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High-order harmonic generation in a driven two-level atom: Periodic level crossings
and three-step processes
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We investigate high-order harmonic generation in closed systems using the two-level atom as a simplified
model. By means of a windowed Fourier transform of the time-dependent dipole acceleration, we extract the
main contributions to this process within a cycle of the driving field. We show that the patterns obtained can
be understood by establishing a parallel between the two-level atom and the three-step model. In both models,
high-order harmonic generation is a consequence of a three-step process, which involves either the continuum
and the ground state, or the adiabatic states of the two-level Hamiltonian. The knowledge of this physical
mechanism allows us to manipulate the adiabatic states, and consequently the harmonic spectra, by means of
a bichromatic driving field. Furthermore, using scaling laws, we establish sharp criteria for the invariance of
the physical quantities involved. Consequently, our results can be extended to a broader parameter range, as,
for instance, those characteristic of solid-state systems in strong fields.
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I. INTRODUCTION the field (the second stgpand recombines with the ground
state of its parent ioh5] at a later timet;, emitting a high-
The generation of high-order harmonics of a strong laseorder harmonic photor{the third step. This model has
field (1~10" W/cn?) in gaseous samples, where coherentshown that the interplay between a bound state and the con-
light in the extreme ultraviolet regime is obtained from in- tinuum, which is not present in a two-level atom, is essential
frared input radiation, originated a breakthrough in nonlineafor a correct physical description of high-order harmonic
optics. In these systems, composed by atoms or small mogeneration. Thus the three-step model has established itself
ecules, high-order harmonic generatigt.H.G) is a well-  as the paradigm for describing this phenomefsee, e.g.,
understood issul] . These highly nonlinear spectra exhibit [15] for a comparison of both modgls
very particular features: a frequency region with harmonics Until very recently, only gaseous systems were believed
of roughly the same intensities, the “plateau,” and a sharpo be possible high-order harmonic sources, due to the high
decrease in the harmonic yield at the plateau’s high-energintensities involved. However, nowadays, this picture has
end, the “cutoff.” Since the early 1990s, not only these fea-changed. With the advent of short pulses, there are solid-state
tures have been investigated, but also the HHG time profilenaterials which can survive the necessary intensity regime,
[2,3], physical mechanisngt,5], and the propagation of the namely 16°— 10 Wi/cn? [16]. This has led to theoretical
harmonic radiation in gaseous medl&d. These studies cul- studies on high-order harmonic generation in materials such
minated with countless proposals of how to control high haras thin crystal§17] or carbon nanotubedl8]. Another ex-
monics, as diverse as, for instance, polychrom@iie9] or  ample of a new and unexpected effect is, for instance,
static[10] fields, ultrashort pulseill], or additional poten- carrier-wave Rabi flopping, which has been recently mea-
tials [12], many of them having even been realized experi-sured experimentallf19].
mentally[13]. Furthermore, apart from this entirely new parameter
One of the first models proposed to describe high-orderange, even for considerably lower driving-field intensities,
harmonic generation in atoms or diatomic molecules was as, for instancd,~10° W/cn?, one may in principle extend
two-level aton4]. Within this framework, a particularly im- the frequency of far-infrared radiatiom(-1 GHz) in up to
portant paper i§14]. Therein, it is shown that these harmon- two orders of magnitude by using adequate materials. For
ics are a consequence of the population transfer between tlestance, for GaAs/AlGa, _,As wells intersubband transi-
field-dependent states obtained from the diagonalization dfons ofwy~1 THz may serve this purpo$20]. Apart from
the two-level Hamiltonian. This physical mechanism has nothese solid-state materials, HHG involving larger molecules
been investigated in detail, and there is a very simple reasas becoming a problem of intere21,22,.
for this apparent lack of interest: it turned out that an at first For these complex systems, it is not entirely clear whether
sight completely different physical picture is far more suc-bound-to-continuum transitions still yield the most adequate
cessful in explaining high-order harmonic generation fordescription of high-order harmonic generation. In fact, recent
these systems. This picture, known as “the three-stegtudies have shown that, for aromatic molecules, transitions
model,” portraits high-order harmonic generation as a pro-nvolving solely bound states are far more important for
cess in which an electron leaves an atom at an insgaithe  high-order harmonic generation than the interplay between
first step, propagates in the continuum being accelerated byhe ground state and the continuj22]. Thus theoretical

1050-2947/2002/68)/01340215)/$20.00 66 013402-1 ©2002 The American Physical Society



C. FIGUEIRA de MORISSON FARIAAND I. ROTTER PHYSICAL REVIEW &6, 013402 (2002

approaches in which the continuum is not taken into accounis a two-level atom[27]. Within this picture, the time-

may be possibly used to describe this phenomenon in sysiependent wave function is given by

tems as, for instance, quantum wel®0,23-26. Further-

more, descriptions of nonlinear optical processes in solids |#(1))=Co(t)| o) + C1(t)| h1), D)

are widely based on the Hartree-Fock semiconductor Bloch

equations. Under special conditions, such as low doping derwhere C(t)=(¢,|#(t)) denotes the overlap of the total

sity, equal effective masses in both subbands involved, pawave function with thenth state of an arbitrary basis. The

allel subbands, and not too wide wells, these equations avolution of the system is described by the time-dependent

formally identical to those describing the evolution of a two- Schralinger equation,

level atom. Otherwise, collective effects must be taken into

account and this analogy is Ids20,24—248. ~d [ Cy(t) Co(t)
A common characteristic of all the above-stated systems T - ,

: Athi ; : Cy(t) Ca(t)

is their intrincated internal structure, with the presence, as

the external parameters are varied, of several level crossinggy, .o H is the Hamiltonian matrix. which. in our case. de-
In particular concerning HHG, the periodic level CrOSSingSscribes an atom in an external Iéser fie,Id. We use éltomic
caused by the temporal dependence of the laser field are velYits throughout. The basis stafes,) are chosen according
important[14]. Thus, in order to control the harmonic spec- to the problem at hand. We are particularly interested in a

tbratalso II’]ﬂ:hIS conltet>§t, otne n?edsttct)hunderstanq the mtjerhpl asis which yields sharp, well-separated level crossings in
etween the population transfer at these crossings and higlye strong-field regime.

order harmonic generation. A widely used basis are the field-free-states, also known

Even in the simplest case for _Wh'Ch these level CrOSSING3s the “diabatic basis.” In this case, the Hamiltonian is given
occur, namely a two-level atom, it is only clear that most ofb

the population transfer between the field-dressed states takeg
place at the level crossings. However, this does not necessar-
D:(

