190,713 research outputs found

    Nonsequential double ionization with few-cycle laser pulses

    Get PDF
    We investigate differential electron momentum distributions in nonsequential double ionization with linearly polarized, few-cycle pulses, using a classical model based on a laser-assisted inelastic (e(-),2e(-)) rescattering mechanism. These yields, as functions of the momentum components parallel to the laser polarization, are highly asymmetric and strongly influenced by the phase difference between the pulse envelope and its carrier oscillation, radically changing their sign around a critical phase. This behavior provides a powerful tool for absolute-phase measurements

    Synopsis of marine prawn fishery of India for the third quarter of 1978

    Get PDF
    The data for the third quarter of 1978 is presented in this paper. The statewise and monthwise details of catch during the months of the quarter and the total catch of prawns for the quarter are summarized. Gearwise analysis of the catch, show that the prawn catch by shrimp trawlers increased from that of the previous quarter. In Kerala the trend of more prawn catch when the environmental features registered decrease in values noticed towards the end of last quarter continued in this quarter. In Kerala the trend of more prawn catch when the environmental features registered decrease in values noticed towards the end of last quarter continued in this quarter

    Synopsis of marine prawn fishery of India for the second quarter of 1978

    Get PDF
    In continuation of the data on marine prawn fishery for the first quarter of 1978 presented in the September issue of the Marine Fisheries Information Service, Technical and Extension Series, the data for the second quarter of 1978 has been analysed

    Synopsis of marine prawn fishery of India -1978

    Get PDF
    The details of the fishery for the last quarter of the year is dealt with first and then a general picture of the fishery for the whole year presented in this paper. The total catch figures for the previous quarters given earlier were provisional, whereas the final figures are used for the study of the fishery of the last quarter as well as the annual picture

    High-order harmonic generation in a driven two-level atom: Periodic level crossings and three-step processes

    Get PDF
    We investigate high-order harmonic generation in closed systems using the two-level atom as a simplified model. By means of a windowed Fourier transform of the time-dependent dipole acceleration, we extract the main contributions to this process within a cycle of the driving field. We show that the patterns obtained can be understood by establishing a parallel between the two-level atom and the three-step model. In both models, high-order harmonic generation is a consequence of a three-step process, which involves either the continuum and the ground state, or the adiabatic states of the two-level Hamiltonian. The knowledge of this physical mechanism allows us to manipulate the adiabatic states, and consequently the harmonic spectra, by means of a bichromatic driving field. Furthermore, using scaling laws, we establish sharp criteria for the invariance of the physical quantities involved. Consequently, our results can be extended to a broader parameter range, as, for instance, those characteristic of solid-state systems in strong fields

    Diffusion-Based Coarse Graining in Hybrid Continuum-Discrete Solvers: Applications in CFD-DEM

    Full text link
    In this work, a coarse-graining method previously proposed by the authors in a companion paper based on solving diffusion equations is applied to CFD-DEM simulations, where coarse graining is used to obtain solid volume fraction, particle phase velocity, and fluid-particle interaction forces. By examining the conservation requirements, the variables to solve diffusion equations for in CFD-DEM simulations are identified. The algorithm is then implemented into a CFD-DEM solver based on OpenFOAM and LAMMPS, the former being a general-purpose, three-dimensional CFD solver based on unstructured meshes. Numerical simulations are performed for a fluidized bed by using the CFD-DEM solver with the diffusion-based coarse-graining algorithm. Converged results are obtained on successively refined meshes, even for meshes with cell sizes comparable to or smaller than the particle diameter. This is a critical advantage of the proposed method over many existing coarse-graining methods, and would be particularly valuable when small cells are required in part of the CFD mesh to resolve certain flow features such as boundary layers in wall bounded flows and shear layers in jets and wakes. Moreover, we demonstrate that the overhead computational costs incurred by the proposed coarse-graining procedure are a small portion of the total costs in typical CFD-DEM simulations as long as the number of particles per cell is reasonably large, although admittedly the computational overhead of the coarse graining often exceeds that of the CFD solver. Other advantages of the present algorithm include more robust and physically realistic results, flexibility and easy implementation in almost any CFD solvers, and clear physical interpretation of the computational parameter needed in the algorithm. In summary, the diffusion-based method is a theoretically elegant and practically viable option for CFD-DEM simulations

    Feasibility study for estimating the offshore shear layer from on shore measurements

    Get PDF
    This paper presents an open source computational fluid dynamics (CFD) study of air flow over a complex terrain. The open source C++ toolbox OpenFOAM has been used for the CFD analysis and the terrain considered is a scale model of Berlengas Island, which lies close to the Portuguese coast. In order to validate the CFD model, experimental work has been carried out in an open-section wind tunnel using hot-wire anemometry to measure the wind profiles above the island. In the majority of cases, the OpenFOAM CFD solutions show very good agreement with the experimental wind profile data, confirming that open source CFD solutions are possible for environmental flows over complex terrain. Such an analysis demonstrates the feasibility of estimating offshore boundary layer effects from onshore measurements

    Study of a regenerative pump using numerical and experimental techniques

    Get PDF
    Regenerative pumps are the subject of increased interest in industry as these pumps are low cost, low specific speed, compact and able to deliver high heads with stable performance characteristics. The complex flow-field within the pump represents a considerable challenge to detailed mathematical modelling as there is significant flow separation in the impeller blading. This paper presents the use of a commercial CFD code to simulate the flow within the regenerative pump and compare the CFD results with new experimental data. The CFD results demonstrate that it is possible to represent the helical flowfield for the pump which has only been witnessed in experimental flow visualisation until now. The CFD performance results also demonstrate reasonable agreement with the experimental tests. The CFD models are currently being used to optimise key geometric features to increase pump efficiency

    The aerospace plane design challenge: Credible computational fluid dynamics results

    Get PDF
    Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD
    corecore