the recursive expression for $f(\ell, e)$, the desired runtime follows.
Remark 2.10. The recursion $g(\ell, e):=3 \cdot\left(2 \ell+3^{2 \ell} \cdot g(\ell, e-1)\right)$ implies that $g(\ell, e)$ is $2^{O(e \ell)}$, i.e., the treewidth bound is exponential in ℓ and e. It is an obvious question whether it is possible to improve this dependence to polynomial. However, a simple example (graph G is the n-dimensional hypercube, $k=(n-1) n, s$ and t are opposite vertices) shows that the function $g(\ell, e)$ has to be exponential. The size of the minimum $s-t$ separator is $\ell:=n$. We claim that every vertex v of the hypercube (other than s and t) is part of a minimal $s-t$ separator of size at most $n(n-1)$. To see this, let P be a shortest path connecting s and v. Let $P^{\prime}=P-v$ be the subpath of P connecting s with a neighbor v^{\prime} of v. Let S be the neighborhood of P^{\prime}; clearly S is an $s-t$ separator and $v \in S$. However, $S \backslash v$ is not an $s-t$ separator: the path P is not blocked by $S \backslash v$ as $S \backslash v$ does not contain any vertex farther from s than v. Since P^{\prime} has at most $n-1$ vertices and every vertex has degree n, we have $|S| \leq n(n-1)$. Thus v (and every other vertex) is part of a minimal separator of size at most $n(n-1)$. Hence if we set $\ell:=n$ and $e:=n(n-1)$, then C contains every vertex of the hypercube. The treewidth of an n-dimensional hypercube is $\Omega\left(2^{n} / \sqrt{n}\right)$ [4], which is also a lower bound on $g(\ell, e)$.

The following theorem states our main combinatorial tool in a form that will be very convenient to use.

Theorem 2.11 (The Treewidth Reduction Theorem). Let G be a graph, $S \subseteq V(G)$, and let k be an integer. Let C be the set of all vertices of G participating in a minimal $s-t$ cut of size at most k for some $s, t \in S$. Then there is an FPT algorithm, parameterized by k and $|S|$, that computes a graph G^{*} having the following properties:
(1) $C \cup S \subseteq V\left(G^{*}\right)$
(2) For every $s, t \in S$, a set $K \subseteq V\left(G^{*}\right)$ with $|K| \leq k$ is a minimal $s-t$ separator of G^{*} if and only if $K \subseteq C \cup S$ and K is a minimal $s-t$ separator of G.
(3) The treewidth of G^{*} is at most $h(k,|S|)$ for some function h.
(4) For any $K \subseteq C, G^{*}[K]$ is isomorphic to $G[K]$.

Proof. For every $s, t \in S$ that can be separated by the removal of at most k vertices, the algorithm of Lemma 2.8 computes a set $C_{s, t}^{\prime}$ containing all the minimal $s-t$ separators of size at most k. By Lemma 2.6, if C^{\prime} is the union of these at most $\binom{|S|}{2}$ sets, then $G^{\prime}=\operatorname{torso}\left(G, C^{\prime}\right)$ has treewidth bounded by a function of k and $|S|$. Note that G^{\prime} satisfies all the requirements of the theorem except the last one: two vertices of C^{\prime} non-adjacent in G may become adjacent in G^{\prime} (see Definition 2.4). To fix this problem we subdivide each edge $\{u, v\}$ of G^{\prime} such that $\{u, v\} \notin E(G)$ into two edges with a vertex between them, and, to avoid selecting this vertex into a cut, we split it into $k+1$ copies. In other words, for each edge $\{u, v\} \in E\left(G^{\prime}\right) \backslash E(G)$ we introduce $k+1$ new vertices w_{1}, \ldots, w_{k+1} and replace $\{u, v\}$ by the set of edges $\left\{\left\{u, w_{1}\right\}, \ldots,\left\{u, w_{k+1}\right\},\left\{w_{1}, v\right\}, \ldots,\left\{w_{k+1}, v\right\}\right\}$. Let G^{*} be the resulting graph. It is not hard to check that G^{*} satisfies all the properties of the present theorem.

