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We investigate differential electron momentum distributions in nonsequential double ionization with
linearly polarized, few-cycle pulses, using a classical model based on a laser-assisted inelastic �e�; 2e��
rescattering mechanism. These yields, as functions of the momentum components parallel to the laser
polarization, are highly asymmetric and strongly influenced by the phase difference between the pulse
envelope and its carrier oscillation, radically changing their sign around a critical phase. This behavior
provides a powerful tool for absolute-phase measurements.
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this phase is difficult to stabilize, to control, or to mea-
sure [9]. For this reason, schemes for measuring � have

quantum-mechanical S-matrix framework, with practi-
cally identical results [14].
Recently, few-cycle laser pulses of intensities around or
higher than 1014 W=cm2 have proven to be extremely
important. A particular characteristic of such pulses is
that they may have very high intensities and, still, carry
much less energy than their longer counterparts, such
that, effectively, ionization is reduced. This has extended
the damage threshold of solid-state materials up to the
intensities in question [1], and has made the generation of
high-order harmonic radiation up to astonishingly high
frequencies possible [2]. Furthermore, their length, of the
order of a few fs, permits controlling processes such as
molecular motion or chemical reactions [3], as well as the
production of isolated, x-ray attosecond pulses [4].

In this pulse-length regime, the so-called ‘‘absolute
phase,’’ i.e., the phase difference between the pulse enve-
lope and its carrier frequency, radically influences strong-
field phenomena, such as high-order harmonic generation
(HHG) [2] and above-threshold ionization (ATI) [5,6].
Indeed, this phase determines, for instance, the maximal
harmonic or photoelectron energies, the intensities in the
spectra, and the time profiles of both phenomena.

This is not surprising, since the physics of HHG and
ATI is directly related to the instantaneous, time depen-
dent field. HHG, for instance, is described by a three-step
mechanism in which an electron leaves an atom at an
instant t0 through tunneling ionization, propagates in the
continuum under the influence of the external laser field,
and, at a later time t1, recombines with a bound state of
the parent ion, generating harmonics [7]. Slightly differ-
ent processes, either in which elastic rescattering with the
parent ion is taken as the third step or in which the
electron reaches the detector without recolliding explain
the high-order and low-order ATI peaks, respectively [8].

In order to interpret the experimental data obtained in
such cases, the precise knowledge of the absolute phase �
is required. This poses a serious practical problem, since
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been suggested and realized, as, for instance, using the
asymmetry in ATI photoelectron counts [6].

In this Letter, we propose laser-assisted nonsequential
double ionization (NSDI) as a tool for absolute-phase
diagnosis. This phenomenon is the subject of very active
discussion, which was triggered by differential measure-
ments of electron momentum distributions performed
with the cold target recoil ion momentum spectroscopy
technique, for linearly polarized fields of intensities of
the order of I � 1014–1015 W=cm2 incident in rare-gas
samples [10]. Such measurements revealed very peculiar
features, namely, two symmetric peaks at p1k � p2k �
�2

�������
Up

p
, in the �p1k; p2k� plane, where pjk (j � 1; 2) and

Up denote the momentum components parallel to the
laser field polarization and the ponderomotive energy
[11], respectively.

These features are explained by a physical mechanism
very similar to those in HHG and high-order ATI. The
main difference lies in the rescattering process at t1,
which is now inelastic: the first electron gives part of its
kinetic energy upon return to the second electron, so that
it can overcome the ionization potential of the singly ion-
ized atom and reach the continuum [7]. This process has
been considered by several groups, using classical [12],
semiclassical [13,14], or quantum-mechanical [15,16]
approaches, using different types of electron-electron in-
teraction [13,14], and neglecting or including electron-
electron repulsion in the final states [14,15]. So far, since
the pulses involved were relatively long, they have been
mostly approximated by monochromatic fields.

In particular, classical models reproduce the main
features either observed experimentally or obtained by
more refined, quantum-mechanical methods, astonish-
ingly well. Indeed, recently, we have computed NSDI
yields considering rescattering in its simplest form, i.e.,
electron-impact ionization, both classically and within a
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FIG. 1. Electron momentum distributions along the laser po-
larization, for neon (jE01j � 0:79 a:u: and jE02j � 1:51 a:u:),
subject to pulses of intensity I � 4:7� 1014 W=cm2 and car-
rier frequency ! � 0:057 a:u:, respectively. In panels (a) to (d)
and (i) to (l) we consider a four-cycle pulse (n � 4), whereas in
panels (e) to (h) the pulse length is varied. Panels (a) to (h) and
(i) to (l) were computed with the quasistatic and a constant
tunneling rate, respectively. Panels (a) and (i) � � 0:5�;
panels (b) and (j) � � 0:8�; panels (c) and (k) � � 1:0�;
panels (d) and (l) � � 1:2�. Panels (e), (f), and (g) n � 6, 8,
and 10, respectively, and � � 0:5�. In panel (h) n is the same
as in (g) and � � 1:2�.
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In this work, we use a similar classical model as in
[14], in which an electron ensemble is subject to a few-
cycle pulse E�t� � �dA�t�=dt, with the vector potential

