2,110 research outputs found

    Allogeneic mesenchymal stromal cells overexpressing mutant human Hypoxia-inducible factor 1-α (HIF1-α) in an ovine model of acute myocardial infarction

    Get PDF
    Background-Bone marrow mesenchymal stromal cells (BMMSCs) are cardioprotective in acute myocardial infarction (AMI) because of release of paracrine angiogenic and prosurvival factors. Hypoxia-inducible factor 1-α (HIF1-α), rapidly degraded during normoxia, is stabilized during ischemia and upregulates various cardioprotective genes. We hypothesized that BMMSCs engineered to overexpress mutant, oxygen-resistant HIF1-α would confer greater cardioprotection than nontransfected BMMSCs in sheep with AMI. Methods and Results-Allogeneic BMMSCs transfected with a minicircle vector encoding mutant HIF1-α (BMMSC-HIF) were injected in the peri-infarct of sheep (n=6) undergoing coronary occlusion. Over 2 months, infarct volume measured by cardiac magnetic resonance (CMR) imaging decreased by 71.7±1.3% (P < 0.001), and left ventricular (LV) percent ejection fraction (%EF) increased near 2-fold (P < 0.001) in the presence of markedly decreased end-systolic volume. Sheep receiving nontransfected BMMSCs (BMMSC; n=6) displayed less infarct size limitation and percent LVEF improvement, whereas in placebo-treated animals (n=6), neither parameters changed over time. HIF1-α-transfected BMMSCs (BMMSC-HIF) induced angio-/arteriogenesis and decreased apoptosis by HIF1-mediated overexpression of erythropoietin, inducible nitrous oxide synthase, vascular endothelial growth factor, and angiopoietin-1. Cell tracking using paramagnetic iron nanoparticles in 12 additional sheep revealed enhanced long-term retention of BMMSC-HIF. Conclusions-Intramyocardial delivery of BMMSC-HIF reduced infarct size and improved LV systolic performance compared to BMMSC, attributed to increased neovascularization and cardioprotective effects induced by HIF1-mediated overexpression of paracrine factors and enhanced retention of injected cells. Given the safety of the minicircle vector and the feasibility of BMMSCs for allogeneic application, this treatment may be potentially useful in the clinic.Fil: Hnatiuk, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Ong, Sang-Ging. Stanford University School of Medicine; Estados UnidosFil: Olea, Fernanda Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Locatelli, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Riegler, Johannes. Stanford University School of Medicine; Estados UnidosFil: Lee, Won Hee. Stanford University School of Medicine; Estados UnidosFil: Jen, Cheng Hao. University of London; Reino UnidoFil: De Lorenzi, Andrea. Fundación Favaloro; ArgentinaFil: Giménez, Carlos Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Laguens, Rubén. Universidad Favaloro; ArgentinaFil: Wu, Joseph C.. Stanford University School of Medicine; Estados UnidosFil: Crottogini, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report

    Get PDF
    The therapeutic effect of mesenchymal stromal cells (MSCs) following myocardial infarction (MI) is small. This may be due to differences in cellular sources and donor age, route of administration, in vitro cellular manipulations and the short time course of follow up in many animal studies. Here, we compared MSCs from two different sources (adult bone marrow or Wharton’s jelly from umbilical cord) for their long-term therapeutic effect following MI in a rat model to evaluate the effect of donor age. MSCs (or control infusions) were given intravenously 24-48 hr after myocardial ischemia (MI) induced by coronary artery ligation. Cardiac function was assessed by ultrasound at time points starting from before MSC infusion through 68 weeks after MI. A significant improvement in ejection fraction was seen in animals that received MSCs in time points 25 to 31 wks after treatment (p <0.01). These results support previous work that show that MSCs can cause improvement in cardiac function and extend that work by showing that the beneficial effects are durable. To investigate MSCs’ cardiac differentiation potential, Wharton’s jelly MSCs were co-cultured with fetal or adult bone-derived marrow MSCs. When Wharton’s jelly MSCs were co-cultured with fetal MSCs, and not with adult MSCs, myotube structures were observed in two-three days and spontaneous contractions (beating) cells were observed in fiveseven days. The beating structures formed a functional syncytium indicated by coordinated contractions (beating) of independent nodes. Taken together, these results suggest that MSCs given 24-48 hr after MI have a significant and durable beneficial effect more than 25 weeks after MI and that MSC treatment can home to damaged tissue and improve heart function after intravenous infusion 24-48 hrs after MI, and that WJCs may be a useful source for off-the-shelf cellular therapy for MI

