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Abstract 

The Extrinsic Regulation of Hematopoietic Stem Cells in 

Health and Disease 

 
Matthew N. Decker 

 

 Hematopoietic stem cells facilitate lifelong production of a diverse repertoire 

of functional mature blood cells. They are a critical biological reservoir that enable 

organisms to endure physiological challenges such as inflammation, disease, and 

age. The functional maintenance of hematopoietic stem cells depends not only on 

intrinsic cell pathways, but also on extrinsic cues that guide core behaviors like 

homing and self-renewal. Careful study of these extrinsic regulatory networks can 

deepen our appreciation of fundamental stem cell biology and motivate therapeutic 

approaches to treat hematologic disease. Here I show how derangement of the bone 

marrow regulatory environment perturbs normal hematopoiesis, and demonstrate 

the dependence of hematopoietic stem cells on a circulating endocrine factor.
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INTRODUCTION 

Multicellular organisms evolved tissue-specific stem cells to generate, sustain and repair 

diverse tissue and organ types. Stem cells are maintained in tissues through life-long self-renewal 

divisions, where one or two stem cells are generated in each round of cell division (He et al., 

2009). Stem cells also have multilineage differentiation potential. Thus stem cells are constantly 

balancing two seemingly opposed functions: maintaining the undifferentiated stem cell state and 

differentiating into cells of multiple lineages. Work from Drosophila has demonstrated that by 

providing adhesive interactions and biased signaling to stem cells, but not their immediate 

downstream progenies, stem cell microenvironmental niches provide a perfect solution to this 

issue (Losick et al., 2011). Understanding how stem cells are regulated by their local niche and 

by other extrinsic mechanisms is fundamental to the field of stem cell biology. 

Hematopoiesis has been a fruitful model for the study of stem cell biology. Multiple cell 

types constitute the hematopoietic system, including myeloid cells, lymphoid cells, erythroid 

cells and megakaryocytes. All of these lineages are ultimately generated from multipotent HSCs 

through a differentiation hierarchy that includes multiple levels of progenitors throughout life 

(Weissman and Shizuru, 2008). HSCs are also capable of regenerating the hematopoietic system 

after transplantation. In fact, HSC transplantation is the only cure available for a number of 

hematologic diseases. Their enormous medical potential aside, HSCs have served as the model 

tissue stem cell, having defined the rigorous standards of self-renewal and multilineage potential 

that characterize all tissue stem cells. This definition has provided the framework for 

understanding stem cell biology in general. Not surprisingly, the proposal of a stem cell niche 

was first suggested in the hematopoietic system for HSC maintenance (Schofield, 1978). 
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The high medical value and scarcity of HSCs prompted searches for conditions to culture 

or expand HSCs in vitro. Despite decades of effort, no culture system is able to robustly maintain 

or expand HSCs. However, these stem cells can clearly thrive within their native environment in 

vivo. Thus, defining the in vivo extrinsic regulatory mechanisms is a key step that will allow us 

to expand and augment the therapeutic utility of HSCs. Hematopoiesis and HSCs change organ 

sites several times throughout life to meet distinct physiological demands. The dynamic nature of 

the interaction between HSCs and their environments presents a fascinating yet challenging 

opportunity to understand HSC regulation. The fluid nature of the hematopoietic tissue and a 

lack of morphological or positional differences between HSCs and other hematopoietic cells 

have made the identification of these cells and their in vivo environment difficult. Despite these 

roadblocks, significant advancements have been made regarding the extrinsic regulation of HSCs 

in recent years. Here, we will summarize our understanding of the extrinsic regulation of HSCs 

in the context of development, homeostasis and disease. We will also highlight some of the 

outstanding questions in the field. 

 

OVERVIEW OF TECHNICAL HISTORY 

Our knowledge of HSCs is built on experimental evidence made possible by a number of 

technical advances, including two key innovations: transplantation and flow cytometry. During 

World War II, it was discovered that people exposed to lethal irradiation could be rescued by 

transplantation of cells from healthy donor bone marrow. This sparked the quest for cells that can 

replenish the hematopoietic system (Ford et al., 1956). Work from Till and McCulloch showed 

that there are cells in the bone marrow that when transplanted can regenerate the blood system 

and form colonies on the spleens (colony forming unit-spleen or CFU-S) of mice exposed to 
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lethal doses of irradiation (Till and McCulloch, 1961). It was later discovered that CFU-Ss are 

not HSCs but hematopoietic progenitors (Jones et al., 1990, 1996). Nonetheless, using 

cytological methods, Till and McCulloch provided convincing evidence that these colonies 

contained multiple hematopoietic lineages and were derived from a single hematopoietic 

progenitor (Becker et al., 1963). These observations have conceptually shaped the field of stem 

cell biology. The capability to stably reconstitute lethally irradiated recipient mice upon 

transplantation has become the gold standard in defining HSCs. Throughout the review, HSCs 

are defined by this criterion. Based on limiting dilution transplantation assays, it was estimated 

that about 5 cells in every 105 C57BL/6 bone marrow cells are HSCs (Abkowitz et al., 2000). But 

these rare stem cells are so potent that a single transplanted HSC can reconstitute the entire blood 

system of a lethally irradiated recipient mouse (Kiel et al., 2005; Osawa et al., 1996). 

Although HSCs were in the mixture of bone marrow cells used in early in 

vivo experiments, their exact identity remained elusive. No morphological features can 

distinguish rare HSCs from other hematopoietic cells, which was a major hurdle in the field. The 

invention of monoclonal antibodies and fluorescence activation cell sorting (FACS) made 

possible the isolation of HSCs based on the expression of specific cell surface antigens. Cell 

sorting combined with functional transplantation assays allowed for the development of a series 

of surface marker profiles that can be used to sort HSCs to high purity, particularly in the bone 

marrow (Weissman and Shizuru, 2008). The purification of HSCs has facilitated extensive 

research on intrinsic molecular mechanisms that regulate their self-renewal and differentiation. 

But how these mechanisms are integrated with the in vivo environment had not been clear. 

Localizing HSCs in vivo is a prerequisite to elucidating their environmental regulation. 

Much of the focus in the field has been on the adult bone marrow. The complex markers used in 
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FACS to purify HSCs were not suitable to identifying them on bone marrow tissue sections 

using microscopy, requiring the use of alternative markers in many early HSC niche studies. 

Simpler markers with low purity for HSCs (Arai et al., 2004) and tracing assays for transplanted 

FACS-sorted fluorescent marker-labeled HSCs were initially used to localize HSCs in situ (Lo 

Celso et al., 2009; Xie et al., 2009). But it was not clear whether the localization of these cells 

reflected the niche of endogenous HSCs under steady state conditions. The development of 

Signaling Lymphocyte Activation Molecular (SLAM) markers allowed for the identification of 

HSCs on bone marrow sections in situ by simple two-color staining for cells with markers that 

also strictly defined HSCs by FACS and transplantation (Kiel et al., 2005). More recently 

developed genetically encoded fluorescent markers have also allowed detailed studies of HSC 

localization (Chen et al., 2016; Sawai et al., 2016). The advancement of other imaging 

techniques such as intra-vital live imaging and tissue clearing technology has provided even 

more comprehensive views of the natural environment of HSCs in the bone marrow (Sipkins et 

al., 2005; Acar et al., 2015). The imaging of HSC emergence during development has also 

provided critical information on the niches that maintain HSCs. For example, live imaging of the 

aorta-gonad-mesonephros (AGM) has provided definitive evidence of hemogenic endothelium 

(Bertrand et al., 2010; Boisset et al., 2010; Kissa and Herbomel, 2010). Similarly, imaging data 

regarding the niches in hematopoietic malignancies and other stress conditions are emerging. 

Imaging has provided a solid framework for understanding the niche that regulates HSCs. 

However, functional studies in vivo are key to uncovering the mechanisms of HSC extrinsic 

regulation. Ideally, a defined perturbation of the candidate niche cell type should result in a 

perturbation of HSCs. Following this logic, several functional approaches have been taken to 

uncover the nature of bone marrow niche that maintains HSCs. We use the bone marrow as an 
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example to highlight some functional methods to study HSC extrinsic regulation. Early genetic 

analysis of Steel (with mutated stem cell factor, SCF) and White (with mutated cKit receptor) 

mutants led to the identification of the key role of the SCF-cKit pathway in maintaining HSCs in 

vivo (Broudy, 1997). Additional genetic gain-of-function and loss-of-function studies have been 

used to elucidate the roles of other cell types and pathways in HSC maintenance (Calvi et al., 

2003; Zhang et al., 2003). Many of these studies used whole-body mutant mice where all cells 

are genetically perturbed. Thus, it is not clear what niche cells are relevant to observed HSC 

phenotypes. Cell ablation experiments have also been employed to functionally assess the 

requirement of distinct cell populations in supporting HSCs (Méndez-Ferrer et al., 2010). 