)

ily mean that the population transfers, within a field cycle,
which contribute to the generation of a particular group of
harmonics, occur at the level-crossing times. Unanswered
questions in this framework concern not only these timeswhere wq is the transition frequency between the field-free
but also how they depend on the external-field parametersound statesE(t) = E,f(t) is the external field, ang,, the
such as its intensity and frequency, and how one can use t"htﬁpole matrix element ¢2|x|4P), where|42) denotes the
information to control the emission spectra of a “closed,” fig|d-free, “diabatic” basis states. This basis is very conve-
nonionizing system. Another interesting issue concerns thgjent for studying level crossings in the low-intensity laser
existence of a one-to-one correspondence between the thrggsq regime. For strong laser fields, however, the field-free

step model and the two-level atom. This was proposed iRates are too strongly mixed, such that a more appropriate
[14] due to the different time scales involved in the processpasis is needed. Such a basis, which will be called by us

and in[20] due to a formally identical expression describing «gxchanged basis,” is obtained applying the unitary transfor-
population transfers in both models. In these referencesyation

however, there is no proof that this correspondence really

— w12 XlOE(t)), @

X10E(1)  w1¢/2

holds. 1/1 1
The answer to these questions is the main objective of this 5 E:_( ) (4)
work. The paper is organized as follows: in Sec. Il we briefly o2\-1 1

discuss the theoretical background for the studies performed
in this paper. In the following sections we present our resultspnto the diabatic basis. The transformati@h was used in
In Sec. Ill, we concentrate on a detailed analysis of the popu14] to interchange the diagonal and the nondiagonal terms
lation transfers and the time profile of harmonic generationsf the Hamiltonian(3). In this case, the exchanged-basis en-
for a monochromatic field. Subsequentyec. IV), we pro-  ergiese§ = +x,4E(t) cross, and the coupling which causes
vide concrete examples of how an additional driving fieldhe cros_sing is effectively given by,4/2. The crossings oc-
may alter the_ pe_riodic level crossings, and consequently thg,r within a time intervat,—t.<t<ty+t., wheret, is the
harmonic emission of a closed system. Furthermore, we agime for which the off-diagonal and diagonal terms of the
dress the scaling behavior of the physical quantities involvegysmiltonian become equal ang is the time for which the
(Sec. V), establishing sharp criteria for their invariance. Fi- fie|q vanishes. For strong enough fields, the times over which
nally, in Sec. VI we close the paper with some concludingihe crossings take place are much smaller than the period of
remarks. the driving field. Thus, to first approximation, one may as-
sume that the crossings take place instantaneoudly. &b
Il. BACKGROUND the following we callty “crossing times.”
Another important set of basis states are these which di-
agonalizeH. This basis is the so-called “adiabatic basis,” in
The simplest case for which level crossings occur, and ghe sense that the states “follow” the field, and is obtained
widely used approximation for describing physical systemspy means of the unitary transformation

A. Two-level atom
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cosy  Siny
with y= —1/2arctaf2x;oE(t)/wo]. This gives
A T 0
HA=Up_aHUL A= : 6
D—A D—A 0 8& ( )
where the field-dressed energies are given by
A 1 2 2
el = *5Vwigt[2x0E (D], (7)
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B. Windowed Fourier transform

For both open and closed systems, high-order harmonic
generation is always related to abrupt population transfers.
Depending on the group of harmonics, they occur at particu-
lar times, which give the main contributions to high-order
harmonic generation within a field cycle. For an atom in a
strong laser field, for instance, these times are well-known
and correspond to the return timgsof an electron which
left an atom at a previous timg. For a closed system, the
timest, correspond to the level-crossing times and the times
t, are still an open question to some extent. A very useful
method to extract these latter times from the time-dependent
dipole is performing a Fourier transform with a temporally

Applying Up_ 4 to the diabatic basis states, one obtains theestricted window function. For an arbitrary functidft’),

field-dressed, “adiabatic” states

| ¢ (1)) = cosy| dg) +sinx| $7) (8)

and

|¢3(1)) = —sinx| ¢g) + cosx| 47), (9)

whose energies are, respective, andsﬁ [28]. In order to
compute the harmonic spectra, one needs the Fourier tra
form of the time-dependent dipole. This quantity is given, in

its length and acceleration form, by
X=X1d g(t)cos 2y +h(t)sin 2x] (10

and

X=— 03X+ 20,¢5E(t)[ h(t)cos 2y —g(t)sin 2x],
(17)

respectively, with g(t)=Cg*(t)C7(t)+C¥A(t)CH(t) and
h(t)=[Co(t)[*~|C1(t)|?, where Ci(t) =(&5(t)|¢(t)) de-

notes the projection of the wave functidg(t)) onto an
adiabatic state. The equations above are the superposition of
two distinct terms, namely the crossed terms and the popy;,.
lation difference between the adiabatic states. Since th

population differenceh(t) roughly “follows” the field, it

this transform is
+ oo
]—‘(t,Q,(r)zj dt’ f(t")W(t,t",Q,0), (12

wheret, (), ando denote the time and harmonic frequency at
which the window function is centered, and its temporal
width, respectively. We consider a Gabor transform, for

n\é/_hich the window function is given by

W(t,t",Q,0)=exd — (t—t")%/o?] exdiQt’]. (13

The usual Fourier transforta((2), which yields no temporal
information, is recovered foo— . The temporal widthr
corresponds to a frequency bandwidth = 2/o. For a tem-
poral width smaller than the perio=2#/w of the driving
field, the peaks in the time-resolved spectft,Q,o)|?
yield the recombination timety. This method has been ex-
tensively used in the literature, in the three-step model
framework([3].

Ill. GENERAL PICTURE

We shall now investigate the connection between HHG
d the periodic level crossings in detail and draw a general
Shysical picture of the mechanisms involved. The simplest
physical situation for which one can do this is a monochro-

contributes mainly to the generation of low harmonics,matic field
whereagy(t) is expected to be responsible for the high har-

monics. This has been confirmed by numerical studes

shown).

An interesting feature is that, in the extreme linkiy ~ where E; and o denote the field strength and frequency,
— o0, the transformatiori5) formally corresponds to Ed4) respectively. In this case, the tintgis given by the condi-
and the dipole lengtkil0) becomes proportional to the popu- tion
lation difference between the adiabatic states. However, one
should keep in mind that, only in this limit, the states ob- Wy
tained using Eq(4) on the field-free states and the adiabatic wt°_2xloE0'
states are formally equivalent. In general, this is not the case.

In the subsequent sections, we work mainly in the adiaif the field amplitudeE, is large enough, themt <1, and
batic basis, and refer to crossings of the exchanged-basibe avoided crossings of the adiabatic states are well-
energies. For the adiabatic energies, there are avoided croseparated. Thus the crossing tintgsare well-defined and
ings. The results discussed in this paper have been obtainddere is efficient population transfer tgt Hence one expects
from the numerical solution of Eq2) in the adiabatic basis, the corresponding spectrum to exhibit a wide plateau and a
by means of a fourth-order Runge-Kutta method. Unlessharp cutoff.
stated otherwise, the driving field is turned on instanta- The avoided crossings occur at the tings- n7/w for
neously. which the field is vanishing. Thus one expects the population

E(t) = Egsin( wt), (14)

(15
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-99Ur 7 FIG. 2. Gabor spectra of the dipole accelerati&u. (11)] as
\/\/\/\/\/\/ functions of time, for field strengtEy=1 a.u., field frequencyw
0.325L ) =0.05 a.u., transition frequenay,;,=0.409 a.u., and dipole ma-
’ trix element X,4=1.066 a.u. The cutoff harmonic lies &b,
5.000 5125 5.050 5375 5.500 =43w. The time width of the window function was chosen

=0.1T. Its center was chosen at the cutoff harmonics, as well as at
harmonic energies which roughly correspond(e=0.8Q),,
=0.6Qy,, and 0 =0.4Q,, . All time-resolved spectra have been
normalized. The times are given in units of the field cydle
=2/ w. The driving field is turned on linearly within two periods.