Remark 2.12. The treewidth of G^{*} may be larger than the treewidth of G. We use the phrase "treewidth reduction" in the sense that the treewidth of G^{*} is bounded by a function of k and $|S|$, while the treewidth of G is unbounded.

3. Constrained Separation Problems

Let \mathcal{G} be a class of graphs. Given a graph G, vertices s and t, and parameter k, the \mathcal{G}-mincut problem asks if G has an $s-t$ separator C of size at most k such that $G[C] \in \mathcal{G}$. The following theorem is the central result of this section.

Theorem 3.1. Assume that \mathcal{G} is decidable and hereditary (i.e. whenever $G \in \mathcal{G}$ then for any $\left.V^{\prime} \subseteq V, G\left[V^{\prime}\right] \in \mathcal{G}\right)$. Then the \mathcal{G}-mincut problem is FPT.

Proof. (Sketch) Let G^{*} be a graph satisfying the requirements of Theorem 2.11 for $S=\{s, t\}$. According to Theorem 2.11, G^{*} can be computed in FPT time. We claim that (G, s, t, k) is a 'YES' instance of the \mathcal{G}-mincut problem if and only if (G^{*}, s, t, k) is a 'YES' instance of this problem. Indeed, let K be an $s-t$ separator in G such that $|K| \leq k$ and $G(K) \in \mathcal{G}$. Since \mathcal{G} is hereditary, we may assume that K is minimal (otherwise we may consider a minimal subset of K separating s from t). By the second and fourth properties of G^{*} (see Theorem 2.11), K separates s from t in G^{*} and $G^{*}[K] \in \mathcal{G}$. The opposite direction can be proved similarly.

Thus we have established an FPT-time reduction from an instance of the \mathcal{G}-mINCUT problem to another instance of this problem where the treewidth is bounded by a function of parameter k. Now, let $G_{1}=\left(V\left(G^{*}\right), E\left(G^{*}\right), S T\right)$ be a labeled graph where $S T=\{s, t\}$. We present an algorithm for constructing a monadic second-order (MSO) formula φ whose atomic predicates (besides equality) are $E\left(x_{1}, x_{2}\right)$ (showing that x_{1} and x_{2} are adjacent in G^{*}) and predicates of the form $X(v)$ (showing that v is contained in $X \subseteq V$), whose size is bounded by a function of k, and $G_{1} \models \varphi$ if and only if $\left(G^{*}, s, t, k\right)$ is a 'YES' instance of the \mathcal{G}-mincut problem. According to a restricted version of the well-known Courcelle's Theorem (see the survey article of Grohe [14], Remarks 3.19^{1} and 3.20), it will follow that the \mathcal{G}-mincut problem is FPT. The part of φ describing the separation of s and t is based on the ideas from [13].

[^1]We construct the formula φ as

$$
\varphi=\exists C\left(\operatorname{AtMost}_{k}(C) \wedge \operatorname{Separates}(C) \wedge \operatorname{Induces}_{\mathcal{G}}(C)\right)
$$

where $\operatorname{AtMost}_{k}(C)$ is true if and only if $|C| \leq k$, Separates (C) is true if and only if C separates the vertices of $S T$ in G^{*}, and $\operatorname{Induces}_{\mathcal{G}}(C)$ is true if and only C induces a graph of \mathcal{G}.

In particular, $\operatorname{AtMost}_{k}(C)$ states that C does not have $k+1$ mutually non-equal elements: this can be implemented as

$$
\forall c_{1}, \ldots, \forall c_{k+1} \bigvee_{1 \leq i, j \leq k+1}\left(c_{i}=c_{j}\right)
$$

Formula $\operatorname{Separates}(C)$ is a slightly modified formula uvmc (X) from [13], that looks as follows:

$$
\forall s \forall t \forall Z(S T(s) \wedge S T(t) \wedge \neg(s=t) \wedge \neg C(s) \wedge \neg C(t) \wedge \operatorname{Connects}(Z, s, t)) \rightarrow(\exists v(C(v) \wedge Z(v)))),
$$

where Connects (Z, s, t) is true if and only if in the modeling graph there is a path from s and t all vertices of which belong to Z. For the definition of the predicate Connects, see Definition 3.1 in [13].