However, eliminating specific cells by inducing cell death may provoke non-specific HSC 

phenotypes related to other functions of the candidate niche cells. Ectopic bone marrow 

formation is another method employed to show the sufficiency of a given cell population in 

initiating an HSC-supporting environment (Sacchetti et al., 2008; Chan et al., 2009; Song et al., 

2010). Purified candidate niche organizing cells are transplanted subcutaneously or under the 

kidney capsule, sometimes with scaffolds. Over time, bone marrow will be developed and 

hematopoiesis will be sustained in these ectopic loci. But it is not clear whether these niche-

organizing cells or other cells recruited by them are directly supporting HSCs within the ectopic 

bone marrow. Ultimately, HSC maintenance factors need to be conditionally deleted from 

candidate niche cells to definitively test the hypothesis that these cells create the niche by 

elaborating key HSC-supporting factors (Ding et al., 2012; Ding and Morrison, 2013). Some of 

these functional studies have also been used to define cells and pathways that regulate HSCs 

extrinsically during development and in hematological disorders. In the following sections, we 

will discuss extrinsic HSC regulation with the emphasis on evidence from functional studies. 
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Figure 1.1 Homeostatic HSC extrinsic regulation 

a. Anatomy of a mammalian long bone, the major hematopoietic organ in adults.  

b. In the bone marrow, HSCs are regulated by a variety of cell types including endothelial cells, 

heterogeneous populations of mesenchymal stromal cells, non-myelinating Schwann cells, 

megakaryocytes, macrophages and osteoblasts. Signals from sympathetic nerves, circulating 

factors and possibly hypoxia (not pictured) are also important. Key locally synthesized factors 

for HSC maintenance include SCF, CXCL12, TGF-β1 and CXCL4.  

c-d. Major and other HSC regulatory cells in the bone marrow, where major regulatory cells are 

required to maintain the HSC pool, and other regulatory cells affect the cell cycle, localization 

and downstream progeny of HSCs through direct and indirect mechanisms. 

Circulating factors (eslrogen, EPO) 
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HOMEOSTATIC EXTRINSIC REGULATION 

After development, mammalian HSCs take up residence in the bone marrow niche to 

sustain homeostatic hematopoiesis. The bone marrow niche is a specialized microenvironment 

that exquisitely regulates the quiescence, self-renewal, and differentiation of HSC. Studies have 

shown that bone marrow HSCs preferentially localize near the vasculature, and subsequent loss-

of-function experiments have confirmed that both the vascular endothelium and perivascular 

stroma are crucial sources of HSC regulatory factors. In addition, mature hematopoietic cells and 

adipo-lineage cells within the bone marrow are able to regulate HSC behavior. Local oxygen 

levels, the sympathetic nervous system, and both local and circulating cytokines have also been 

implicated as regulators of HSCs. In total, these extrinsic signals are crucial to maintaining a 

functional HSC pool and lifelong hematopoiesis (Figure 1.1). 

 

The bone marrow niche: location, location, location 

Although the concept of an HSC niche was first proposed almost four decades ago 

(Schofield, 1978), robust characterization of the bone marrow niche was hindered by the lack of 

markers that could precisely label HSCs in situ. One of first studies performed by Lord et 

al. demonstrated that CFU-Ss (later shown to be hematopoietic progenitors, not HSCs) are 

enriched in endosteum, hinting this region may contain HSC niches (Lord et al., 1975). Initial in 

situ visualization studies indeed showed that transplanted, flow cytometrically purified HSCs 

homed to the endosteum (Lo Celso et al., 2009; Xie et al., 2009), where osteoblasts were 

proposed to be a critical component of the niche. Recent work using SLAM or other genetic 

markers demonstrates that a vast majority of HSCs are directly in contact with the vascular 

endothelium (Sugiyama et al., 2006; Méndez-Ferrer et al., 2010; Nombela-Arrieta et al., 2013; 
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Acar et al., 2015; Chen et al., 2016; Sawai et al., 2016), with only a minority of them close to 

endosteum, pointing to the perivascular microenvironment as the bone marrow HSC niche. 

While there is a growing agreement on the central role of the perivascular 

microenvironment, there is conflicting evidence as to whether HSCs prefer the endosteum. One 

should be careful to distinguish observations of endogeneous HSCs from those of transplanted 

HSCs, since the niches may differ in these conditions in several ways. First, it is possible that the 

niche is perturbed by the myeloablation used in many transplantation experiments, which is 

known to damage the sinusoidal vasculature (Hooper et al., 2009; Zhou et al., 2014). Second, it 

has been shown that endosteal cells proliferate rapidly and up-regulate HSC maintenance 

pathways in response to myeloablation (Dominici et al., 2009; Olson et al., 2013). Finally, it is 

not clear whether the transplanted HSCs are engaged with their niche or in the process of finding 

the niche. Thus, it is possible that the endosteal localization frequently seen of transplanted HSCs 

reflects experimental conditioning rather than homeostatic physiology, although understanding 

how the niche differs in these states has important clinical implications for transplantation 

therapies. Discrepancies in the literature thus may in part reflect subtle differences between the 

‘homeostatic niche’ and ‘post-transplant niche’. However, the cell types and signaling pathways 

implicated in HSC maintenance seem to play significant roles in both the homeostatic and post-

transplant bone marrow – for example, angiogenin from mesenchymal stromal cells (MSCs) 

regulates HSC proliferation in homeostasis and promotes hematopoietic regeneration following 

myeloablative conditioning (Goncalves et al., 2016; Silberstein et al., 2016). 
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Key cellular components of the bone marrow niche 

Functional evidence suggests that a number of cell types contribute critically to the bone 

marrow niche. As the cellular components of the bone marrow niche have been extensively 

reviewed elsewhere (Mendelson and Frenette, 2014; Morrison and Scadden, 2014; Hoggatt et al., 

2016), we will only summarize some of the key in vivo functional evidence here. Early studies 

showed that osteoblast number was positively correlated with the number of HSCs in two mouse 

genetic models (Calvi et al., 2003; Zhang et al., 2003), which in part led to the initial proposal of 

an endosteal bone marrow niche. Osteoblasts have been proposed to regulate HSCs by a variety 

of mechanisms including granulocyte colony stimulating factor (G-CSF) (Taichman and 

Emerson, 1994), Notch (Calvi et al., 2003), Wnt (Sugimura et al., 2012), Angiopoietin-1 

(ANGPT1) (Arai et al., 2004) and thrombopoietin (TPO) (Yoshihara et al., 2007) signaling and 

N-cadherin-mediated cell adhesion (Zhang et al., 2003). However, careful functional studies 

reveal conflicting evidence over the roles of Notch (Maillard et al., 2008), ANGPT1 (Zhou et al., 

2015) and N-cadherin (Visnjic et al., 2004; Kiel et al., 2009; Bromberg et al., 2012) and 

additional data complicates the picture of how osteoblasts regulate HSCs. In several other mouse 

models where osteoblast number was increased or decreased, HSC number was unchanged 

(Visnjic et al., 2004; Zhu et al., 2007; Lymperi et al., 2008; Kiel et al., 2009; Calvi et al., 2012). 

Furthermore, conditional deletion of critical HSC maintenance factors SCF and CXCL12 from 

osteoblasts has no effect on HSC function (Ding et al., 2012; Ding and Morrison, 2013). 

However, it has been shown that osteoblasts serve as an important niche component for early 

lymphoid progenitors by synthesizing CXCL12 (Ding and Morrison, 2013; Greenbaum et al., 

2013). It is possible that osteoblasts act through other mechanisms to modify HSC behavior, but 

their role as a niche cell is not as prominent as initially proposed. 
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While the evidence about the role of osteoblasts in HSC maintenance is conflicting, there 

is strong evidence that the vascular endothelium is a crucial cellular component of the niche. 

Endothelial cells (ECs) drive HSC self-renewal in vivo through Notch signaling (Kobayashi et 

al., 2010; Poulos et al., 2013; Wang et al., 2014; Kusumbe et al., 2016), FGFR signaling (Itkin et 

al., 2016), gp130 (Yao et al., 2005) and production of SCF (Ding et al., 2012) and CXCL12 

(Ding and Morrison, 2013), and HSC homing through release of CXCL12 (Ding and Morrison, 

2013) ROBO4 (Smith-Berdan et al., 2011, 2015) and pleiotrophin (Himburg et al., 2010, 2012). 

The vasculature also plays a critical role in mediating a physiologic response to hematopoietic 

stress; following myeloablation, regeneration of VEGFR2+sinusoidal ECs is required for 

effective hematopoietic reconstitution (Hooper et al., 2009; Butler et al., 2010). Moreover, 

endothelial cell-derived EGF is critical for HSC and hematopoietic regeneration after irradiation 

(Doan et al., 2013). 

Perivascular MSCs that lie in close contact with the bone marrow vasculature have also 

been identified as major regulators of HSCs. Several markers with overlapping expression 

patterns have been used to define these perivascular stromal cells, including platelet-derived 

growth factor receptor a (PDGFRA) (Morikawa et al., 2009; Pinho et al., 2013), leptin receptor 

(LEPR) (Ding et al., 2012) Prx1-cre (Greenbaum et al., 2013), Osx-cre (Greenbaum et al., 2013), 

Osx-creER, FAP (Tran et al., 2013), CD146 in humans (Sacchetti et al., 2008), SCF (Ding et al., 

2012), CXCL12 (Sugiyama et al., 2006; Ding and Morrison, 2013; Greenbaum et al., 2013), and 

the Nestin-GFP transgene (Méndez-Ferrer et al., 2010). Using some of these markers as tools to 

manipulate these cells, a number of functional studies have provided strong evidence that the 

perivascular stromal cells are a critical component of the bone marrow niche. Ablation 

of Cxcl12-expressing or FAP-expressing bone marrow cells led to depletion of HSCs (Omatsu et 
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al., 2010) and compromised hematopoiesis (Omatsu et al., 2010; Roberts et al., 2013). 

