8,571 research outputs found

    Quantifying carbon allocation to mycorrhizal fungi by temperate forest tree species across a nitrogen availability gradient

    Get PDF
    Terrestrial ecosystems make up the largest carbon pool with a major portion of that being forests. With carbon being a major concern due to global climate change, being able to make accurate models is increasingly important. Studies have shown that trees may allocate up to 50% of their photosynthetically fixed carbon underground; however these values haven’t been accurately quantified and underground carbon allocation has been historically overlooked. Mycorrhizal fungi may be a large portion of underground carbon allocation, as they have a symbiotic relationship with trees where they provide the plant with water and nutrients in return for sugars (carbon). New methods and knowledge will allow us to quantify carbon allocation and fungal biomass. Ergosterol is a biomarker that is the human equivalent of cholesterol for fungi which can be used to measure fungal biomass. Since both free-living and mycorrhizal fungi have ergosterol, a series of open and closed cores located at Bartlett Experimental Forest will separate the amount of ergosterol due to free-living versus mycorrhizal fungi. This is one of the first studies that will quantify fungal biomass and carbon allocation under a variation of natural settings and compare two different methods to estimate these values

    Forest carbon allocation modelling under climate change

    Get PDF
    Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in dynamic vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is implemented in 31 dynamic vegetation models to identify the main gaps compared to our theoretical and empirical understanding of carbon allocation. We found that a hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in examined models. The analysis revealed that although the number of carbon allocation studies over the last 10 years has substantially increased, some background processes are still insufficiently understood, and some issues in models are frequently oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilisation of non-structural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge to mechanistic description of carbon allocation in models that would integrate the impact of environmental conditions, disturbances, and seasonal variation in carbon allocation, or (iii) to improve more simplistic models by accounting for the impact of crucial factors affecting carbon allocation in particular environment

    Evaluation and improvement of model algorithms for predicting belowground carbon allocation in forests

    Get PDF
    Rapidly rising concentrations of atmospheric carbon dioxide (CO 2) influence forest productivity by stimulating plant growth. It can also modify carbon partitioning patterns, altering the global carbon cycle. Nitrogen and carbon cycles are tightly linked; with changes in nitrogen availability affecting ecosystem carbon allocation by shifting carbon to roots for nitrogen uptake. This paper discusses a modification to the PnET-CN model (Aber et al. 1997) developed to shift plant carbon allocation belowground in response to nitrogen limitation. According to functional equilibrium models of plant carbon allocation, a nitrogen control mechanism alters belowground carbon estimates by increasing carbon allocation to fine roots when nitrogen resources are low. Testing of the modified mechanism with data from three free-air CO 2 enrichment (FACE) forests supported the mechanism by allocating more carbon to fine roots. Application of the model with data from five northeastern forests, under a variety of global climate change scenarios, also supported the modified mechanism with an increase in soil carbon storage

    Carbon allocation in aspen trees

    Get PDF
    Trees allocate assimilated carbon between growth and storage. In this PhD thesis, Iinvestigated the regulation of carbon allocation during tree growth both attranscriptional as well as whole-tree level, and with a focus on wood formation.I performed a large-scale DNA affinity purification sequencing (DAP-seq)screen on transcription factor proteins that regulate gene expression in developingwood of aspen (Populus tremula). Together with bioinformaticians, I identified bothnovel and previously reported interactions. The results were integrated into apublicly available database, providing a novel resource for wood biology. We alsopresent a practical guide for the analysis of DAP-seq data to facilitate similar studies.Next, I investigated carbon partitioning between growth and storage in aspen,focusing on the role of starch as the major storage compound. We report that aspengrowth is not limited by starch reserves and suggest a passive starch storagemechanism where sink tissues are the growth-limiting factor.In a study on Arabidopsis (Arabidopsis thaliana), I address the debate on whethersucrose synthase (SUS) enzymes are required in the biosynthesis of cellulose, themost abundant component of wood. As mutants lacking all SUS isoforms grewnormally and their cellulose content was comparable to that of wild-type, I concludethat SUS activity is not required for cellulose biosynthesis in Arabidopsis.Taken together, the results of this PhD study fill key knowledge gaps in the fieldand provide new starting points for future research projects on carbon allocation intrees

    MuSCA: A multi-scale source-sink carbon allocation model to explore carbon allocation in plants. An application to static apple tree structures

    Get PDF
    Background and aims: Carbon allocation in plants is usually represented at a topological scale, specific to each model. This makes the results obtained with different models, and the impact of their scales of representation, difficult to compare. In this study, we developed a multi-scale carbon allocation model (MuSCA) that allows the use of different, user-defined, topological scales of a plant, and assessment of the impact of each spatial scale on simulated results and computation time. Methods: Model multi-scale consistency and behaviour were tested on three realistic apple tree structures. Carbon allocation was computed at five scales, spanning from the metamer (the finest scale, used as a reference) up to first-order branches, and for different values of a sap friction coefficient. Fruit dry mass increments were compared across spatial scales and with field data. Key Results: The model was able to represent effects of competition for carbon assimilates on fruit growth. Intermediate friction parameter values provided results that best fitted field data. Fruit growth simulated at the metamer scale differed of ~1 % in respect to results obtained at growth unit scale and up to 60 % in respect to first order branch and fruiting unit scales. Generally, the coarser the spatial scale the more predicted fruit growth diverged from the reference. Coherence in fruit growth across scales was also differentially impacted, depending on the tree structure considered. Decreasing the topological resolution reduced computation time by up to four orders of magnitude. Conclusions: MuSCA revealed that the topological scale has a major influence on the simulation of carbon allocation. This suggests that the scale should be a factor that is carefully evaluated when using a carbon allocation model, or when comparing results produced by different models. Finally, with MuSCA, trade-off between computation time and prediction accuracy can be evaluated by changing topological scales

    Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Get PDF
    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Primary Production and Carbon Allocation in Creosotebush

    Get PDF
    corecore