vT

FIG. 1. Population$C/(t)|? of the adiabatic states as functions
of time, for transition frequency,,=0.409 a.u., external field pa-
rameterso=0.05 a.u.,Eq=0.6 a.u., and dipole-matrix element
X10=1.066 a.u. Parta) shows this feature for several cycles of the
driving field, whereas paib) depicts the population of the excited wty=arcsii = V(Ny;)%—(v,)?], (16)
adiabatic state only within half a cycle. The times are given in units
of the field cycleT=2x/w. The driving field is turned on linearly . .
within two periods. W|th Y11= w/(2X10E0) and V2= w10/(2X10E0). The phySIcal

significance ofy, andy, will be discussed later in this paper

(Sec. V). In order to obtain a harmonic at the maximum
transfers between the states)(t)) to occur at these times. possible frequencyy, (i.e., the cutoff harmonic the popu-
This is partially confirmed by Fig. 1, where the populations|ation transfer between the time-dependent states must occur
of the adiabatic states are plotted as functions of time. Iyt the times for which the energy differenc® —” is maxi-
fact, the pronounced peaks at the timgslearly show that mal, i.e., att;,=(2n+ 1) 7/2w. As the harmonic energy de-
most population transfer takes place at these times. Theigeases, there are two possible times for this population
are, however, several smaller peaks, which are symmetrigansfer to occur, a shorter and a longer one. The interference
with respect to the timetyy = (2n+1)7/20 for which the  petween these two possible quantum paths originates the
field is maximal. These peaks show that population transfefell-structured two-level atom plateau, with sharp harmonic
also occurs at other times, and can be seen in detail ipeaks. This process repeats itself every half cycle of the driv-
Fig. 1(b). ing field. This picture is supported by the fact that all peaks

The role of these population transfers in HHG can bein the time-resolved spectra satisfy E@6) and thus can be
understood using the Gabor transform of the dipole acceleraraced back to population transfers between the adiabatic
tion. The peaks in the Gabor spectra give the main contribustates. The times given by E¢L6) for the parameters of
tions for high-order harmonic generation within a field cycle.Fig. 2, together with the corresponding harmonic energies,
For the cutoff harmonic, there is a single peakgf which  gre written in Table |.
splits into two for the plateau harmonics. This peak gets An analogous picture is observed within the three-step
further apart as the harmonic frequency decreases, varyingodel framework. The cutoff harmonic can only be gener-
from t; to the times at the immediate vicinity of the ated by an electron which returns to its parent ion with maxi-
avoided crossings. These results are displayed in Fig. 2. mal kinetic energy. This maximal energy corresponds to a

The physical interpretation of these features is ratheparticular return time, which appears as a single peak in the
simple. At the times the level crossings occur, i.e.t@t Gabor yield. Within the plateau, there are two possible sets
=nT/2, there is a population transfer from the adiabatic statef electron trajectories corresponding to the same harmonic
|o(t)) to |p1(t)). The system remains ifpy(t)) until a  energy, such that this single peak splits into 8 In our
further time t;, decaying back td¢h(t)) and emitiing a case, the “first step” would be the population transfer from
harmonic of frequencf)=Nw=¢% —&” . The explicit ex- | (1)) to |p3(t)) atto, the “second step” would be the
pression relating the timé; to the harmonic frequency system foIIowing|¢’f(t)) adiabatically in a time intervat
would then be =t,—tg, and the “third step” would be the population trans-
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TABLE |. Level-crossing times,, population transfer timet, 1.0 —r—— —— :
and the corresponding harmonic energyfor the parameters of 08l WW
Fig. 2. The times are given in units of the peride=27/w. The ~_ _t(a)
harmonic orders, together with the approximate harmonic energies SE 0.6 —|C01° )
in units of the cutoff frequenc§)y, , are given in the remaining two © 04+ W |Cﬂ(t)|2¢%t T
columns. This pattern repeats itself every half-cycle of the driving 0.2k l }JLE [ f"l«; mw |1 ‘TJ% _ 3“? | [ fr}‘
feld. R T TR

to/T /T Harmonic order Q1O
0.5 0.25 43 1

0.5 0.14 0.36 35 0.8
0.5 0.09 0.41 25 0.6
0.5 0.05 0.45 17 0.4

fer from | #7(t)) to |p(t)) att,, with subsequent harmonic
generation. The corresponding physical picture is illustrated
in Fig. 3.

Another interesting feature is that the population transfers
between the adiabatic states are not strictly periodic within
7lw. Indeed, superposed to them, there are oscillations
which occur within much larger time scales, their periods
comprising several cycles of the driving fie[@9]. These YT
oscillations are also present in the dipole length and accel- ) .
eration as a global enveloping function, whose amplitude .FlG' 4,; Glgbal structures as functions of time, @ the popu-
form, and periodicity depend on the field strengih, the _lgtlons\cn(t)| of the adiabatic stategb) the dipole acceleranon.
field frequencyw, and on the dipole matrix elemert, in a x(t), and(c) the Gabor spectra of the cutoff and plateau harmonics.

nontrivial way. These structures seem not to influence thérhe time width of the window function isr=0.1T. The field

harmonics globally, but mainly the substructure of the Spec_strength, the field frequency, the transition frequency, and the dipole

. matrix element were chosen &=0.6 a.u.,»=0.05 a.u.,w
tra and the hyper-Raman [ing30]. - 110
In Fig. 4 3\’/5(_} show theseége]nveloping functions for the:O'409 a.u., ank,=1.066 a.u., respectively. These parameters

; . . . . give y,=0.0391, y,=0.3197, and a cutoff frequency & .«
populations of the adiabatic statgsg. 4@)], the dipole ac- =27w. All Gabor spectra have been normalized to the maximum

value obtained with the window function centered at the cutoff. The

1.001 tm _th field is turned on linearly within two periods. The time is given in
’ AN RARN units of the field cycle.
t111’ ‘\t12 tﬂ / )
0.50} N celeration[Fig. 4(b)], and the Gabor spectra of the plateau
/ R and cutoff harmonic$Fig. 4(c)]. One should note that this
¢ enveloping function is the same for the Gabor transforms of
= 0.00M; - . )
T all groups of harmonics displayed. Furthermore, it does not
“w affect the splitting of the peaks, such that the population
-0.50} transfer times are always given by H@6).
-1.00F IV. BICHROMATIC DRIVING FIELDS
0.00 100 125 1.'50 In this section we consider a bichromatic driving field

E(t) =Eg;Sin(wt) + Egsin(nwt+ 6), (17)
FIG. 3. Schematic representation of high-order harmonic gen-

eration in a two-level atom. The population transfers at the level . . . . . .
crossings occur at the timég and the main contributions to HHG with MO main purposes. F|_rst, we W'Sh to confirm the physi-
occur at the times, . The timestyy , t;1, andt,, correspond to the cal plcture.m Wh'ICI"] the main contributions to a parucular set
generation of the cutoff and plateau harmonics, respectively. Tth harmonics, W'th'n_ a field CyCI_e' occur at th_e t'mQSEfUCh
main physical processes are indicated by arrows in the figure, and'at thAe corresponding har-monlc frequ-ency.ls the difference
the corresponding energies can be read in the vertical axis. The+ —&— between the energies of the adiabatic states. Second,
adiabatic energies are given in units of the maximal enefgyand ~ We are interested in understanding how an additional field
the time in units of the field cycle. The field parameters are chosegan be used to distort the avoided crossings between the
in such a way that the ratio between the cutoff enefgy=2s%, adiabatic states in such a way that the harmonic emission can
and the transition frequency {3y, / wo=10. be controlled. In the bichromatic case, depending on the field
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parameters, the spectra may have several cutoffs, which ar

given by the maxima ot” —&” . Consequently, the main

contributions to the generation of the cutoff harmonics take

place at the times,,, for which these maxima occur.