Conditional deletion of Scf from perivascular stromal cells using Lepr-cre resulted in HSC 

depletion (Ding et al., 2012) as did conditional deletion of Cxcl12 from perivascular stromal cells 

using Lepr-cre or Prx1-cre (Ding and Morrison, 2013; Greenbaum et al., 2013). Interestingly, 

these stromal cells have mesenchymal progenitor activity with the capacity to differentiate into 

bone and adipocyte lineages in vitro and in vivo (Lassila et al., 1978; Méndez-Ferrer et al., 

2010). Conditional deletion of Foxc1, a transcriptional factor involved in mesenchymal cell fate 

determination, from perivascular stromal cells led to excessive adipogenesis and depletion of 

HSCs (Omatsu et al., 2014). Recently, angiogenin has been identified as a novel factor from 

Osx+ mesenchymal cells for HSC maintenance (Goncalves et al., 2016). Besides these genetic 

studies, subcutaneously transplanted human CD146+ bone marrow stromal cells have been 

shown to form ectopic HSC-supporting bone marrow (Sacchetti et al., 2008). Thus, the bone 

marrow perivascular mesenchymal stromal cells are a critical component of the bone marrow 

niche. 

Other non-hematopoietic cells have also been implicated in HSC maintenance. HSCs 

from adipocyte-rich bone have decreased function and treatment with adipogenic inhibitors 

increases the reconstitution potential of HSCs, suggesting that adipocytes may negatively 

regulate HSCs (Naveiras et al., 2009). Additionally, non-myelinating Schwann cells have been 

shown to activate latent TGF-β signaling required for HSC maintenance (Yamazaki et al., 2011). 

Mature hematopoietic cells have also been connected to HSC regulation. Megakaryocytes 

physically associate with HSCs, maintain HSC quiescence through secretion of factors such as 

CXCL4 and TGF-β1, and promote hematopoietic recovery after myeloablation by driving HSC 

expansion (Bruns et al., 2014; Zhao et al., 2014). Like megakaryocytes, bone marrow 
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macrophages also modify HSC behavior. Depletion of macrophages leads to increased egress of 

HSCs from the bone marrow, suggesting that macrophages help retain HSCs in the bone marrow 

niche through cell homing and adhesion pathways, such as CXCL12-CXCR4 signaling (Winkler 

et al., 2010; Chow et al., 2011). Macrophages are believed to drive this retention of HSCs 

indirectly by acting on other niche cells including MSCs (Winkler et al., 2010; Chow et al., 

2011). However, a recent study suggested that a subpopulation of macrophages which express 

Duffy antigen/receptor for chemokines (DARC) directly maintain HSC quiescence via binding 

of DARC to the HSC cell surface antigen KANGAI1 (KAI1) (Hur et al., 2016). Thus, 

macrophages can directly and indirectly impact HSCs. In addition, Treg cells have been shown 

to provide immune privilege in the bone marrow niche (Fujisaki et al., 2011). In summary, these 

findings highlight the complex and interconnected regulatory interactions of the bone marrow 

niche. 

 

Hypoxia and the bone marrow niche 

The cells of the perivascular bone marrow niche are critical extrinsic regulators of HSCs, 

but they are not the only factors that influence HSC biology. Numerous studies suggest that 

oxygen levels in the bone marrow have a major impact on HSC homing and function. In poorly 

perfused regions of the bone marrow that presumably have lower oxygen tension, the HSC 

population is enriched, more quiescent, and better able to serially reconstitute irradiated recipient 

mice (Parmar et al., 2007). Consistent with these findings, HSCs with high levels of reactive 

oxygen species (ROS), a feature associated with aerobic metabolism, have diminished self-

renewal potential (Jang and Sharkis, 2007). Indeed, HSC maintenance seems to require 

continuous activation of hypoxia-associated transcriptional and metabolic programs (Simsek et 
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al., 2010; Takubo et al., 2010; Miharada et al., 2011; Casanova-Acebes et al., 2013). 

Interestingly, harvesting HSCs in a hypoxic environment better preserves transplantable HSCs 

(Mantel et al., 2015). The importance of these pathways to HSC function has driven many labs to 

investigate the location of the putative ‘hypoxic niche’ through indirect (Nombela-Arrieta et al., 

2013) and direct (Spencer et al., 2014) measurements of oxygen levels throughout the bone 

marrow. The most recent and direct evidence shows that the peri-sinusoidal region in the bone 

marrow is the most hypoxic region of the bone at steady state (Spencer et al., 2014). However, it 

is possible that the association between HSCs and hypoxia is indirect. The ‘hypoxic’ profile of 

HSCs measured by pimonidazole may reflect their metabolic status independent of localization 

(Nombela-Arrieta et al., 2013). In addition, the hypoxia master regulator HIF-1α may be 

dispensable in HSCs (Vukovic et al., 2016), although HIF-1α activity drives growth and 

expansion of vascular endothelium (Kusumbe et al., 2016). Thus, hypoxia may promote the 

development of the HSC niche, rather than providing direct extrinsic regulation of HSCs. 

 

Heterogeneity of the bone marrow niche 

The above data strongly suggest that HSCs reside in a perivascular niche with endothelial 

cells and mesenchymal stromal cells as critical components. Recent evidence points to potential 

heterogeneity in the perivascular niche. Perivascular NG2+LEPR−Nes-GFPbright mesenchymal 

cells that predominantly associate with bone marrow arterioles, not sinusoids, have been shown 

to play a role in HSC maintenance: partial ablation of NG2+ cells leads to decreased HSC 

quiescence and diminished capacity for functional reconstitution (Kunisaki et al., 2013). 

However, deletion of Scf and Cxcl12 using NG2-creER did not significantly affect HSCs (Acar 

et al., 2015). Further investigation is needed to clarify this discrepancy. Mechanisms other than 
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SCF and CXCL12 production may account for the HSC phenotype observed in the mice with 

NG2+ cells ablated. Recently, heterogeneity among endothelial cells in the bone marrow has been 

suggested to play important roles in regulating distinct HSC behaviors - arterial blood vessels 

maintain HSCs while sinusoids promote HSC activation and trafficking (Itkin et al., 2016). The 

functional evidence supporting this conclusion is partly based on evidence that conditional 

deletion of Fgfr from endothelial cells using Vecadherin-CreER leads to vasculature leakage and 

HSC reduction. However, Vecadherin-creER recombines in all bone marrow endothelial cells 

including arteriolar and sinusoidal endothelial cells (Wang et al., 2013). Cre drivers specific to 

distinct vascular domains are needed to further elucidate the roles of different subsets of the 

vasculature. 

 

Beyond the bone marrow: systemic regulation of HSCs 

The bone marrow microenvironment is the most well-studied component of HSC 

extrinsic regulation, but extramedullary signals from outside the bone marrow also have a 

significant impact on HSCs. One prominent example of an extramedullary regulator is the 

sympathetic nervous system, which has a major influence on the release of HSCs into the blood 

stream (Lucas et al., 2008; Méndez-Ferrer et al., 2008). Catecholaminergic signaling to both 

HSCs (Spiegel et al., 2007) and niche cells (Katayama et al., 2006) drives HSC egress from the 

bone marrow by downregulating the chemokine CXCL12 and upregulating metalloproteinases 

that degrade the adhesive extracellular matrix. This signaling is linked to the body’s circadian 

rhythm, which also drives clearance of aged neutrophils from the bone marrow niche (Casanova-

Acebes et al., 2013). 
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There is growing evidence that systemically circulating factors also influence the biology 

of HSCs. New studies have shown that physiological circulating estrogen (Nakada et al., 

2014) and induced upregulation of endogenous erthyropoietin (EPO) (Grover et al., 2014) can 

directly promote HSC proliferation or instruct HSC differentiation to specific cell fates. These 

molecular signals originate outside the bone marrow but are still able to regulate the fate and 

behavior of HSCs, raising the possibility that other endogenous hematopoietic cytokines 

synthesized outside the bone marrow may directly maintain the HSC pool. 

 

DISRUPTION OF EXTRINSIC REGULATION 

The bone marrow homeostatic niche must balance activating HSCs to replace lost 

progenitors while maintaining quiescent HSCs for future needs. This finite equilibrium can be 

disturbed in aging or other hematopoietic disorders. Aging of the hematopoietic system is 

associated with a decline of HSC function and hematopoiesis. This may be related to the 

demands of the an aging individual - to minimize oncogenic transformation at the cost of self-

renewal activity (Signer and Morrison, 2013). It is evident that the extrinsic regulatory 

mechanisms play a role in HSC aging. Just as the HSC extrinsic regulation is important in 

homeostasis and aging, its dysregulation also plays a key role in coping with or even initiating 

pathological hematopoiesis. Below, we will discuss illustrative examples of the extrinsic 

regulation of HSCs in inflammation, malignancies, and aging. 
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Inflammation 

Extrinsic regulatory mechanisms can protect against infection and injury by modulating 

HSCs. During infection, the hematopoietic system must generate a sufficient immune response 

that often requires more mature hematopoietic cells from HSCs. Inflammatory signaling from 

Toll-like receptors (TLRs) and cytokines such as interferon-γ (IFNγ), interferon-α (IFNα), and 

tumor necrosis factor-α (TNFα) can activate HSCs (Riether et al., 2015). These signals can be 

sensed directly by HSCs, but the bone marrow hematopoietic environment also plays a key role 

in mediating some of these immune responses (Essers et al., 2009). For example, it has been 

shown that bacterial cell wall products from E.coli infection activate TLR and nucleotide-

binding oligomerization domain-containing receptors (NOD) signaling, which induces G-CSF 

expression and decreases CXCL12 expression from niche endothelial cells, which in turn 

mobilizes HSCs to the spleen (Burberry et al., 2014). Similarly, IFNγ has been linked to 

increased HSC proliferation and mobilization to the spleen (Baldridge et al., 2010). This effect 

can be mediated by MSCs expressing IL6 in response to IFNγ, which results in increased 

myeloid differentiation in response to infection (Schürch et al., 2014). 