To construct $\operatorname{Induces}_{\mathcal{G}}(C)$, we explore all possible graphs having at most k vertices and for each of these graphs we check whether it belongs to \mathcal{G}. Since the number of graphs being explored depends on k and \mathcal{G} is a decidable class, in FPT time we can compile the set $\left\{G_{1}^{\prime}, \ldots, G_{r}^{\prime}\right\}$ of all graphs of at most k vertices that belong to \mathcal{G}. Let $k_{1}, \ldots k_{r}$ be the respective numbers of vertices of $G_{1}^{\prime}, \ldots G_{r}^{\prime}$. Then Induces $_{\mathcal{G}}(C)=\operatorname{Induces}_{1}(C) \vee \cdots \vee \operatorname{Induces}_{r}(C)$, where $\operatorname{Induces}_{i}(C)$ states that C induces G_{i}^{\prime}. To define Induces ${ }_{i}$, let $v_{1}, \ldots, v_{k_{i}}$ be the set of vertices of G_{i}^{\prime} and define $\operatorname{Adj}_{i}\left(c_{1}, \ldots, c_{k_{i}}\right)$ as the conjunction of all $E\left(c_{x}, c_{y}\right)$ such that v_{x} and v_{y} are adjacent in G_{i}^{\prime} and of all $\neg E\left(c_{x}, c_{y}\right)$ such that v_{x} and v_{y} are not adjacent in G_{i}^{\prime}. Then

$$
\operatorname{Induces}_{i}(C)=\operatorname{AtMost}_{k_{i}}(C) \wedge \exists c_{1} \ldots \exists c_{k_{i}}\left(\bigwedge_{1 \leq j \leq k_{i}} C\left(c_{j}\right) \wedge \bigwedge_{1 \leq x, y \leq k_{i}} c_{x} \neq c_{y} \wedge \operatorname{Adj}_{i}\left(c_{1}, \ldots, c_{k_{i}}\right)\right) .
$$

It is not hard to verify that indeed $G_{1} \models \varphi$ if and only if (G^{*}, s, t, k) is a 'YES' instance of the \mathcal{G}-mincut problem.

In particular, let \mathcal{G}^{0} be the class of all graphs without edges. Then \mathcal{G}^{0}-MINCUT is the minimum STABLE $s-t$ CUT problem whose fixed-parameter tractability has been posed as an open question by Kanj [17]. Clearly, \mathcal{G}^{0} is hereditary and hence the \mathcal{G}^{0}-mincut is FPT.

Theorem 3.1 can be used to decide if there is an $s-t$ separator of size at most k having a certain property, but cannot be used if we are looking for $s-t$ separators of size exactly k. We show (with a very easy argument) that some of these problems actually become hard if the size is required to be exactly k. Let graph G^{\prime} be obtained from graph G by introducing two isolated vertices s and t. Now there is an independent set of size exactly k that is an $s-t$ separator in G^{\prime} if and only if there is an independent set of size k in G, implying that finding such a separator is $\mathrm{W}[1]$-hard.

Theorem 3.2. It is $\mathrm{W}[1]$-hard to decide if G has an $s-t$ separator that is an independent set of size exactly k.

Samer and Szeider [27] introduced the notion of edge-induced vertex-cut and the corresponding computational problem: given a graph G and two vertices s and t, the task is to decide if there are k edges such that deleting the endpoints of these edges separates s and t. It remained an open question in [27] whether this problem is FPT. Samer reposted this problem as an open question in [7]. Using Theorem 3.1, we answer this question positively. For this purpose, we introduce \mathcal{G}_{k}, the class of graphs where the number of vertices minus the size of the maximum matching is at
most k, observe that this class is hereditary, and show that (G, s, t, k) is a 'YES'-instance of the edge-induced vertex-cut problem if and only if $(G, s, t, 2 k)$ is a 'YES' instance of the \mathcal{G}_{k}-mincut problem. Then we apply Theorem 3.1 to get the following corollary.