In order to obtain the level-crossing times as well as
the timest;y, one needs the extremaey, of the field-
dressed energiesi . For the bichromatic field17) they are
given by

cogwt)+nfcognwt+0)=0 (18)
and

sin(wt) + Zsin(nwt+ 6) =0, (19

where {=Ey,/Ey; denotes the field-strength ratio. Equation

PHYSICAL REVIEW &6, 013402 (2002

1.00

0.50 1.00

t/T

FIG. 5. Energies of the adiabatic states for a bichromatic field

(18) gives the extrema which coincide with those of the field,E(t) = B Sin(wt) +Eq,sin(2ut+6), for 6=0 and several field-

and thereford,y, , whereas Eq(19) gives those which cor-
respond to the avoided crossings, and therefgr®epend-
ing on the frequency ratio, the field-strength rati@, and

strength ratio€ = E,/Ey;. The timet is given in units of the field
cycle T=2n/w and the field-dressed energies in units of the maxi-
mal energysy,. The field parameters were chosen such that

the relative phas#, these times, as well as the correspond-Q,,/w,,=8.

ing extrema, can be very different. In this paper we will

provide concrete examples for@— 2w field, i.e., withn

=2, relative phase8,=0 andé,= /2, and arbitrary. For
these specific parameters, E¢E8) and (19) have a simple
form, with analytical solutions.

A. Relative phasef=0

In this case, Eq(18) reduces to

S5 ! ! =0 20

co (wt)+4—§COS{wt)—§— , (20
which yields two sets of times, namely

1 +1 [ 1 ) -

t;y=—arcco 8_§_§ rcgz'f‘ . (21

odic within half a cycle of the driving field. This is not sur-
prising, since the periodicity of the field-dressed energies is
effectively determined byE?(t) [cf. Eq. (7)]. For a mono-
chromatic field,E2(t)=E?(t+ #/w) always holds, whereas
in the bichromatic case this is only true for odd frequency
ratiosn. This is clearlynot the case addressed in this paper.
For the phasep=0, one observes that} (t)=¢% (27w
—1), if both times are taken symmetrically with respect to
to=nm/w. This property already reflects itself in the expres-
sions forty, t1y, andt} derived in this section.

Furthermore, one clearly sees that, as predicted in Eq.
(22), for ¢{<0.5, the second driving wave only distorts the
avoided crossings, making them broader &&= (2n
+1)m/w and sharper aty=2nm/w. For {=0.5, the broad
crossing starts to split, originating the crossings given at the
times t. This spliting also leads to the second set of

The solutions corresponding to the positive root exist for alMaxima predicted by Eq21), which corresponds to a set of

field-strength ratios, whereas the remaining solutions ar

only present for{>0.5. Further in this section, it will be
shown that the first set gives the absolute maxima’of

which correspond to the cutoff in the harmonic spectra
whereas the second set yields local maxima at much low

energies.

The expression giving the avoided crossings, on its turn;

can be written as
sinf(wt)[1+2/cog wt)]=0. (22

This equation yields the crossing timég=nm/w, and t
=(1/w)arcco§—1/(2¢{)]. The crossing times, do not de-

et

Qarmonics of relatively low frequencies.

One must now understand which consequences this effect
has on the physical quantities involved. With that purpose,
we choose the strengths of both driving waves suchdb,at
‘and therefore the cutoff energy, remains unchanged and is
equal to the monochromatic cutoff energy, for variable field-
strength ratiof. This gives

Eo
E = 1
- pA1+280)

W|th ﬁ: COS¢1M).
The population transfers between the adiabatic states, as

(23

pend on the field-strength ratio and are the same as in thignctions of time, also exhibit very similar asymmetries to
monochromatic case, whereas the crossing titgeslearly  the ones observed in the field-dressed energies. The popula-
do. Furthermore, these latter times are only present/for tion transfers at the broad crossings, for instance, take place
>0.5. at longer time intervals than those at the sharp crossings,

Figure 5 gives concrete examples of how the adiabati¢naking the oscillations iiC/(t)|? asymmetric with respect
energiese? depend on time, for different field-strength ra- to the timesty, . This asymmetry increases with increasing
tios. In contrast to the monochromatic casé, is not peri-  {. An example is provided in Fig.(6). A similar feature
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FIG. 6. PopulationgCA(t)|? of the adiabatic statefpart (a)]
and dipole acceleratigpart (b)] as functions of time, for a bichro-
matic field E(t)=EqiSin(@t)+Epsin(2ot+6), with 6=0, o yith 9=0, »=0.05 a.u.,w,=0.409 a.u.x;o=1.066 a.u., and
=0.05 a.u.,w10=0.409 a.u.x;;=1.066 a.u., and field-strength goera| field-strength ratiog =Eqy/Eqy. The maximal field
ratio {=Ey,/Ey,=0.5. The field amplitudes were chosen accord'ngstrength is kept fixed according to E@3), with Eq=1 a.u. The
to Eq.(23), with Eg=1 a.u. The timet is given in units of the field . .« energy lies af)y, = 2¢% = 43w. The temporal width of the
cycle. window function isc=0.1T. In part (a), the window function is
occurs for the dipole acceleration. This highly oscillating centered at the cutoff harmonics, and. the fieId-s’Frength ratio is O
function exhibits nodes at the level-crossing times. In the=¢=0.8. In part(b), the center of the window function is taken for
monochromatic case, these nodes extend over identical terflifferent frequencies, ang=0.8. All curves in the figure have been
poral regions every half-cycle of the driving field. For normalized to their maximum values.
bichromatic fields, however, with the distortion of the cross-
ings by the second driving wave, this picture changes. Therghis equation has two types of solutiongyy=(n
exist narrower and broader nodal regions, corresponding tq 1/2)m/w, which do not depend on the field-strength ratio
the narrower and broader crossings, respectively. Thus th&d yield the same maxima as in the monochromatic case,

oscillations of the dipole acceleration get “squeezed” be'@ndtiM=1/warcsirﬁ1/(4§)], which clearly depend o and

FIG. 7. Gabor spectra of the dipole acceleration as functions of
time, for a bichromatic fieldE(t)=EqSin(wt) + Egsin(2wt+ 6),

gv(vbe)(.an the broader nodes. This feature can be seen in Fi Xist only for {=0.25. This already hints at a completely