 

Hematologic malignancies 

Abnormalities in the niche are associated with hematologic malignancies. Leukemia-

initiating cells (LICs) hijack the HSC mechanisms to persist and fuel the growth of leukemia. For 

an LIC to emerge and thrive, it must lose the restraints of HSC regulatory mechanisms keeping 

its growth and function in check. Some of those mechanisms are intrinsic to the LICs, but many 

are dependent on the niche. Whatever the inciting cause, as leukemia develops, there is ongoing 
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crosstalk between the niche and LICs that eventually leads to further dysregulation and loss of 

normal hematopoiesis. 

A growing number of papers have demonstrated that the niche can be the inciting factor 

in developing malignancy. Myeloproliferative neoplasms (MPN) or myeloproliferation can be 

induced by deletion of IkBa (an inhibitor of NFkB), Mindbomb-1 (a notch ligand regulator) or 

retinoic acid receptor-γ in the bone marrow microenvironment (Rupec et al., 2005; Walkley et 

al., 2007a; Kim et al., 2008). Furthermore, conditional deletion of Rbpj (a notch pathway 

component) from endothelial cells also promotes myeloproliferation (Wang et al., 2014). 

Moreover, conditional deletion of retinoblastoma protein (Rb) from both hematopoietic cells and 

stromal cells, causes a myeloproliferative-like disorder, but not when only deleted from myeloid 

progenitors or stromal cells (Walkley et al., 2007b). In a similar fashion, conditional deletion 

of Dicer1 from osteoprogenitors but not more mature osteoblasts causes transplantable 

myelodysplasia and secondary leukemia (Raaijmakers et al., 2010). Finally, Kode et al.induced 

acute myelogenous leukemia (AML)–like disease by constitutively activating β-catenin in 

osteoblasts (Kode et al., 2014). These studies directly demonstrate the causal role of the niche in 

hematopoietic malignancies. 

The interaction of leukemia cells and their niche is reciprocal. Several studies have 

shown that the introduction of leukemia can alter the niche, and often in ways that support the 

progression of leukemia and suppress normal hematopoiesis. Live imaging of mouse bone 

marrow transplanted with human leukemia cells showed that leukemic cells alter the stromal 

niche (Colmone et al., 2008). These abnormal niches sequester normal HSPCs and impair normal 

hematopoiesis. Chronic myelogenous leukemia (CML) cells have been shown to alter key niche 

factors – such as decreasing CXCL12 and SCF and increasing G-CSF – that prevent HSCs from 
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occupying their normal niche and instead promote leukemic cell development (Zhang et al., 

2012; Schepers et al., 2013). Similarly, the MPN bone marrow niche undergoes an alteration of 

niche signals and loss of bone marrow Schwann cells and nestin+ MSCs (Arranz et al., 2014). 

Rescuing some of the lost sympathetic tone with a selective β3 adrenergic agonist reduced the 

severity of disease. Besides leukemia, the niche can also be an active participant in disease 

progression in other hematopoietic disorders. It has been shown that myelodysplastic syndrome 

(MDS)-initiating hematopoietic cells have the ability to induce neighboring MSCs to propagate a 

diseased microenvironment and facilitate the development of MDS (Medyouf et al., 2014). 

These results demonstrate that abnormal hematopoietic cells may benefit from the changes they 

induce in the niche. 

Recent understanding of how the bone marrow niche contributes to malignancy has led to 

the development of niche-targeted therapies with promising initial results. For example, AML 

cells exploit the CXCL12/CXCR4 axis for proliferation and survival, and high expression of 

CXCR4 on LICs correlates with worse prognosis. Inhibitors of CXCR4, most notably plerixafor, 

in combination with traditional chemotherapy agents have improved outcomes in AML murine 

models and clinical trials (Rashidi and DiPersio, 2016). While niche-targeted agents have yet to 

become a part of standard treatments, research in this area is likely to grow. 

 

Aging 

The effects of aging on HSC function have been well described. Old HSCs have a 

decreased regenerative potential, are biased towards the myeloid lineage, and are more easily 

mobilized in response to cytokine cues (Geiger et al., 2013). Some of these phenotypes are 
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linked to intrinsic changes within the HSC, but others have been proposed to be the result of an 

aging microenvironment. The effects of aging specifically on the bone marrow HSC niche has 

only begun to be explored. Transplantation of HSCs from young mice to old recipient mice (or 

vice versa) shows that at least part of the aging HSC phenotypes can be attributed to an aging 

environment. Young bone marrow HSCs home inefficiently to old bone marrow compared with 

young bone marrow, showing that there is a relevant difference in interactions between HSCs 

and the old environment that affects HSC engraftment (Liang et al., 2005). Details on which 

signaling interactions differ and how engraftment is altered have yet to emerge. Similarly, old 

HSCs are less myeloid-biased when transplanted into young mice, suggesting that the age of the 

environment plays a key role in HSC differentiation lineage bias, which could be explained by an 

increase in the inflammatory cytokine RANTES (Ergen et al., 2012). Systemic age-related 

changes might also influence HSCs. Parabiosis experiments between old and young mice have 

demonstrated blood-borne factors that vary with age can influence muscle satellite stem cell and 

neural stem/progenitor cells function (Conboy et al., 2005; Villeda et al., 2011). These studies 

suggest the possibility of systemic mechanisms for stem cell aging in general, but direct evidence 

for age-related systemic changes in HSC regulation is still needed. The question still remains of 

exactly how other age-related changes in HSCs are regulated by an old environment, both locally 

and systemically. 
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SUMMARY 

Bone marrow fibrosis is a critical component of primary myelofibrosis (PMF). But the 

origin of myofibroblasts that drive fibrosis is unknown. Using genetic fate mapping we found 

that bone marrow Leptin receptor (Lepr) – expressing mesenchymal stromal lineage cells 

expanded extensively and were the fibrogenic cells in PMF. These stromal cells down-regulated 

the expression of key hematopoietic stem cell (HSC)- supporting factors and up-regulated genes 

associated with fibrosis and osteogenesis, indicating fibrogenic conversion. Administration of 

imatinib or conditional deletion of platelet-derived growth factor receptor a (Pdgfra) 

from Lepr+ stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. 

Conversely, activation of the PDGFRa pathway in bone marrow Lepr+ cells led to expansion of 

these cells and extramedullary hematopoiesis, features of PMF. Our data identify Lepr+stromal 

lineage cells as the origin of myofibroblasts in PMF and suggest that targeting PDGFRa 

signaling could be an effective way to treat bone marrow fibrosis. 

 

INTRODUCTION 

Hematopoietic stem cells (HSCs) are maintained by their microenvironmental niches. 

Recently, we identified bone marrow Lepr+ mesenchymal stromal cells as a critical component of 

the niche that elaborates multiple factors, including stem cell factor (SCF) and CXCL12 (Ding et 

al., 2012; Ding and Morrison, 2013). These stromal cells include skeletal stem cells that are the 

main source of bone in the adult bone marrow (Zhou et al., 2014). Although our understanding 

of the mesenchymal stromal cells under steady state has advanced quickly, how these cells are 

altered by and contribute to hematological diseases has not been well characterized (Schepers et 

al., 2015). 
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Primary myelofibrosis (PMF) is a subtype of myeloproliferative neoplasms (MPNs) with 

clinical characteristics, including anemia, bone marrow fibrosis and extramedullary 

hematopoiesis (Abdel-Wahab and Levine, 2009). Most PMF patients are elderly. PMF originates 

clonally from abnormal hematopoietic stem/progenitor cells. Allogeneic HSC transplantation is 

the only possible cure. However, this approach is too toxic for elderly people, precluding its 

application to most PMF patients. The hematopoietic-intrinsic molecular mechanisms that lead to 

PMF have been studied extensively (Tefferi, 2016). Several driver mutations have been 

identified, including JAK2V617F and MPLW515L mutations that lead to constitutive activation 

of JAK2 kinase and the upstream receptor MPL, respectively (Tefferi, 2016). Calreticulin 

mutations that activate the MPL receptor (Araki et al., 2016; Chachoua et al., 2016; Marty et al., 

2016) have recently been discovered in most JAK2/MPL mutation-negative patients (Klampfl et 

al., 2013; Nangalia et al., 2013). Thus, activation of the MPL-JAK-STAT pathway in 

haematopoietic cells is a general feature of MPNs, regardless of the specific molecular 

mechanisms. Consistent with this, a comprehensive genomic analysis has identified gene 

signature of JAK-STAT activation in all MPN patients, independent of mutations (Rampal et al., 

2014). Currently, JAK inhibitors have been actively explored as a means to treat PMF. While 

these inhibitors control symptoms, they do not resolve the disease, particularly the bone marrow 

fibrosis (Tefferi, 2016). Thus, a deeper understanding of the fibrotic component of PMF 

pathogenesis is required to devise more effective therapies. 