    Heterologous mesenchymal stem cells successfully treat femoral pseudarthrosis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the effectiveness of treating pseudarthrosis in rats by using bone marrow cell suspensions or cultures of bone marrow mesenchymal stromal cells</p> <p>Methods</p> <p>Thirty-eight specific pathogen-free (SPF) animals were randomly assigned to four groups: Group 1, Control, without surgical intervention; Group 2 (Placebo), experimental model of femoral pseudarthrosis treated only with saline solution; Group 3, experimental model of femoral pseudarthrosis treated with heterologous bone marrow cells suspension; Group 4, experimental model of femoral pseudarthrosis treated with cultures of heterologous mesenchymal stromal cells from bone marrow. When pseudarthrosis was confirmed by simple radiological studies, digital radiography and histopathology after a 120-day postoperative period, Groups 2, 3 and 4 were treated as above. At 30, 60 and 90 days after the treatment, all animals were evaluated by simple radiological studies, and at the end of the experiment, the animals were assessed by computed axial tomography and anatomopathological and histomorphometric examinations.</p> <p>Results</p> <p>Injected cells were detected in the areas affected by pseudarthrosis using scintigraphy within the first 24 hours after their administration. After 60 days, the animals of Group 3 showed callus formation while the animals of Group 4 presented periosteal reaction and had some consolidated areas. In contrast, Group 2 showed a predominance of fibro-osteoid tissue. After 90 days, bone consolidation and remodeling was observed in all animals from Group 3 whereas animals from Group 4 exhibited partial consolidation and those ones from Group 2 persisted with pseudarthrosis.</p> <p>Conclusion</p> <p>The treatment with heterologous bone marrow cells suspension proved to be effective in the treatment of pseudarthrosis whereas cultures of heterologous bone marrow mesenchymal stromal cells did not show the same potential to aid bone healing.</p

    Reaction of Subcutaneous Connective Tissue of Experimental Animals on Bone Marrow Mesenchymal Stromal Cell Coated Hydroxyapatite

    Get PDF
    Introduction. Hydroxyapatite (HAp) scaffolds have become an alternative to autologous bone grafts in orthopedic surgery, because it is possible to fill larger scale bone defects and of the decreased operation time and complication risks at the graft donor site, a promising method in bone regeneration is to load bone marrow - mesenchymal stromal cells (BM-MSCs) on to a HAp scaffold. Aim of the Study. The aim of our study is to compare subcutaneous tissue reaction of experimental animals to implantation of HAp and HAp that is coated with BM-MSCs. Materials and Methods. Autologous BM-MSCs were cultivated from crista iliaca dextra biopsy, 4 HAp ceramic implants were coated with BM-MSC and implanted in subcutaneous tissue on one side and non-coated HAp implants on the other side of the spine of 4 rabbits. Immunohistochemical staining of BM-MSC and connective tissue included TUNEL assay, NFkBp105, HSP 70k, Wnt1, TNF-α, VEGF, MMP-2 antibodies, microscoped at 400X magnification and analyzed semiquantitatively. Results. Routine staining with haemotoxilin and eosin demonstrated formation of granulation tissue around the HAp implant, which was more distinct on the control side. There was an increased number of NFκB p105 positive cells (fibroblasts, myocytes, endotheliocytes) on the experimental side (+++), in comparison to the control side (++). HSP70 and apoptosis index was decreased on the experimental side (++ and 60%), in comparison to the control side (+++ and 70%). Number of MMP2 positive structures was increased on the control side in the fibrous capsule (++), in comparison to the experimental side, where the result varied (0 - +) Conclusions. Cultured BM-MSC activity is partly limited due to the apoptosis, which is probably induced by environmental factors. BM-MSC coated HAp implant stimulates secretion of proliferation marker NFkBp105 in subcutaneous tissue, decreases cell stress, apoptosis and tissue degradation (decreased HSP 70, apoptotic cell count and MMP 2) to improve the local tissue quality and proving BM-MSC tissue protective effect.publishersversionPeer reviewe