The Gabor transform of the dipole acceleration, taken affifferent situation as in the previous section, which will now
the cutoff and in the plateau, confirms this picture. In Fig.
7(a) there is a clear displacement of the peaks in the time- TABLE II. Times for the population transfers between the ex-
resolved spectra for the cutoff harmonics, with respect to thérema of the adiabatic states, with the approximate order of the
monochromatic case, and these peaks occur at the times pigrresponding cutoff harmonic, for a bichromatic field given by Eq.
dicted by Eq.(21). Similarly to the monochromatic case, (17), with relative phase#=0 and several field-strength ratids
these peaks split into two in the plateau region, being, how=Eg,/E,,. The field and two-level atom parameters are the same
ever, slightly asymmetri€Fig. 7(b)]. This asymmetry is re- as those used in Fig. 7. No entry means that the corresponding
lated to the above-mentioned difference in the shapes of thmaxima do not exist. This pattern repeats itself every cykcle
crossings. Furthermore, for a larger field-strength ratio, the=27/w of the driving field.
additional times can also be seen for a group of harmonics at
the low-energy end of the plateau. The tinmgsand t;y,, (=02 {=05 (=08

together with the respective cutoff energies, are given in ,
-~ . o A T tim/T Qulo to/T /T Quleo to/T tin/T Q!
Table Il for the specific parameters considered in this figure 2 mi®w fofl M MI® ol M MIw

_ 0O 020 43 0 017 43 0 015 43
B. Relative phasef= /2 05 080 43 05 083 43 036 042 9

For this relative phase, E418) has the form 05 085 43
0.64 0.58 9

cog wt)[1—2¢sin(wt)]=0. (24
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10 o, = %\/wiﬁ 4x3y Eort Eoo)?, (28)
0.5 5' which correspond to the timegy,=0.25T mod T, and to
! th2=0.75I' mod T, respectively. These times define sym-
<Z 00 metry axes for the time-dependence of the adiabatic energies.
% \ For (=0.25, a further splitting of the set of maxima at
058 tim, occurs, as predicted in EqR4). There exist now two
sets of maxima, at the times,, , whose energies are equal
and given by
-1.0
0.00 0.50 1.00 1.50 2.00 1 1+8¢2)?
uT N, 5 \/ 3ot 4xiﬁ&%. (29

FIG. 8. Energies of the adiabatic states for a bichromatic field ] o

E(t) = Egssin(wt) + Egzsin(2wt+ 6), for §=m/2 and several field- These maxima are symmetric with respect;@ . For these

strength ratiog =E,/Ey,. The timet is given in units of the field times, the adiabatic energies now exhibit a minimum. This

cycle and the field-dressed energies in units of the maximal energgauses, for large, additional avoided crossingsf. Fig. 8

sﬁ,,z. The field parameters were chosen such fgt /w10=8. The  for {=0.8). The population transfers at these times are, how-

timestyy, are indicated in the figure by the dotted and solid grid ever, small, and play only a secondary role in the problem

lines, respectively. addressed in this paper. For the sake of simplicity, even after
the second splitting, we shall refer to the lower-energy set of

be discussed in detail. This also holds for the times at whichmaxima asz-:f\)l. The other set of maxima does not split, and

the avoided crossings occur. They must now satisfy the corresponding timetsy, remain constant for a. One
1 1 should note that the adiabatic energies, in ften/2 case,
Siff(wt)— 2—§sin(wt)— 5=0, (25  satisfy g (1)=& (T/2—1), if both times are chosen sym-

metrically with respect tdyy, OF tyy,. This also holds for

the population-transfer times derived in this section.
such that In order to investigate how the distortions in the

adiabatic-state energies influence the physical quantities of
1 Nt 1
tozzarCSI — 4_é’2+2

interest, we shall keep the cutoff ene@Mst’,\)z fixed,
{ and equal to the cutoff energy of the monochromatic case.
all of them depending of. This means that, in contrast to E
the cased=0, one may shift all level-crossing times by 0

Thus the field strengthBy; andE, are related by
changing the relative intensities of the driving waves. The set
of crossings given by the positive root in Eg6) exists only
for {=1, whereas the remaining crossings occur forall

N[ -

, (26)

Eo1= [ (30

As in the previous section, we can trace all distortions
; ; : ; : bserved in these physical quantities back to those observed

: In Fig. 8 we depict the a_d|§1bat|c states as functions oﬁ] time dependence of? . For instance, the shifts in the
time, for several values af, similarly to what was done for ) : *- ’
9=0. This figure illustrates how the relative phase can radi/@Vel-crossing times, predicted by Eq(26) are also present
cally alter the whole physical picture. Fér= /2, already a 1" the main population-transfer times for the adiabatic states
relatively weak high-frequency wave considerably distortd.F19: %@] and in the nodes of the dipole accelerat|éiig.
the avoided level crossings, as well as the maxima of the (b)]. Ano_th_er effect whlch_ is clearly seen in both quantities
field-dressed energies. An interesting feature is that thé the splitting of the maxima neagy, =0.25T mod T. In-
avoided crossings now move with the field-strength ratiodeed, there exist now two sets of maxima which are symmet-
Furthermore, the maximal energies are no longer equal, butic with respect to these times, g~ 0.25.
within a field cycle, there are two comparable and different \We now investigate the _Gabor transfqrm of the cut.off and
cutoff energies. This can be directly seen by computing th@lateau harmonics. In Fig. & we display the time-
extrema of the energies? , which occur fort, . resolved spectra, centered at the harmonic frequerizigs

For field-strength ratid<0.25, they give the energies =28ﬁ,,2, for different field-strength ratio. The monochro-
matic case is also displayed for comparison. As a general
feature, for{#0, the peaks of the Gabor spectrataf,
=0.25T mod T vanish. This is a direct consequence of the

splitting of the extrema of the adiabatic energies caused by
and the high-frequency wave. Due to this splitting, the energy

1
e, = E\/wioJr 4x1o( Eor— Eop)? (27)
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] Al ] ) FIG. 10. Gabor spectra of the dipole acceleration as a function
FIG. 9. PopulationgCp(t)|* of the adiabatic statefpart (@] o time, for a bichromatic fieldE(t) = Egsin(wt)+ Eg,sin(2wt + ),
and dipole acceleratiofpart (b)] as functions of time, for a bichro-  yith 9= 7/2, w=0.05 a.u.w,,=0.409 a.u.x,o=1.066 a.u., and

matic field E(t)=Eqsin(wt)+Eqsin(2wt+6), with 6=m/2, o  several field-strength ratiog=Eg,/Eq. The maximal field
=0.05 a.u., wp=0.409 a.u.,x;p=1.066 a.u., and field-strength strength is kept fixed according to E¢30) and equal toE,
ratio {=Eg,/E(;=0.8. The timet is given in units of the field _—1 gy The upper-cutoff energy lies QM2:430,_ The lower-
cycle. cutoff energy varies with. All cutoff energies are given in Table

. ¢ i tside th f the window f 11, together with the population transfer timegandtyy,. In part
maxima nea 1My I& outside the range of the window func- (a), the window function is centered at the upper-cutoff harmonics

tion and do not contribute to the time-resolved spectra. Fur¢q,, =2¢% ), and the field-strength ratio is<0/<0.8. In part(b),
. . . 2
thermore, as predicted in E(R5), the peaks at the maxima ihe center of the window function is taken Aty =2sy . All
- o . ) .
t1M2_9'75r mod T do. not move ”_" time ag is varied. curves have been normalized to their maximum values. In(gart
Taking now the window functior{13) centered at)y,  the monochromatic case is also displayed for comparison.
= 28{\)1 [Fig. 1ab)], one observes, as expected, a completely
different behavior for the peaks ne&yy =0.25T modT.  monic spectra. Furthermore, we are interested in extending
1 . . .
For {<0.25, these peaks are exactly at these times.For f[h(ihc.utoff, and, bY doing S?' guaranteer:nfg that ':he tharmlonlcs
=025, as expected they now occur atiy - pocl S St o s to extend the cutoff en-
= 1/warcsinl1/(4¢)], which vary with the field-strength ratio P ' Y.