The cellular mechanisms underlying bone marrow fibrosis are still being elucidated. An 

earlier study of X chromosome-linked markers in a female PMF patient revealed that 

hematopoietic cell overproliferation was clonal while the bone marrow fibrosis was not 

(Jacobson et al., 1978). Mouse models with MPN-associated mutations have demonstrated that 
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MPNs originate from abnormal hematopoietic clone (Lundberg et al., 2014). But how 

overproliferating hematopoietic cells lead to bone marrow fibrosis and extramedullary 

hematopoiesis is not clear. Megakaryocyte deregulation and hyperplasia is a defining cellular 

feature of PMF (Tefferi, 2016; Papadantonakis et al., 2012). Overexpression of the major 

megakaryopoietic cytokine, thrombopoietin (TPO), leads to megakaryocyte hyperplasia and 

PMF in mice (Villeval et al., 1997; Yan et al., 1995). Gata1low mice with a block in 

megakaryocyte maturation (Shivdasani et al., 1997) developed myelofibrosis, suggesting a 

disease model where dysregulated megakaryocytes secrete excessive cytokines, including 

transforming growth factor-beta 1 (TGFβ1) and platelet-derived growth factor (PDGF) that drive 

bone marrow fibrosis (Vannucchi et al., 2002). Indeed, targeting deregulated megakaryocytes by 

inhibiting the AURKA pathway eliminated bone marrow fibrosis (Wen et al., 2015). However, 

the bone marrow stromal cells that respond to the cytokines elaborated by hyperplastic 

megakaryocytes and that directly deposit reticulin and collagen fibers have not been identified. 

PDGFs are potent cytokines that promote mesenchymal cell proliferation and are 

implicated in many fibrotic diseases, including pulmonary and liver fibrosis (Bonner, 2004). 

Activation of PDGFRa signaling is sufficient to drive fibrosis in diverse organs (Olson and 

Soriano, 2009; Iwayama et al., 2015). PMF patients have significantly higher concentrations of 

PDGFs in circulation, likely due to increased release (Gersuk et al., 1989). However, whether 

PDGFR pathways play a role in bone marrow fibrosis has not been directly addressed. 

It has been speculated that cells of the fibroblastic lineage are the origin of 

myofibroblasts in PMF (Abdel-Wahab and Levine, 2009; Tefferi, 2005). A number of markers 

have been used to identify mouse bone marrow fibroblastic stromal cells, also referred to as 

colony-forming unit-fibroblast (CFU-F), including Nestin-GFP, CD51, PDGFRa, PDGFRb and 
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NG2 (Morikawa et al., 2009; Méndez-Ferrer et al., 2010; Komada et al., 2012; Kunisaki et al., 

2013; Pinho et al., 2013). Using some of these markers, several studies characterized the 

mesenchymal stromal cells in MPN mouse models. In a chronic myeloid leukemia (CML) 

model, Schepers et al reported an expansion of Lin−CD45−CD31−CD51+Sca1− osteoblastic 

lineage cells and increase collagen deposition. However, it was not clear whether these cells 

were the origin of bone marrow fibrosis (Schepers et al., 2013). In a Jak2V617F MPN model, 

Arranz et al performed lineage-tracing using Nestin-creER to assess the contribution of 

Nestin+ stromal cells. No obvious contribution of these cells to bone marrow fibrosis was noted 

(Arranz et al., 2014). As a result, the stromal cells that directly contribute to bone marrow 

fibrosis are unknown. Given the central role of PDGFR signaling in myofibroblasts and fibrosis, 

we searched for bone marrow stromal cells that express PDGFRs. Previously, we reported 

that Lepr+ stromal cells are uniformly positive for PDGFRa and PDGFRb (Ding et al., 2012; 

Zhou et al., 2014). Conversely, virtually all PDGFR+ stromal cells in the bone marrow are Lepr+ 

(Zhou et al., 2014). This raises the question of whether the Lepr+PDGFR+ stromal cells are the 

origin of myofibroblasts in PMF. 

We set out to identify the stromal cells that generate reticulin and collagen fiber in 

myelofibrosis using lineage tracing. We found that Lepr+ mesenchymal stromal cells were the 

source of myofibroblasts and underwent expansion in PMF. These cells down-regulated key 

HSC maintenance factors and up-regulated fibrogenic and osteogenic genes. Conditional 

deletion of Pdgfra from Lepr+ mesenchymal stromal cells or administrating imatinib suppressed 

their expansion and largely abolished bone marrow fibrosis. Conversely, activation of PDGFRa 

pathway in Lepr+ mesenchymal stromal cells led to their expansion and extramedullary 

hematopoiesis. Our results identify the activation of the PDGFRa pathway in Lepr+ cells as an 
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important contributor to myelofibrosis and provide a proof of principle that inhibiting the 

PDGFRa pathway in mesenchymal stromal cells is an attractive strategy to treat bone marrow 

fibrosis. 

 

RESULTS 

Development of primary myelofibrosis in Tpo-overexpressing mice 

We adapted a retroviral mouse PMF model by transplanting Tpo-overexpressing (TOE) 

retrovirally-infected bone marrow cells into irradiated mice. Consistent with prior reports (Yan et 

al., 1995; Villeval et al., 1997), these mice developed high levels of serum TPO (Figure 2.1a), 

thrombocythemia (Figure 2.1b), and a trend towards leukocytosis (Figure 2.1c) within three 

months after the transplantation. The bone marrow from the TOE mice was pale, particularly in 

mice with advanced PMF (Figure 2.1d). Enlarged spleens with extramedullary hematopoiesis 

were evident accompanied by a 3-fold increase in spleen weight (Figure 2.1e-f). Bone marrow 

myeloid cells significantly expanded in TOE mice (58±13% cells were myeloid cells in TOE vs 

40±8% in controls) (Figure 2.1g). These mice displayed megakaryocyte hyperplasia in the bone 

marrow (Figure 2.1h) and profound fibrosis in the spleen and bone marrow (Figure 2.1i-j). 

Large amounts of collagen fibers and osteosclerosis associated with fibrosis made dissociation of 

bone marrow cells from TOE mice into single cell suspension difficult. These observations 

indicate that the TOE model developed features of PMF as previously reported (Yan et al., 1995; 

Villeval et al., 1997). 
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Figure 2.1 TOE mice develop clinical features of PMF 
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Figure 2.1 TOE mice develop clinical features of PMF 

a. Plasma TPO levels determined by ELISA 1 to 3 months after the bone marrow transplantation 

showing elevated TPO level in TOE mice compared with controls (mice transplanted with 

control vector virus-infected bone marrow cells) (n=16, 15 and 7 mice for control, n=15, 13 and 

7 mice for TOE, at month 1-3 after transplantation, respectively). 

b-c. Peripheral blood count analysis of TOE and control mice 1 to 3 months after bone marrow 

transplantation (n=16, 15 and 7 mice for control, n=15, 13 and 7 mice for TOE, at month 1-3 

after transplantation, respectively for b) (n=16, 15 and 12 mice for control, n=15, 13 and 10 mice 

for TOE, at month 1-3 after transplantation, respectively for c). 

d. Long bones from TOE mice were pale compared with vector controls. 

e. TOE mice showed enlarged spleens. 

f. Quantification of the spleen weight (n=13 mice for control and TOE, each). 

g. TOE mice bone marrow showed a significant increase of myeloid cell frequency (n=8 mice for 

control, n=7 mice for TOE). 

h. Images of bone marrow sections showing that megakaryocyte lineage cells were 

overproliferated in the bone marrow of TOE mice. Megakaryocytes were marked by CD41 

antibody staining (in red). Nuclei were stained with DAPI (in blue). 

i-j. Reticulin staining showing extensive fibrosis in the spleen (i) and bone marrow (j) from TOE 

mice. Right panels of i and j are higher magnification images. TOE, Tpo-overexpressing. Con, 

control vector virus. *p<0.05, ** p<0.01, *** p<0.001. Images are representative of at least 3 

biological replicates. 
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HSCs undergo proliferation and mobilization in TOE mice 

We examined HSC and progenitor compartments in TOE mice 2–4 months after the bone 

marrow transplantation. There was a 5-fold increase of the frequency of 

Lin−Sca1+cKit+CD150+CD48− HSCs in the bone marrow of TOE mice compared with mice 

transplanted with control virus-infected bone marrow cells (Figure 2.2a-b). Bone marrow 

cellularity was significantly reduced in TOE mice (Figure 2.2c). An overall quantification 

revealed increased HSC number in TOE bone marrow (Figure 2.2d). There were variations 

among the TOE mice in term of hematopoietic phenotypes presumably due to variable amount of 

TPO (thus variable fibrosis induction strength) in individual mice. When the mice were grouped 

into intermediate and advanced stages based on their hematopoietic parameters (e.g. color of the 

bone marrow and ease of bone marrow dissociation), we observed an initial significant increase 

of bone marrow HSC number in intermediate followed by a reduction of HSCs in advanced PMF 

mice (Figure 2.2e) consistent with clinical data on different stages of PMF patients (Reilly et al., 

2012). This is associated with a gradual depletion of bone marrow cellularity (Figure 2.2f). 