A �t� � A0sin
2�!t=�2n�	 sin�!t
��êex: (1)

Thereby, !, A0, �, and n denote the frequency, amplitude,
absolute phase, and number of cycles, respectively. The
electrons reach the continuum at a time t0 with vanishing
drift velocities and from the origin of the coordinate
system. The start times are uniformly distributed, and
the ejection probability per unit time, unless stated oth-
erwise, is given by the quasistatic [17] tunneling rate

R�t0� �
1

jE�t0�j
exp

�
�2�2jE01j�

3=2

3jE�t0�j

�
; (2)

where jE01j is the ionization potential of the atom in
question. Subsequently, these electrons propagate under
the influence of only the laser field. Finally, some of them
return to the site of their release at t1 > t0 and free a
second electron ensemble through inelastic collisions.

Each pair in such ensembles obeys

�k
A�t0�	
2 � 0; (3)

Z t1

t0

�k
A�t�	2dt � 0; (4)

and X2
j�1

�pj 
A�t1�	2 � �k
A�t1�	2 � 2jE02j; (5)

given in atomic units. Equation (3) expresses the energy
conservation at the ionization time. Equation (4) imposes
restrictions upon the intermediate electron momentum k
such that the electron returns to its parent ion. Finally,
Eq. (5) yields the energy conservation at the recollision
time t1. Thereby, the first electron gives part of its kinetic
energy Eret�t1� � �k
A�t1�	

2=2 upon return to the sec-
ond electron, so that it is able to overcome the ionization
potential jE02j of the singly ionized atom. In terms of the
momentum components parallel and perpendicular to the
electric-field polarization, denoted pjk and pj? (j � 1; 2),
respectively, Eq. (5) is written asX2
j�1

�pjk 
A�t1�	2 � �k
A�t1�	2 � 2jE02j �
X2
j�1

p2
j?: (6)

For constant pj?, Eq. (6) describes a circle in the
�p1k; p2k� plane, centered at A�t1� and whose radius de-
pends on Eret, jE02j, and on p2

j?. Such momenta effec-
tively shift the second ionization potential so that
rescattering may become classically forbidden.

The electron momentum distributions then read

��
Z

dt0 R�t0��

 
Eret�t1� �

X2
j�1

�pj 
A�t1�	2

2
� jE02j

!
;

(7)
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where the argument of the � function gives the energy
conservation upon return and pj? are integrated over.
Details about this model are given in [14].

These distributions are displayed in the upper panels of
Fig. 1, for neon [18], as density plots in the �p1k; p2k�
plane. Their circular shapes and the maxima along p1k �
p2k are features also present for monochromatic driv-
ing fields [19], and mean, physically, that both elec-
trons are leaving the parent ion most probably with
equal parallel momenta. However, the fact that the
yields are mainly concentrated in only one quadrant of
the �p1k; p2k� plane makes them strikingly different
from the former distributions, which are symmetric in
�p1k; p2k� $ ��p1k;�p2k�. Furthermore, around a criti-
cal phase �c [cf. Fig. 1(b)], the distributions start to
change, until the whole yield is shifted from the first to
the third quadrant. For increasing pulse length, these
effects gradually disappear, so that the distributions be-
come symmetric and phase-independent [Figs. 1(e)–1(h)].

Important questions concern the physical origin of
both the asymmetry and the critical phase: are they
caused by the phase space or by the tunneling rate (2)?
Depending on the parameters, a whole phase-space region
may become classically inaccessible, such that the radius
of the circle described by Eq. (6) would collapse and the
corresponding yields would vanish. The quasistatic tun-
neling rate, on the other hand, favors the start times t0 for
which the instantaneous field amplitude jE�t0�j is large, as
compared to those for which jE�t0�j is small. Thus, the
133006-2



P H Y S I C A L R E V I E W L E T T E R S week ending
2 APRIL 2004VOLUME 92, NUMBER 13
contributions from the former or from the latter case
would be enhanced or suppressed, respectively. In order
to single out the influence of the phase space, we assume
that the electrons belonging to the first ensemble reach
the continuum at a constant rate. Such results are shown
in Figs. 1(i)–1(l) and are radically different from those
obtained with the more realistic, quasistatic tunnel-
ing rate. Indeed, the momentum distributions, though
asymmetric, exhibit peaks in both first and third
quadrants of the �p1k; p2k� plane, vaguely resembling
those obtained with monochromatic driving fields. The
asymmetry is expected, since, for such pulses, the rela-
tion A�t� � �A�t� T=2�; and thus j��t1; t0; p1k; p2k�j �
j��t1 � T=2; t0 � T=2;�p1k;�p2k�j, where T � 2�=!,
which was true for monochromatic fields, no longer holds.
However, the huge effects observed in the upper panels
are absent. Physically, this means that there is a momen-
tum region for which rescattering is classically allowed
but for which the probability that the first electron reaches
the continuum is very small. Consequently, even if this
region is large, its contributions to the yield will be
negligible.