{. Furthermore, this second set of peaks splits for these ) ]
larger field-strength ratios, such that two sets of peaks which TABLE Ill. Times for the population transfers between the ex-

are symmetric with respect t,, are now present. Other trema of the adiabatic state;, with the apprqximate prder of the
f ks which L he bi corresponding cutoff harmonic, for a bichromatic field given by Eq.
sets of peaks which can be seen in the picture correspond E?Y), with relative phas@= 7/2 and several field-strength ratigs

the upper-plateau return times, which occurbrQy,and  _g /g . The field and two-level atom parameters are the same
are symmetric with respect to;y,=0.75T modT. These as those used in Fig. 10. No entry means that the corresponding
peaks come from the splitting of,,_, which occurs in this Maxima do not exist. This pattern repeats itself every cytle

. 2 . =2mlw of the driving field. For{=0.8, there are additional
energy rangdcf. Fig. 8. The population-transfer times for . .

e S . avoided crossings at 0.25mod T.

the specific parameters of this figure, together with the cor-
responding harmonic frequencies, are given in Table Ill.

(=02 (=05 (=08

C. Fourier spectra for the two phases to/T tam/T Qule to/T tin/T Qule to/T tiy/T Qyl/w

In the investigations performed so far, our main objective0.53 0.75 43 056 0.75 43 058 0.75 43
was to understand how an additional driving wave may dis9.97 125 30 094 1.08 23 092 105 24
tort the time dependence of the adiabatic energies and the 0.94 142 23 092 145 24
time profile of harmonic generation. In this section, we ad- 1.25 1.45 24
dress the question of how these distortions influence the has
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study of these features for the particular system in question is
necessary.

These nongeneric features are mainly due to the fact that
the population transfer at the level crossings is, in general,
given by more complicated expressions than in the mono-
chromatic case. Indeed, these expressions depend on the
shape and width of the crossing, and on the duration of the
interaction. These shapes have been studid@8r31]. Fur-
thermore, the global structures of the adiabatic-state popula-
tions|Cﬁ(t)|2 have a stronger influence on the spectra in the
bichromatic case than for monochromatic driving fields.

Thus the physical picture discussed in Sec. Ill holds in a
more general framework, as, for instance, bichromatic driv-
ing fields. Nevertheless, the distortions in the level crossings

Harmonic Order n caused by additional fields may have consequences in the
quantities involved, including the spectra, which are difficult
. FIG. 11.. S.pectra computgd from thg dipole acceleration, for thgg predict. This does not mean that control cannot be per-
bichromatic field E(t) =EpsSin(l) + Egzsin(2wt+6), for 6=0, 6  formed at all, but, rather, that it can be done in a restricted
=m/2, and field strength&£e,=1.0 a.u. andE,=02 au. The  ,qeyi | fact, one still has a very good predictive power

field is switched on linearly within two cycles. The remaining pa- over generic features, as, for instance, the double plateau or
rameters areo=0.05 a.u.,w,,=0.409 a.u.x;0=1.066. The cut- the cutoff energies indicated in Fig. 11.

off frequency for 6=0 is roughly at(Q,,=46w, whereas for
6= /2 the cutoff frequencies are approximatel)(mlz?,Sw and

QM2=52w. All cutoff energies are indicated by arrows in the
figure. In the results discussed in the previous sections, we have
used rather unrealistic frequencies and intensities for the

monic range. immediately. This choice of parameters allows us to obtain

With that purpose, we keeliy; and Eq, fixed and com- results with very little numerical effort. In order to extend

pare spectra obtained féh,=0 and 6,= /2. These results Y computations to more realistic cases, as, for instance,

are displayed in Fig. 11. As a global feature, one observe§0"ds’ there are two pos_sibilities. Either one _sl_ightly n-
that. for 6=0. all harmonics behave in a ver),/ similar way creases the effort to obtain the necessary precision, or one

with no distinct regions, as for instance a double plateau, iﬁ“USt. find speciﬁc cqmbinations of'pa.rame.ters for_which the
the spectra. This is related to the fact that no splitting of thé)hySICaI quantities involved remain invariant. This second

cutoff energy occurs in this case. The two maximasth _approach ha_s the advantage of providing additional insight
I into the physics of the problem.
have the same energy, even though the level-crossing pattern With that purpose, we analyze the scaling behavior of

L?lenrz l?sn%ercg;rr'oggcug]gilgggsesghhgzrlanﬂ’ ;‘:; Zlﬁé Cathese guantities. We use scaling laws which have been de-
identify a completely different physical beh.avior for’ the har- Hved elsewherg¢32], in the context of stabilization of atqms
S e ) in strong laser fields. We concentrate on the question of

monics in the frequency reg|onQ<QMl and QM1<.Q whether driving fields of much lower frequencies and inten-
<Qu,. The double-plateau structure is due to the differenisjties could originate similar spectra, with, for instance, the
cutoff energies which exist in thé= /2 case. same number of harmonics, or the same population-transfer

Another generic feature is that the cutoff energy is ex-times, in units of the field cycle. Therefore our starting point
tended ford= /2. This is expected, since this quantity is will be the expression
given by the maximum energy difference between the adia-
bgtic states. For a f?eld given by E@Q.7), the maxi.mall pos- sin(wty) + £sin(nwt; + 0)= = (Ny)2—(y,)2, (31
sible energy is obtained fd?s(thZ) =Eg;+ Eg,. This yields
the harmonic frequenc{2y,, discussed in the previous sec- which relates the harmonic energy to the energy difference of
tion. the adiabatic states. This equation gives the population-

There exist, however, nongeneric features, which depenttansfer times. FoZ=0, one has the monochromatic-field
on the absolute field parameters, as, for instance, its strengtbase[Eq. (16)], and, for {#0 andn=2, the bichromatic
Examples of such features are the intensity ratio between th&tuation discussed in the previous section. Note that the pa-
upper and lower parts of the plateau fér 7/2, and the rametersEy, o, wqy, and x;o appear combined, ay;
intensities of the harmonics obtained fé+ /2, compared = w/(2x10Eq), OF y,= w40/ (2X10Ep). The denominators of
to those obtained fof=0. Thus, depending on the absolute these expressions give the Rabi frequendihs=2x;.Eo,
parameters used, it is not always possible to extend the cutoffhich scale like the energidsf. Egs. (3) and (6) for the
energy without loss of intensity. In order to control HHG in two-level Hamiltonian. This keeps the Schdinger equation
a two-level atom in a more reliable way, a more detailedinvariant under scale transformations.

log,,Harmonic Yield (arb. units)

V. SCALING BEHAVIOR
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We now consider the scale transformation

0— o' =\Nw; 0= oy, Qg—Qr=\0g,

(32

where\ denotes the dilatation factor. The invariance of the
Schralinger equation also requires that the time scales as
—t'=\"1, such that Eq(31) will remain invariant.