HSCs from TOE mice incorporated more BrdU in 5-day pulse experiments (Figure 2.2g) 

suggesting they proliferated more. 

There was a 1.6-fold more of mechanically dissociable cells in the spleens from TOE 

mice (Figure 2.2h). This was probably an underestimate because dissociation of TOE spleens 

was difficult due to extensive fibrosis. HSC frequency and number increased significantly in the 

TOE spleens (Figure 2.2i-j). HSCs shifted from the bone marrow to the spleen in advanced PMF 

mice (Figure 2.1k). These data suggest a pathogenic process of PMF: HSCs initially 

overproliferate and start mobilizing to the spleen; as the disease progresses, the bone marrow 

becomes fibrotic and hypocellular, and many HSCs shift to the spleen. 
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Figure 2.2 HSCs overproliferate and mobilize to the spleen in TOE mice 
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Figure 2.2 HSCs overproliferate and mobilize to the spleen in TOE mice 

a. Representative flow cytometric plot showing the increased Lin−Sca1+cKit+CD150+ 

CD48− HSC frequency in TOE mice. 

b. Bone marrow HSC frequency was significantly increase in TOE mice (n=21 mice for control 

and n=22 mice for TOE). 

c. TOE mice had a significant reduction of bone marrow cellularity (n=21 mice for control and 

n=18 mice for TOE). 

d. TOE mice had an increased HSC number in the bone marrow (n=20 mice for control and 

n=18 mice for TOE). 

e. There was a significant increase of bone marrow HSC number in intermediate PMF followed 

by a reduction of bone marrow HSCs in advanced PMF (n=20 mice for control, n=9 mice for 

intermediate PMF, n=10 mice for advanced PMF). 

f. As the PMF developed, there was a gradually more severe reduction of bone marrow 

cellularity in TOE mice (n=20 mice for control, n=9 mice for intermediate PMF, n=10 mice for 

advanced PMF). 

g. Bone marrow HSCs from TOE mice incorporated significantly more BrdU in 5-day pulse 

experiments (n=4 mice for control and n=8 mice for TOE). 

h. Spleen cellularity from TOE was significantly increased (n=15 mice for control and n=12 

mice for TOE). 
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i-j. HSC frequency and number from spleens of TOE mice were significantly increased (n=22 

mice for control and n=23 mice for TOE in (i), n=13 mice for control and n=11 mice for TOE in 

(j)). 

k. Quantification of spleen and bone marrow HSC number showed a significant mobilization to 

the spleen in advanced stage of PMF (n=12 mice for control, n=6 mice for intermediate PMF and 

n=7 mice for advanced PMF). TOE, Tpo-overexpressing. Con, control vector virus. Int, 

intermediate stage. Adv, advanced stage. *p<0.05, ** p<0.01, *** p<0.001. 
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Lepr+ mesenchymal stromal cells undergo fibrotic expansion 

The above data suggest that bone marrow fibrosis contributes to bone marrow 

hematopoietic failure. However, the identity of cells that deposit collagen fibers and render bone 

marrow fibrotic is elusive. Bone marrow Lepr+ mesenchymal stromal cells, which uniformly 

express PDGFRa and PDGFRb (Ding et al., 2012; Zhou et al., 2014) arise perinatally and are 

major contributor to bone formed in adults but not during development (Zhou et al., 2014). They 

give rise to nearly all CFU-Fs in adult bone marrow and can differentiate into bone, cartilage and 

adipocytes in vitro and in vivo (Zhou et al., 2014). These observations prompted us to test 

whether Lepr+ stromal cells are responsible for bone marrow fibrosis in vivo. The frequency of 

enzymatically dissociated CD45/Ter119−PDGFRa+ stromal cells significantly increased in TOE 

mice (Figure 2.3a and Figure 2.4a). Lepr-cre knockin allele recombines specifically in 

PDGFRa+ bone marrow mesenchymal stromal cells (Ding et al., 2012; Zhou et al., 2014). We 

fate-mapped Lepr+ lineage cells using Lepr-cre; tdTomato mice in which PMF was induced by 

transplanting TOE retrovirus-infected bone marrow cells (Figure 2.3b). Consistent with the 

increased stromal cell frequency, tdTomato+ cells expanded dramatically in TOE mice compared 

with mice transplanted with bone marrow cells infected with control virus (Figure 2.3c-f and 

Figure 2.4b). These tdTomato+ stromal lineage cells elaborated extensive cellular processes 

resembling myofibroblasts (Figure2.3e-f and Figure 2.4c-d), suggesting that these cells 

assumed a fibrotic cell fate. 

To directly assess whether the Lepr+ stromal cells are the myofibroblastic cells, we 

used Collagen1a1-GFP (Col-GFP) reporter mice (Yata et al., 2003) which labels Collagen1a1-

expressing myofibroblastic cells in multiple organs (Iwayama et al., 2015; Lin et al., 2008; 

Mederacke et al., 2013). We generated Lepr-cre; tdTomato; Col-gfp mice to examine whether 
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tdTomato+ cells are Col-GFP+ in the PMF bone marrow. In Lepr-cre; tdTomato; Col-gfp mice 

without PMF induction, sparse tdTomato+ cells and Col-GFP+ cells overlapped (Figure 2.3g-i), 

suggesting that Lepr+ stromal cells expressed collagen and had some fibrogenic capacity even 

under steady state. We then induced PMF by transplanting TOE virus-infected bone marrow 

cells into these mice. At three to four months after the transplantation, mice were analyzed. 

Consistent with our earlier observation, tdTomato+ stromal lineage cells underwent a significant 

expansion in TOE bone marrow (Figure 2.3j-o). Virtually all of the tdTomato+ cells were Col-

GFP+ (Figure 2.3j-o and Figure 2.4e). Conversely, virtually all Col-GFP+ cells were 

tdTomato+ (Figure 2.3j-o and Figure 2.4f).  These data demonstrate that Lepr+ lineage cells are 

the major if not exclusive source of myofibroblasts responsible for fibrosis in the PMF bone 

marrow. 

 

Mesenchymal stromal cells down-regulate key niche factors for HSCs 

Lepr+ mesenchymal stromal cells plays a critical role in bone marrow HSC maintenance 

by generating key niche factors, CXCL12 and SCF (Ding et al., 2012; Ding and Morrison, 2013; 

Oguro et al., 2013). Bone marrow Lepr+ cells, Cxcl12high cells and Scfhighcells are essentially the 

same mesenchymal population (Ding et al., 2012; Ding and Morrison, 2013; Zhou et al., 2014). 

Fibrogenic conversion of these cells may alter their capacity to support HSCs. We examined the 

niche function of these cells in PMF by evaluating the expression of key niche-derived HSC 

maintenance factors. We directly assessed CXCL12 expression in the bone marrow 

from Cxcl12DsRed/+ knockin mice (Ding and Morrison, 2013) with PMF 

induction. Cxcl12DsRed/+ mice reconstituted with empty vector virus-infected bone marrow cells 

were used as controls. The expression level of Cxcl12-DsRed was reduced in TOE mice 
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compared with controls, although the frequency of these cells did not seem to change as revealed 

by confocal microscopy (Figure 2.5a-d) and by flow cytometry (Figure2.5e). Quantification of 

the intensity of Cxcl12-DsRed and quantitative real-time PCR (qRT-PCR) analysis showed that 

there was significant reduction of DsRed expression level and Cxcl12 transcripts by 

mesenchymal stromal cells (Figure 2.5f-h). Since CXCL12 is a major HSC retention signal 

(Ding and Morrison, 2013; Greenbaum et al., 2013) its down-regulation provides a potential 

mechanistic explanation for HSC mobilization out of the bone marrow in PMF. 

Taking advantage of an Scfgfp/+ knockin reporter 1, we assessed the expression of Scf-

GFP+ in the PMF bone marrow. There was a down-regulation of Scf-GFP expression level in the 

PMF bone marrow revealed by confocal microscopy (Figure 2.5i-l). By flow cytometry, the 

frequency of CD45/Ter119−Scf-GFP+ stromal cells did not differ significantly between TOE and 

control bone marrow (Figure 2.5m). The Scf-GFP expression level at single-cell resolution was 

significantly reduced in PMF bone marrow as assessed by flow cytometry (Figure 2.5n-o). qRT-

PCR analysis also showed a significant reduction of Scf transcripts (Figure 2.5p). Overall, the 

above data suggest that adaptation of a fibrotic cell fate by mesenchymal stromal cells leads to 

lower expression of key HSC niche factors and thus compromised bone marrow niche. 