    Lineage Commitment of Conditionally Immortalized Bone Marrow Mesenchymal Stromal Cells from Tetracycline-Regulated SV40 Large T-antigen Transgenic Mice

    Get PDF
    Adult bone marrow contains a population of mesenchymal stem cells capable to self-renew and to differentiate into haematopoietic-supportive stroma, osteo, adipo- and chondrocytes. However, the identity of mesenchymal stem cells still remains uncertain. The complex population of their descendants, bone marrow mesenchymal stromal cells (BM MSCs), represents a model to study the principles of differentiation and commitment into mesodermal lineages. The experiments using BM MSCs are often hampered by their low proliferative capacity in vitro. In the present study, we established conditionally immortalized BM MSCs from tetracycline-regulated SV40 Large T-antigen transgenic mice. The identity of the conditionally immortalized BM MSCs was confirmed by marker expression, ability to support haematopoiesis and differentiation potential. The advantages of the conditional immortalization are encompassed in (1) indefinite expansion of cell populations, (2) possibility to perform cellular cloning and (3) prevention from spontaneous differentiation. We demonstrated the heterogeneity of BM MSCs and identified at least 6 types of progenitors within BM MSCs population based on their differentiation potential (“OAC”, “OA”, “OC”, “AC”, “O”, “A”). A hypothetical model of BM MSC hierarchy and the relationships between the progenitors has been proposed. We observed that the Wnt/β-catenin signaling pathway and GSK3 activity could modulate the efficiency of osteo- and adipogenic differentiation pathways, but we didn’t find evidence that the lineage commitment of BM MSCs is determined by Wnt. We elucidated the mechanism of transcriptional regulation of the adipogenic induction of BM MSCs in vitro. Our data revealed the key regulatory role of PPARγ1 during adipogenesis in BM MSCs. Furthermore, we assume that PPARγ1 is a potential trigger of the adipogenic commitment of the BM MSCs progenitors. Finally, the non-adipogenic BM MSCs progenitors were converted into the adipogenic lineage using ectopical expression of the transcription factors C/EBPα, C/EBPβ and C/EBPδ. Our findings provide a novel insight into the molecular mechanisms of BM MSCs lineage commitment

    Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study

    Get PDF
    Tissue engineered constructs (TECs) based on spheroids of bone marrow mesenchymal stromal cells (BM-MSCs) combined with calcium phosphate microparticles and enveloped in a platelet-rich plasma hydrogel showed that aggregation of MSCs improves their ectopic bone formation potential. The stromal vascular fraction (SVF) and adipose-derived MSCs (ASCs) have been recognized as an interesting MSC source for bone tissue engineering, but their ectopic bone formation is limited. We investigated whether aggregation of ASCs could similarly improve ectopic bone formation by ASCs and SVF cells. The formation of aggregates with BM-MSCs, ASCs and SVF cells was carried out and gene expression was analysed for osteogenic, chondrogenic and vasculogenic genes in vitro. Ectopic bone formation was evaluated after implantation of TECs in immunodeficient mice with six conditions: TECs with ASCs, TECs with BM-MSC, TECs with SVF cells (with and without rhBMP2), no cells and no cells with rhBMP2. BM-MSCs showed consistent compact spheroid formation, ASCs to a lesser extent and SVF showed poor spheroid formation. Aggregation of ASCs induced a significant upregulation of the expression of osteogenic markers like alkaline phosphatase and collagen type I, as compared with un-aggregated ASCs. In vivo, ASC and SVF cells both generated ectopic bone in the absence of added morphogenetic proteins. The highest incidence of bone formation was seen with BM-MSCs (7/9) followed by SVF+rhBMP2 (4/9) and no cells + rhBMP2 (2/9). Aggregation can improve ectopic bone tissue formation by adipose-derived cells, but is less efficient than rhBMP2. A combination of both factors should now be tested to investigate an additive effect
    corecore