In Fig. 2 we analyze this effect in detail. Therein, the
electron start times t0 are plotted, together with the
quasistatic rate. We restrict the parameter range so that
the classically allowed region is the largest [20], taking
parallel momenta along the diagonal p1k � p2k � pk and
vanishing transverse momenta. We consider only pairs
�t0; t1� of start and return times for the first electron
such that its excursion time �t � t1 � t0 in the continuum
is of the order of T=2 [21]. For the specific parameters of
the figure, there exist mainly two sets of electrons for
which the quasistatic rate is large and, therefore, whose
contributions are relevant: those ejected at 1:5T & t0 &

2T, with positive momenta, and those released at 2T &

t0 & 2:5T, with negative momenta [22].
For a large range of absolute phases �<�c, electron-

impact ionization from the latter set of trajectories is
classically forbidden, and the distributions concentrate
on the first quadrant. Around the critical phase, this
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FIG. 2. Parallel electron momenta pk along p1k � p2k, for
pj? � 0 (j � 1; 2), as functions of the start times t0 of the
electrons belonging to the first ensemble, in units of the field
cycle, together with the quasistatic tunneling rates. The re-
maining parameters are the same as in Figs. 1(a)–1(d).
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process is allowed for both sets of electrons and the
tunneling rates are comparable. Consequently, there are
relevant contributions to the yield in the first and third
quadrants. For � > �c, such as � � 1:2�, tunneling at
2T & t0 & 2:5T is favored and pjk are mainly negative.

The role of the phase space is even more evident as the
driving-field intensity is varied, as shown in Fig. 3. By
doing so, one is modifying the radius of the circle de-
scribed by Eq. (6), and thus the region in the �p1k; p2k�
plane for which rescattering is classically allowed.
Hence, the critical phase may change. For a lower inten-
sity than that in Fig. 1, the yield in the negative momen-
tum region appears for a phase larger than �c � 0:8� [cf.
Figs. 1(c) and 1(d)]. This is due to the fact that the
classically allowed region for pk < 0 practically van-
ishes. Thus, even if the tunneling rates are comparable,
the first electron, upon return, no longer possesses
enough kinetic energy to release the second electron in
a way that both leave with negative parallel momenta. For
higher intensities, apart from the fact that both regions
are classically allowed already below the expected �c,
the high tunneling rates allow minor contributions also
from T < t0 < 1:5T. This is confirmed by Fig. 4, where, as
the intensity decreases, the classically allowed region for
the dominant set of ionization times (2T < t0 < 2:5T),
corresponding to pk < 0, collapses.

In conclusion, we perform a theoretical investigation of
NSDI with few-cycle pulses, using a classical model
based on electron-impact ionization. Both electrons
have, most probably, equal final momentum components
parallel to the field polarization which are mainly posi-
tive or negative. The sign of such momenta and their
most probable value depend on the absolute phase �. In
particular, around a critical phase, this sign changes.
Such features are explained as the interplay between the
tunneling rate for the first electron and the phase space,
and agree even quantitatively with quantum-mechanical
computations [23].
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FIG. 3. Parallel electron momentum distributions for pulses
of intensities I � 4� 1014 W=cm2 and I � 8� 1014 W=cm2

(upper and lower panels, respectively). The electrons were
ejected with the quasistatic tunneling rate. The remaining
parameters are the same as in Figs. 1(a)–1(d).
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FIG. 4. Parallel electron momenta pk along p1k � p2k for
pj? � 0 (j � 1; 2), as functions of the start times t0, together
with the quasistatic tunneling rates, for several driving-field
intensities and � � 0:8�. The remaining parameters are the
same as in Fig. 3. For the lowest intensity, rescattering caused
by electrons ejected at 2T < t0 < 2:5T is classically forbidden,
so that the corresponding curve is not displayed.
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The modifications in the NSDI yields upon a critical
phase are far more extreme effects than those observed
for HHG or ATI. In fact, the advantage of NSDI over the
other two phenomena is that it delimits a confined phase-
space region. Thus, for particular ranges of �, it is easier
to make a whole region either classically forbidden, by
causing the radius in Eq. (6) to collapse, or irrelevant, by
reducing the corresponding tunneling rate. Hence, NSDI
is a tool for absolute-phase diagnosis, which is, in prin-
ciple, superior to the existing schemes.

We acknowledge W. Becker, A. Fring, and A. Sanpera
for discussions and the Deutsche Forschungsgemeinschaft
for financial support.
1330
[1] M. Lenzner et al., Phys. Rev. Lett. 80, 4076 (1998).
[2] A. de Bohan, P. Antoine, D. B. Milošević, and B. Piraux,
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