 

 

 



 36 

 
 

Figure 2.3 Bone marrow mesenchymal stromal cells undergo expansion and fibrotic conversion 
in PMF 
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Figure 2.3 Bone marrow mesenchymal stromal cells undergo expansion and fibrotic 
conversion in PMF 
 
a. Flow cytometric analysis of enzymatically dissociated bone marrow cells showing a 

significant increase of mesenchymal stromal cells (n=17 mice for control and n=18 mice for 

TOE). 

b. A scheme depicting the in vivo lineage tracing experiments. 

c–f. Lepr-cre; loxptdTomato mice were transplanted with Tpo-overexpressing virus-infected 

bone marrow cells (TOE) or control virus infected bone marrow cells (control). Two to three 

months after the transplantation, the fate of Lepr-cre-expressing lineage cells was followed by 

assessing the tdTomato+ cells. Confocal images showing a substantial expansion of Lepr-

cre expressing lineage cells in TOE mice. 

g–i. Confocal images showing Lepr-cre-expressing tdTomato+ mesenchymal stromal cells were 

Col-GFP+ in Lepr-cre; loxptdTomato; Col-gfp mice under steady state. 

j–o. Bone marrow mesenchymal stromal cells from TOE PMF Lepr-cre; loxptdTomato; Col-

gfp mice underwent expansion and were Col-GFP+. Vector controls were Lepr-cre; 

loxptdTomato; Col-gfp mice transplanted with control virus-infected bone marrow cells. TOE, 

Tpo-overexpressing. Con, control vector virus. *p<0.05. Images are representative of at least 3 

biological replicates. 
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Figure 2.4 Bone marrow mesenchymal stromal lineage cells expand and assume a fibrotic cell 

fate 
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Figure 2.4 Bone marrow mesenchymal stromal lineage cells expand and assume a fibrotic 
cell fate 
 
a. Bone marrow CD45/Ter119-CD140a+ mesenchymal stromal cell frequency increased as 

PMF developed from intermediate to advanced stages (n=17 mice for control, n=12 mice for 

intermediate TOE, n=8 mice for advanced TOE). 

b. Bone marrow mesenchymal stromal lineage cells expanded 6.5 fold as quantified by 

counting TdTomato+ cells on bone marrow sections from vector control and TOE mice (n=4 

images for control and TOE each; *p<0.05, ***p<0.001). 

 c-d. Lepr-cre-expressing mesenchymal stromal cells expanded extensively and displayed 

elongated fibroblast-like stromal cell morphology. Arrow heads point to elongated fibroblast-

like cells.  

e. In Lepr-cre; loxptdTomato; Col-gfp control or TOE mice, all tdTomato+ cells are GFP+.  

f. In Lepr-cre; loxptdTomato; Col-gfp control or TOE mice, nearly all GFP+ cells are 

tdTomato+. Images are representative of at least 3 biological replicates. 
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Figure 2.5 Bone marrow mesenchymal stromal cells down-regulate key HSC maintenance 
factors, CXCL12 and SCF 
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Figure 2.5 Bone marrow mesenchymal stromal cells down-regulate key HSC maintenance 
factors, CXCL12 and SCF 

 

a–d. Confocal images showing Cxcl12-DsRed reporter expressing in the bone marrow 

of Cxcl12DsRed/+ mice transplanted with control virus-infected bone marrow cells (a-b). The 

expression level of Cxcl12-DsRed reporter was dramatically down-regulated in the bone marrow 

of Cxcl12DsRed/+ mice transplanted with Tpo-overexpressing virus-infected bone marrow cells 

(TOE) (c-d) compared with controls (a-b). Nuclei were stained with DAPI (blue). 

e. The frequency of CD45/Ter119−Cxcl12-DsRed+ mesenchymal stromal cells was not 

significantly altered in TOE mice compared with controls (n=4 mice for control and n=6 mice 

for TOE). 

f–g. The fluorescent intensity of Cxcl12-DsRed was significantly reduced in TOE mice 

compared with controls as assessed by flow cytometry (n=4 mice for control and n=6 mice for 

TOE). 

h. qPCR analysis revealed that Cxcl12 transcripts were significantly decreased in sorted 

mesenchymal stromal cells from TOE mice compared with controls (n=3 mice for control and 

n=4 mice for TOE). 

i–l. The expression level of Scf-GFP reporter was down-regulated in TOE mice. GFP (green) 

shows Scf-GFP+ cells. Nuclei were stained with DAPI (blue). 

m. The frequency of CD45/Ter119−Scf-GFP+ stromal cells was not significantly altered in TOE 

mice (n=3 mice for control and n=4 mice for TOE). 

n–o. The fluorescent intensity of Scf-GFP was significantly reduced in TOE mice as assessed by 

flow cytometry (n=3 mice for control and n=4 mice for TOE). 
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p. qPCR analysis showed Scf transcripts were significantly decreased in sorted mesenchymal 

stromal cells (n=3 mice for control and n=4 mice for TOE). TOE, Tpo-overexpressing. Con, 

control vector virus. *p<0.05, ***p<0.001, NS, not significant. Images are representative of at 

least 3 biological replicates. 
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Mesenchymal stromal cells undergo fibrotic conversion/differentiation in PMF 

We performed a genome-wide gene expression profiling to molecularly characterize the 

mesenchymal stromal cells in PMF. We sorted CD45/Ter119−Cxcl12-DsRed+ mesenchymal 

stromal cells as Cxcl12expression is a direct marker for functional HSC niche cells. 

Although Cxcl12-DsRed is expressed by other bone marrow cells at low levels (Ding and 

Morrison, 2013) and its expression level was down-regulated ~ 4 fold (Figure 2.5f-g), our 

sorting strategy purified most mesenchymal stromal cells expressing high levels of DsRed 

(Figure 2.6a). As expected, these cells also expressed high levels of mesenchymal markers such 

as Pdgfra (CD140a), Pdgfrb(CD140b) and Lepr (Figure 2.6b).  CD45/Ter119−Cxcl12-

DsRed+ cells expressed very little, if any, Nestin or Ng2 (Figure 2.6b). Statistical analysis 

identified 480 up-regulated genes (p<0.05, fold>1.5) and 146 down-regulated genes (p<0.05, 

fold>1.5) from TOE mice compared with controls (Figure 2.7a). Gene ontology (GO) analysis 

using the Database for Annotation, Visualization and Integrated Discovery (DAVID) identified 

several significantly enriched processes, including extracellular matrix, cell adhesion and 

proteinaceous extracellular matrix (Figure 2.7b), suggesting a fibrotic conversion/differentiation 

of these cells. 

To systematically test whether these cells underwent fibrotic conversion, we performed 

gene set enrichment analysis (GSEA). A mouse fibrosis gene set was obtained from Qiagen 

(www.qiagen.com), which includes 85 key genes involved in dysregulated tissue remodeling 

during the repair and healing of wounds (Figure 2.6c). We found that Cxcl12+ mesenchymal 

stromal cells from PMF bone marrow expressed many genes associated with fibrosis (normalized 

enrichment score (NES)=3.32, false discovery rate (FDR) q=0 and p=0) (Figure 2.7c). Using a 

published fibrosis gene signature from in vivo fibrotic liver stellate cells (De Minicis et al., 
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2007), we performed an independent GSEA analysis. Again, PMF mesenchymal stromal cells 

significantly expressed many genes associated with liver stellate cell fibrosis (NES=1.65, FDR 

q=0 and p=0), confirming their fibrotic conversion (Figure 2.7d). Since Lepr+ stromal cells are 

the main source of bone formed in the adult bone marrow (Zhou et al., 2014) and osteosclerosis 

is a feature of myelofibrosis (Lataillade et al., 2008), we tested whether the PMF mesenchymal 

stromal cells globally up-regulated osteoblastic genes. A mouse osteogenesis gene set was 

obtained from Qiagen (www.qiagen.com), which includes 82 genes related to osteogenic 

differentiation (Figure 2.6d). A GSEA analysis revealed that PMF mesenchymal stromal cells 

significantly expressed many osteogenic genes (NES=1.7, FDR q=0 and p=0) (Figure 2.7e). 

Thus the mesenchymal stromal cells underwent global gene expression change to a 

fibrotic/osteogenic fate in the PMF bone marrow. 

Genes that were significantly more highly expressed in PMF mesenchymal stromal cells 

included genes encoding extracellular matrix: Acta2 (a-smooth muscle actin), Fn (fibronectin), 

several collagens (Col12a1, Col1a1, Col1a2 and Col3a1) and integrins (Itgbl1, Itga2 and Itgb5) 

(Table 2.1). Extracellular matrix remodeling enzymes were also up-regulated, 

including Mmp9 (matrix metallopeptidase 9), Timp1 (tissue inhibitor of metalloproteinase 

1), Mmp2 (matrix metallopeptidase 2), Timp3 (tissue inhibitor of metalloproteinase 3) 

and Mmp14 (matrix metallopeptidase 14) (Table 2.1). Several highly up-regulated genes 

associated with osteogenesis included Postn (periostin, osteoblast specific factor), Spp1 (secreted 

phosphoprotein 1, osteopontin) and Alpl (alkaline phosphatase, liver/bone/kidney) (Table 2.1). 