Corollary 3.3. The EDGE-INDUCED VERTEX-CUT problem is FPT.
mULTICUT is the generalization of MINCUT where, instead of s and t, the input contains a set $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{\ell}\right)$ of terminal pairs. The task is to find a set S of at most k nonterminal vertices that separate s_{i} and t_{i} for every $1 \leq i \leq \ell$. MULTICUT is known to be FPT [19,28] parameterized by k and ℓ. In the \mathcal{G}-multicut problem, we additionally require that S induces a graph from \mathcal{G}. It is not difficult to generalize Theorem 3.1 for \mathcal{G}-multicut: all we need to do is to change the construction of φ such that it requires the separation of each pair $\left(s_{i}, t_{i}\right)$. We state this here in an even more general form. In the \mathcal{G}-multicut-uncut problem the input contains an additional integer $\ell^{\prime} \leq \ell$, and we change the problem by requiring for every $\ell^{\prime} \leq i \leq \ell$ that S does not separate s_{i} and t_{i}.

Theorem 3.4. If \mathcal{G} is decidable and hereditary, then \mathcal{G}-multicut-uncut is Fpt parameterized by k and ℓ.

Theorem 3.4 helps clarify a theoretical issue. In Section 2, we defined C as the set of all vertices appearing in minimal $s-t$ separators of size at most k. There is no obvious way of finding this set in FPT-time and Lemma 2.6 produces only a superset C^{\prime} of C. However, Theorem 3.4 can be used to find C : a vertex v is in C if and only if there is a set S of size at most $k-1$ and two neighbors v_{1}, v_{2} of v such that S separates s and t in $G \backslash v$, but S does not separate s from v_{1} and t from v_{2} in $G \backslash v$ (including the possibility that $v_{1}=s$ or $v_{2}=t$).

4. Constrained Bipartization Problems

Reed et al. [25] solved a longstanding open question by proving the fixed-parameter tractability of the bipartization problem: given a graph G and an integer k, find a set S of at most k vertices such that $G \backslash S$ is bipartite (see also [18] for a somewhat simpler presentation of the algorithm). In fact, they showed that the BIPARTIZATION problem can be solved by at most 3^{k} applications of a procedure solving mincut. The key result that allows to transform BIPARTIZATION to a separation problem is the following lemma.

Lemma 4.1. Let G be a bipartite graph and let $\left(B^{\prime}, W^{\prime}\right)$ be a 2-coloring of the vertices. Let B and W be two subsets of $V(G)$. Then for any $S, G \backslash S$ has a 2-coloring where $B \backslash S$ is black and $W \backslash S$ is white if and only if S separates $X:=\left(B \cap B^{\prime}\right) \cup\left(W \cap W^{\prime}\right)$ and $Y:=\left(B \cap W^{\prime}\right) \cup\left(W \cap B^{\prime}\right)$.

In this section we consider the \mathcal{G}-bIPARTIZATION problem: a generalization of the BIPARTIZATION problem where, in addition to $G \backslash S$ being bipartite, it is also required that S induces a graph belonging to a class \mathcal{G}.

Theorem 4.2. \mathcal{G}-bipartization is FPT if \mathcal{G} is hereditary and decidable.
Proof. Using the algorithm of [25], we first try to find a set S_{0} of size at most k such that $G \backslash S_{0}$ is bipartite. If no such set exists, then clearly there is no set S satisfying the requirements. Otherwise, we branch in $3{ }^{\left|S_{0}\right|}$ directions: each vertex of S_{0} is removed or colored black or colored white. For a particular branch, let $R=\left\{v_{1}, \ldots, v_{r}\right\}$ be the vertices of S_{0} to be removed and let B_{0} (resp., W_{0}) be the vertices of S_{0} having color black (resp., white) in a 2 -coloring of the resulting bipartite graph. Let us call a set S such that $S \cap S_{0}=R$, and $G \backslash S$ is bipartite and having a 2-coloring where
B_{0} and W_{0} are colored black and white, respectively, a set compatible with (R, B_{0}, W_{0}). Clearly, (G, k) is a 'YES' instance of the \mathcal{G}-bipartization problem if and only if for at least one branch corresponding to partition $\left(R, B_{0}, W_{0}\right)$ of S_{0}, there is a set compatible with $\left(R, B_{0}, W_{0}\right)$ having size at most k and such that $G[S] \in \mathcal{G}$. Clearly, we need to check only those branches where $G\left[B_{0}\right]$ and $G\left[W_{0}\right]$ are both independent sets.