This apparently trivial result has far-reaching conse-
guences. In fact, it shows that, fany setE,, w, w4g, and
X10, the number of harmonicl in the spectra and the cor-
responding population-transfer timés= wt,/(2), given
in terms of field cycles, remain invariant, as long-,@asand
v, are kept constant.

Since the unitary transformatigs) which gives the adia-
batic states also depends Bp, w, w1y, andx,q throughy;
and vy,, it also remains invariant in this case. Thus this in-
variance must also hold for the populations of these states,
Le., |[CR(t)[?=|Ch(t")|>. 0 5 10 15 20

Another quantity of interest is the dipole acceleration. A YT
quick inspection of Eq(11) shows that this quantity does not
remain invariant under the above-stated transformations. In G, 12. Global structures as functions of time, farthe popu-
fact, it scales as;, multiplied by the square of the energy. |ations|CA(t)|2 of the adiabatic states arit) the dipole accelera-
The dipole matrix element scales agy—X;o=\""10.  tion X(t). The field strength, the field frequency, the transition fre-
Thusx(t) =A3(t"). quency, and the dipole matrix element were choserE@s6.71

The above-stated conclusions are confirmed by Fig. 12. Ix10°° a.u., ©=25x10"° a.u.,, 3,=2.045<10"° a.u., and
this figure, we display the same physical quantities as in Figk1o=47.673 a.u., respectively. These parameters are typical for
4 for a completely different set of parameters which, how-solid-state systems and giyg=0.0391,y,=0.3197, which are the
ever, yield the same; and y,. The popuIation$Cﬁ(t)|2, in same as in Fig. 4. _They'are obtained from _those in Fig. 4 using a
this casecf. Fig. 12a)] are, as expected, identical to those scaling transformgtlon .Wlth:1/2000..|:0r this set of. parameterg,
depicted in Fig. 4. This is true not only for the oscillations W& ave used a five times smaller time step than in the previous
which are periodic ifl/2, but also for the global enveloping flgure_s an_d double precision. .The _dlpolg accelera_tlon IS given in
functions. The scaling with 32 is also observed for the di- ?tom.'c units and the time is given in units of the field cycle. The

. . . ield is switched on linearly within two cycles.
pole acceleratiofFig. 12b)]. The parameters used in the
figure are typical for quantum wells and solid-state systems . .
[24]. As a direct consequence, the spectra do not exhibit the same

Another interesting aspect concerns the resulting harSubstructur¢Figs. 15a) and 1§b)].
monic spectra. Even though, in absolute terms, these spectra
have different cutoff frequencies and different global inten-
sities, for equaly; and vy, they have the same shape. Not
only the number of harmonics is the same. In addition, all The results discussed in the previous sections lead to the
substructure in the spectra looks strikingly similar. Thesemain conclusion that the three-step model and the two-level
features can be easily understood: the global intensity deatom are not completely different physical pictures for de-
crease is related to the decrease in amplitude of the dipolscribing high-order harmonic generation, as commonly be-
acceleration and the identical shapes are a consequence ligfved. Indeed, in both models, this phenomenon takes place
the fact that the populations of the adiabatic states, as well ass a result of a three-step process. Hints that a correspon-
all oscillations present in the dipole acceleration, remain indence between both physical pictures might exist have been
variant under the scale transformations discussed here. Thigovided in the literatur¢14,20. We go, however, beyond
is shown in Figs. 1&) and 13b) for several dilatation fac- such studies, giving evidence that a three-step mechanism
tors N. The corresponding field and two-level atom param-exists in the two-level atom case and analyzing its features in
eters are given in Table IV. detail.

On the other hand, the behavior of the system can already In the usual form of the three-step model, there is popu-
be altered by small variations ip; and y,. For instance, in lation transfer from the atomic ground state to a state in the
Fig. 14 we consider a slightly larger field amplitude than incontinuum, i.e., tunneling or multiphoton ionization. The
Fig. 4, which gives differenty; and y,. In this case, one electron then propagates in the continuum within a time in-
observes a radically different pattern for the populationgerval 7=t;—tg, gaining a certain amount of kinetic energy
|CA(1)]? [Fig. 14a)] and the dipole accelerati¢frig. 14b)].  which is converted into harmonic radiation at a titpewhen

IC* ()]
=
=

-8 1

dipole acceleration (10 a.u.)

VI. CONCLUSIONS
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FIG. 13. Harmonic spectrum for the same parameters as in Fig.
4 (\=1), compared to those obtained for several field strengghs
field frequenciesw, transition frequenciesqy, and matrix dipole
elementsx,, chosen such thay;=0.0391 andy,=0.3197, i.e.,
the same as in Fig. 4. These parameters are displayed in Table |
Part (a) shows the whole spectra, whereas p&it displays both
spectra for harmonic order ¥0N< 20, such that their substructure
can be seen. The field is switched on linearly within two cycles.

FIG. 14. Global structures as functions of time, farthe popu-
Iations|Cﬁ(t)|2 of the adiabatic states arid) the dipole accelera-
\t}'on x(t). The field strength, the field frequency, the transition fre-
guency, and the dipole matrix element were chosen Egs
=0.62 a.u.,0=0.05 a.u.,w;=0.409 a.u., ank,,=1.066 a.u.,
respectively. These parameters are slightly different from the ones
in Fig. 4, but givey,;=0.0378, y,=0.3094. The field is switched

. . . n linearly within two cycles. The time is given in units of the field
there is population transfer from the continuum to the groun<£ycle y y g
state, i.e., recombination. In the two-level atom framework, a '

very similar process takes place: there is population transf i .
from the field-dressed state&é(t)) to the state}¢’f(t)> at a Shree step model, these times are such that the energy of a

. . . ) articular harmonic must be equal to the sum of the kinetic
time t, for which an avoided crossing occurs. Subsequentlyp d

h " . ¢ the field within the int nergy of the electron upon return and the atomic ionization
€ system acquires energy irom Ihe field within e INtervag, ;0 niia The same line of argumentation holds in the two-
T=1,—1ty, and, at a further timg;, when population transfer

9 A ! X level case, but now the harmonic energy must be equal to the
from [¢7(t)) back to|¢(t)) takes place, this energy is re- opargy difference between the adiabatic states at these times.
leased in the form of harmonic radiation. Thus the main dif-

Specifically for monochromatic driving fields, both mod-
ference between the three-step model and the two-level atof)g share several features. Both in the three-step model and in

physical pictures is that in the latter case, the three steps dfie (wo-level atom case there is a single time corresponding
not involve a continuum state, but a field-dressed boung, the generation of the cutoff harmonic. In the former

state. o _ _ _ model, this time corresponds to the maximal kinetic energy
Further similarities are observed in the time profile of e electron may have, upon return, whereas in the latter
high-order harmonic generation. In both cases, the populdnggel it gives the maximal energy difference between the
tion transfers which contribute to the generation of a particUyiahatic states. Also for both cases, this time splits into two
lar set of harmonics occur at very specific times. In the usuales of times as the harmonic energy decreases. The interfer-
) ) ~ence between the corresponding population transfers origi-
TABLE V. Field and two-level atom parameters, given in nates the plateau in the high-order harmonic spectra. This
atomic units, together with the dilatation factor All parameters pattern repeats itself every half cycle of the driving field.
have been chosen such that=0.0391 andy,=0.3197. This is a direct consequence of the periodicity of the relevant
physical quantities, namely the electron kinetic energy in the

E . . CA
X10 0 ¢ @10 A three-step mod€I33] and the adiabatic energies in the
1.066 0.6 0.05 0.409 1 two-level atom case. All these features are observed as peaks
9.535 8.38%x10 * 6.25x10°* 5.1125<10° %  1/80 in the Gabor transform of the dipole acceleration. In the

47.673 6.7K10°% 25x10°° 2.045<10°%  1/2000 three-step model framework, analogous studies have been
performed in[3].
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T T T level Hamiltonian can be linearized at the crossing4].