We transform the problem of finding a set compatible with $\left(R, B_{0}, W_{0}\right)$ into a separation problem. Let $\left(B^{\prime}, W^{\prime}\right)$ be a 2-coloring of $G \backslash S_{0}$. Let $B=N\left(W_{0}\right) \backslash S_{0}$ and $W=N\left(B_{0}\right) \backslash S_{0}$. Let us define X and Y as in Lemma 4.1, i.e., $X:=\left(B \cap B^{\prime}\right) \cup\left(W \cap W^{\prime}\right)$, and $Y:=\left(B \cap W^{\prime}\right) \cup\left(W \cap B^{\prime}\right)$. We construct a graph G^{\prime} that is obtained from G by deleting the set $B_{0} \cup W_{0}$, adding a new vertex s adjacent to $X \cup R$, and adding a new vertex t adjacent with $Y \cup R$. Note that every $s-t$ separator in G^{\prime} contains R. By Lemma 4.1, a set S is compatible with $\left(R, B_{0}, W_{0}\right)$ if and only if S is an $s-t$ separator in G^{\prime}. Thus what we have to decide is whether there is an $s-t$ separator S of size at most k such that $G^{\prime}[S]=G[S]$ is in \mathcal{G}. That is, we have to solve the \mathcal{G}-mincut instance (G^{\prime}, s, t, k). The fixed-parameter tractability of the \mathcal{G}-BIPARTIZATION problem now immediately follows from Theorem 3.1.

Theorem 4.2 immediately implies that the stable bipartization problem is fpt: just set \mathcal{G} to be the class of all graphs without edges. This answers an open question of Fernau [7]. Next, we show that the EXACT STABLE BIPARTIZATION problem is FPT, answering a question posed by Díaz et al. [9]. This result may seem surprising because the corresponding exact separation problem is W[1]-hard by Theorem 3.2 and hence the approach of Theorem 4.2 is unlikely to work. Instead, we argue that under appropriate conditions, any solution of size at most k can be extended to an independent set of size exactly k.
Theorem 4.3. Given a graph G and an integer k, deciding whether G can be made bipartite by the deletion of an independent set of size exactly k is fixed-parameter tractable.

Proof. (Sketch) It is more convenient to consider an annotated version of the problem where the independent set being deleted has to be a subset of a set $D \subseteq V(G)$ given as part of the input. Without the annotation, D is initially set to $V(G)$. If G is not bipartite, then the algorithm starts by finding an odd cycle C of minimum length (which can be done in polynomial time). It is not difficult to see that the minimality of C implies that either C is a triangle or C is chordless. Moreover, in the latter case, every vertex not in C is adjacent to at most 2 vertices of the cycle.

If $|V(C) \cap D|=0$, then clearly no subset of D is a solution. If $1 \leq|V(C) \cap D| \leq 3 k+1$, then we branch on the selection of each vertex $v \in V(C) \cap D$ into the set S of vertices being removed and apply the algorithm recursively with the parameter k being decreased by 1 and the set D being updated by the removal of v and $N(v) \cap D$. If $|V(C) \cap D|>3 k+1$, then we apply the approach of Theorem 4.2 to find an independent set $S \subseteq D$ of size at most k whose removal makes the graph bipartite, and then argue that S can be extended to an independent set of size exactly k. To ensure that $S \subseteq D$, we may, for example split all vertices $v \in V(G) \backslash D$ into $k+1$ independent copies with the same neighborhood as v. If $|S|=k$, we are done. Otherwise, $|S|=k^{\prime}<k$. In this case we observe that by the minimality of C, each vertex of S (either in C or outside C) forbids the selection of at most 3 vertices of $V(C) \cap D$ including itself. Thus the number of vertices of $V(C) \cap D$ allowed for selection is at least $3 k+1-3 k^{\prime}=3\left(k-k^{\prime}\right)+1$. Since the cycle is chordless, we can select $k-k^{\prime}$ independent vertices among them and thus complement S to be of size exactly k.