4r (a) Thus the population transfer between the exchanged states

i ‘ TN _ can be computed by means of the Landau-Zener model
| 1y "y J | [28,35. This probability is approximately given byP

N

| ‘ ~exd —C' 7/ (2x10Eq) ], such that the Rabi frequency, in the
} yll Y “ i ] two-level atom, plays a similar role &ty) in the three-step
| / I J - model. In general, however, there is not always a simple
' l &" B expression for the population transfer at a level crossing
—E=06au. L 9 [28,31], such thatP has to be computed according to the
E=0.62a.u. 1 problem at hand. For instancE,may be rather complicated
2'0 ' 3'0 ' 40 for bichromatic fields. This is a limitation for controlling
high-order harmonic spectra in this latter case.
A particularity of the two-level atom is that the very same

I - distortions caused by the additional field in the field-dressed
‘ - energies, as functions of time, are also present in the
| I : b ] adiabatic-state population€/(t)|?> and in the dipole accel-
. i
, |

o

o
T
=
=

1
1N
|

N
T

eration. Specifically for the bichromatic field addressed in
this paper, i.e., @ — 2w field, the whole pattern is no longer
periodic inT/2, but inT. This is a consequence of the peri-
odicity of the adiabatic states, which changes with the addi-
tional driving wave. A similar feature occurs in the three-step
10 1'2 1'4 1I6 1I8 20 model framework, due to an analogous change in the elec-

. tron kinetic energy upon returgsee, e.g.[8,9] for a discus-
Harmonic Order n sion of this issug

FIG. 15. Harmonic spectrum for the same parameters as in Fig. An |nterest.|ng ISsue Whlch IS 'not discussed in this paper
4, compared to the one obtained B5=0.62 a.u.0=0.05 au, CONCeMs the |an_uence of ionization or fee_dback mechanisms
©15=0.409 a.u., and,,=1.066 a.u., respectively. These param- N the time prqﬂles of har_monlc generation by a t\_/vo-leve!
eters givey,=0.0378,y,=0.3094, whereas the ones in Fig. 4 yield 8t0m. In & previous paper it was shown that the main contri-
y,=0.0391,y,=0.3197. Parta) shows the whole spectra, whereas butions to harmonic generation from a two-level atom whose
part (b) displays both spectra for harmonic order<l8< 20, such  States decayed according to quasi-static ionization rates oc-
that their substructure can be seen. The field is switched on linearigurred at minimal field. These results did not agree with the
within two cycles. bound-bound transitions computed from the numerical solu-

tion of the Schrdinger equation for a Gaussian potential

Also for bichromatic driving fields, there are several char-with two strongly coupled bound statgs5]. The strikingly
acteristics which are present in both models. A good exampldifferent time profiles obtained in the present paper for HHG
is the multiple cutoff structure. Indeed, the harmonic spectran a closed two-level atom suggest, however, that these fea-
in this case may exhibit several cutoffs, which, depending oriures are stongly influenced by ionization. Therefore more
the model in question, are given by the maxima of either theaccurate descriptions of ionization and an adequate feedback
electron kinetic energy or of the energy difference betweemmechanism from the continuum would be necessary in the
the adiabatic states. The number of these cutoffs, as well awo-level atom case with unstable levels. The influence of
their energies or the corresponding population-transfer timedevel widths on the population transfer between quantum
are determined by the frequency ratip the field-strength states is discussed [36)].
ratio £, and the relative phasé. For both the three-step Finally, there are scaling laws which allow extending the
model and the two-level atom, all peaks in the Gabor spectratudies performed in this paper to a broader parameter range.
can be traced back to the population-transfer times. In one dn fact, we have shown that the important parameters for
the other case, these population transfers occur either beetermining the physical behavior of the system are
tween the adiabatic statéSec. 1\V), or between the ground- = w/(2x40Eq), andy,= w10/ (2%10Eq), Which denote the ra-
state and the continuuh8]. tio of the field and transition frequencies to the Rabi fre-

Similarities between the two models are also observed foguency, respectively. As long a5 andy, are kept constant,
the probability that the “first step,” i.e., population transfer, driving fields of completely different strengths and frequen-
takes place. In the three-step model, this probability, per unities acting on systems of completely different energy gaps
time, is roughly given by the quasi-static tunneling r@e can yield similar spectra. For bichromatic fields, additional
~exd —C/|E(to)|] [34]. A strong fieldE(t,) at the ioniza- requirements for this invariance are fixed field-strength ratio
tion time t, yields strong harmonics at the recombination ¢, field-frequency ratia, and relative phaseé.
time t,. This relation is very useful for controlling harmonic A concrete example of a system for which these proper-
spectra, as, for instance, the relative intensities of a doublées may be applied is, for instance, a quantum well with
plateau(see, e.g.[8,9] for concrete exampleésWithin the  w;o~10"% a.u., andx;o~100 a.u., subject to a field of
two-level atom framework and in the monochromatic casestrengthE,~10"° a.u. and frequency~ 10 ° a.u.[24].
to first approximation, the field-dependent terms of the two-Transitions between two subbands in these systems are de-

log,,Harmonic Yield (arb. units)
1)
o
=
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scribed very frequently by the semiconductor Bloch equastates are important: a two-level atom. The present work is
tions in the Hartree-Fock approximatip25]. In case collec- meant to be a contribution to a deeper understanding of HHG
tive effects can be neglected, the corresponding Hamiltoniaim this model, and a first step towards other systems where
reduces to a two-level one-particle Hamiltonian. In such aound-bound transitions play a role. In fact, the three-step
case, the results of the present paper are expected to be gpecess discussed in this paper is expected to exist for more
plicable. complex systems, which, in the presence of a periodic exter-
Summarizing, we investigated the physical mechanism ohal field, exhibit several level crossings, analogous to those
HHG in a two-level atom for monochromatic and bichro- discussed here.
matic driving fields, drawing a parallel between such a
mechanism and the three-step model, and providing ex-
amples of how to control the resulting harmonic spectra.
Such studies are motivated by the fact that, in order to un- We thank M. E. Madjet for beneficial discussions, A.
derstand HHG in more complex systems, one must first adFring for useful comments on the manuscript, and S. W. Kim
dress the simplest case for which transitions involving bounand T. Chakraborty for providing references.
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