The above algorithm has a number of stopping conditions, the only non-trivial of them occurs if G is bipartite but $k>0$. In this case we check if $G[D]$ has k independent vertices, which can be done in a polynomial time.

Acknowledgements

The research of Dániel Marx was supported by ERC Advanced Grant DMMCA. The research of Barry O'Sullivan and Igor Razgon was supported by Science Foundation Ireland through Grant 05/IN/I886. We would like to thank the anonymous referees for spotting a number of minor mistakes in the preliminary version of this paper. Fixing those mistakes in the camera-ready version allowed us to significantly improve its quality.

References

[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1-3):89-113, 2004.
[2] H. L. Bodlaender. Treewidth: Characterizations, applications, and computations. In WG, pages 1-14, 2006.
[3] H. L. Bodlaender, M. R. Fellows, P. Heggernes, F. Mancini, C. Papadopoulos, and F. A. Rosamond. Clustering with partial information. In MFCS, pages 144-155, 2008.
[4] L. S. Chandran and T. Kavitha. The treewidth and pathwidth of hypercubes. Discrete Math., 306(3):359-365, 2006.
[5] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node multiway cut problem. In $W A D S$, pages 495-506, 2007.
[6] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008.
[7] E. Demaine, G. Z. Gutin, D. Marx, and U. Stege. Seminar 07281 Open problems. In Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, 2007.
[8] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general weighted graphs. Theor. Comput. Sci., 361(2-3):172-187, 2006.
[9] J. Díaz, M. Serna, and D. M. Thilikos. (H, C, K)-coloring: fast, easy, and hard cases. In MFCS 2001, pages 304315, 2001.
[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, New York, 1999.
[11] U. Feige and M. Mahdian. Finding small balanced separators. In STOC 2006, pages 375-384. ACM, 2006.
[12] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[13] G. Gottlob and S. T. Lee. A logical approach to multicut problems. Inform. Process. Lett., 103(4):136-141, 2007.
[14] M. Grohe. Logic, graphs, and algorithms. In J. Flum, E. Grädel, and T. Wilke, editors, Logic and Automata-History and Perspectives. Amsterdam University Press, 2007.
[15] S. Guillemot. FPT algorithms for path-transversals and cycle-transversals problems in graphs. In IWPEC, pages 129-140, 2008.
[16] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs. European Journal of Operational Research, 186(2):542-553, 2008.
[17] I. Kanj. Open problem session of Dagstuhl seminar 08431, 2008.
[18] D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler parameterized algorithm for OCT. In IWOCA 2009, pages 380384, 2009.
[19] D. Marx. Parameterized graph separation problems. Theoretical Computer Science, 351(3):394-406, 2006.
[20] D. Marx and I. Razgon. Constant ratio fixed-parameter approximation of the edge multicut problem. In ESA 2009, pages 647-658, 2009.
[21] R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.
[22] J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and applications. Math. Programming Stud., (13):8-16, 1980. Combinatorial optimization, II (Proc. Conf., Univ. East Anglia, Norwich, 1979).
[23] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. In ICALP (1), pages 551-562, 2008.
[24] B. Reed. Tree width and tangles: A new connectivity measure and some applications. In R. Bailey, editor, Surveys in Combinatorics, volume 241 of LMS Lecture Note Series, pages 87-162. Cambridge University Press, 1997.
[25] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations Research Letters, 32(4):299-301, 2004.
[26] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B, 52(2):153-190, 1991.
[27] M. Samer and S. Szeider. Complexity and applications of edge-induced vertex-cuts. CoRR, abs/cs/0607109, 2006.
[28] M. Xiao. Algorithms for multiterminal cuts. In CSR, pages 314-325, 2008.

[^0]: 1998 ACM Subject Classification: G.2.2. Graph Theory, Subject: Graph Algorithms.
 Key words and phrases: fixed-parameter algorithms, graph separation problems, treewidth.

[^1]: ${ }^{1}$ Although the branchwidth of G_{1} appears in the parameter, it can be replaced by the treewidth of G_{1} since the former is bounded by a function of k if and only if the latter is [26].