We also observed a significant reduction of Lepr (Table 2.1), although the expression level was 

still high (Figure 2.6b). A recent study reported that LepR from bone marrow stromal cells 

promotes adipogenesis and inhibits osteogenesis (Yue et al., 2016). The down-regulation 
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of Lepr is consistent with the elevated osteogenesis of these cells in PMF. In line with our 

analysis on niche factor expression (Figure 2.5), we also observed downregulation 

of Cxcl12 and Scf (Figure 2.6b). Altogether, these data demonstrate that bone marrow 

mesenchymal stromal cells undergo fibrotic conversion/differentiation and are thus likely the 

origin of myofibroblasts responsible for fibrosis in the PMF bone marrow. 
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Figure 2.6 Gene expression profiling analysis of mesenchymal stromal cells from PMF 
mice 
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Figure 2.6 Gene expression profiling analysis of mesenchymal stromal cells from PMF mice 

a. Representative flow cytometric plots showing the gates to sort CD45/Ter119/CD31-Cxcl12-

DsRed+ stromal cells from PMF and control bone marrow. A total of three freshly double-sorted 

aliquots of cells (~5000) from PMF (from 5 mice) and control (from 3 mice) Cxcl12DsRed/+ mice 

were used for gene expression analysis. 

b. Normalized expression levels of mesenchymal cell markers and HSC niche factors by 

CD45/Ter119/CD31-Cxcl12-DsRed+ stromal cells from PMF and control bone marrow. Values 

represent mean±s.d.. from three biological replicates. 

c. List of fibrosis genes used to performed GSEA in Figure 2.7c. 

d. List of osteogenic genes used to performed GSEA in Figure 2.7d.  
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Figure 2.7 Mesenchymal stromal cells up-regulate fibrosis and osteogenesis genes in PMF 

a. Heat map showed 480 significantly up-regulated and 146 significantly down-regulated genes 

in freshly sorted mesenchymal stromal cells from PMF mice compared with controls identified 

by gene expressing profiling analysis (n=3 mice for control and TOE each). 

b. Gene ontology (GO) analysis showed biological processes significantly affected in 

mesenchymal stromal cells from PMF mice. 

c–e. Gene set enrichment analysis (GESA) showed significant enrichment of fibrosis genes 

(c and d) and osteogenesis genes (e) in mesenchymal stromal cells from PMF mice. NES, 

normalized enrichment score. FDR, false discovery rate. p, nominal p value. 
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Gene Fold PMF/Con P value 
Acta2 10 0 
Itgbl1 8.1 0 
Postn 8.5 0 
Spp1 2.5 0 
Col12a1 6.3 0 
Fn1 10.1 0 
Mmp9 8.9 0 
Col6a3 5.7 0 
Timp1 5.4 0 
Dpt 12.3 0.00002 
S100a4 5.2 0.0001 
Col1a1 3 0.001 
Itga2 2.1 0.001 
Itgb5 2.5 0.002 
Mmp2 7.8 0.003 
Col1a2 2.3 0.008 
Col3a1 2.7 0.008 
Timp3 3.5 0.01 
Alpl 2.7 0.02 
Mmp14 3.7 0.02 

 

 

 

 

 

 

 

Table 2.1 Significantly highly expressed genes in PMF mesenchymal stromal cells 
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PDGFRa in mesenchymal stromal cells in required for bone marrow fibrosis 

The identification of Lepr+ mesenchymal stromal lineage cells as bone marrow 

myofibroblasts in PMF provided us an opportunity to investigate the molecular pathways 

involved in their fibrotic conversion. Activation of PDGFRa has been implicated in fibrosis of 

multiple organs (Olson and Soriano, 2009; Iwayama et al., 2015). As Lepr+mesenchymal stromal 

cells are the major cell type expressing PDGFRa in the bone marrow (Ding et al., 2012), we 

wondered whether PDGFRa in mesenchymal stromal cells is required for their fibrotic 

conversion. We conditionally deleted Pdgfra from bone marrow mesenchymal stromal cells by 

generating Lepr-cre; Pdgfrafl/fl or Lepr-cre; Pdgfrafl/− mice. PDGFRa was efficiently deleted from 

bone marrow mesenchymal stromal cells (Figure 2.8a). Bone marrow cells from these mice had 

normal reconstitution activity when transplanted into lethally irradiated recipient mice (Figure 

2.8b). We induced PMF by transplanting TOE virus-infected bone marrow cells into Lepr-cre; 

Pdgfrafl/fland control mice. At 2–3 months after the bone marrow transplantation, HSC frequency 

from both Lepr-cre; Pdgfrafl/fl and control mice were similarly increased in the spleen (Figure 

2.9a). This was accompanied by enlarged spleens with likely ongoing extramedullary 

haematopoiesis (Figure 2.8c and Figure 2.9b-c). Reticulin staining on spleen sections 

from Lepr-cre; Pdgfrafl/fl mice demonstrated excessive deposition of reticulin fibers to the same 

extent as those from control TOE mice (Figure 2.8d). These data revealed that Lepr-cre; 

Pdgfrafl/fl TOE mice developed many features of PMF in the spleen. 

Myeloid proliferation and HSC expansion occurred similarly in Lepr-cre; Pdgfrafl/fl TOE 

and control TOE mice (Figure 2.9d). There was a significant rescue of the bone marrow 



 51 

cellularity in Lepr-cre; Pdgfrafl/fl mice (Figure 2.9e), suggesting an improvement of the bone 

marrow niche function. Megakaryocyte hyperplasia was similar in Lepr-cre; Pdgfrafl/fl and 

control TOE mice (Figure 2.8e). We then examined bone marrow fibrosis by performing 

reticulin staining. Consistent with our earlier observation, excessive reticulin fiber deposition 

was observed in the bone marrow from control TOE mice (Figure 2.8f and Figure 2.9f, upper 

panels). In contrast, we did not observe reticulin staining in the bone marrow from Lepr-cre; 

Pdgfrafl/fl TOE mice (Figure 2.8f and Figure 2.9f, lower panels). Consistent with the ameliorated 

fibrosis, flushing the bone marrow cells out of the bone from Lepr-cre; Pdgfrafl/fl TOE mice was 

dramatically easier compared with fibrotic control TOE bone marrow likely due to the absence 

of excessive fibrosis and osteosclerosis. The increased frequency of mesenchymal stromal 

lineage cells was suppressed to almost vector control level in Lepr-cre; Pdgfrafl/fl TOE mice 

(Figure 2.8g and Figure 2.9g). Several fibrotic genes, such as Col1a1, Col3a1 and Acta2, were 

significantly down-regulated in Lepr-cre; Pdgfrafl/fl TOE mice (Figure 2.9i). Thus, PDGFRa 

signaling in Lepr+ mesenchymal stromal cells is required for bone marrow fibrosis in PMF. 

These data functionally show that bone marrow Lepr+ mesenchymal stromal cells are the cell 

type responsible for fibrosis in PMF. 

Imatinib effectively blocks the activity of several tyrosine kinases, including PDGFRa 

(Lydon and Druker, 2004). We assessed whether imatinib treatment would alleviate bone 

marrow fibrosis. PMF was induced in TOE mice and then imatinib was administrated through 

chow. Imatinib effectively rescued bone marrow hypocellularity and blocked mesenchymal 

stromal cell expansion, fibrotic conversion, and bone marrow fibrosis (Figure 2.9e,g-i). Imatinib 

also effectively suppressed spleen extramedulary haematopoiesis and fibrosis, suggesting that 

other cell types and/or pathways may mediate PMF spleen pathogenesis (Figure 2.8c,h and 
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Figure 2.9a-c). Our results suggest that targeting PDGFRa pathway in mesenchymal stromal 

cells may be beneficial in treating bone marrow fibrosis. 

 

Activation of PDGFRa in Lepr+ bone marrow mesenchymal stromal cells leads to their 

expansion and extramedullary hematopoiesis 

To directly test whether activation of the PDGFRa pathway in mesenchymal stromal cells 

has an impact on PMF pathogenesis, we conditionally activated PDGFRa by generating Lepr-

cre; PdgfraD842V/+; tdTomato mice (Figure 2.10a). The PdgfraD842V allele allows for cell-type 

specific activation of PDGFRa pathway under the control of its endogenous promoter (Olson and 

Soriano, 2009; Iwayama et al., 2015). By flow cytometry, bone marrow stromal cell frequency 

was largely unchanged in Lepr-cre; PdgfraD842V/+ mice (Figure 2.11a). However, by confocal 

microscopy, we observed foci with a significant increase of tdTomato+ stromal cells in the 

trabecular bone region of Lepr-cre; PdgfraD842V/+; tdTomato mice (Figure 2.10b-d). We also 

observed excessive osteogenesis in the diaphysis region of these mice (Figure 2.10e-f). 

However, no excessive bone marrow fibrosis was observed (Figure 2.11b). 

Lepr-cre; PdgfraD842V/+ mice had normal bone marrow cellularity and HSC frequency 

(Figure 2.10g and Figure 2.11c). However, these mice had increased HSC and haematopoietic 

progenitor frequencies in the spleens and livers (Figure 2.10h-j and Figure 2.11d). These results 

suggest that activation of PDGFRa pathway in Lepr+ cells is sufficient to cause some features of 

PMF: mesenchymal stromal cell expansion, osteogenesis and HSC mobilization. 
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Figure 2.8 Lepr-cre; Pdgfrafl/- mice have normal HSC function and Lepr-cre; Pdgfrafl/fl 
TOE mice fail to develop bone marrow fibrosis 
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Figure 2.8 Lepr-cre; Pdgfrafl/- mice have normal HSC function and Lepr-cre; Pdgfrafl/fl TOE 
mice fail to develop bone marrow fibrosis 

a. Flow cytometry plots showing efficient deletion of PDGFRa.  

b. A competitive reconstitution assay for Lepr-cre; Pdgfrafl/- and control mice. 5x105 donor 

bone marrow cells from Lepr-cre; Pdgfrafl/- adult mice or control Lepr-cre; Pdgfrafl+ mice 

were competitively transplanted with 5x105 recipient bone marrow cells into irradiated 

recipient mice. The percentages of donor-derived Mac-1+ myeloid, CD3+ T, and B220+ B cells 

in the blood were analyzed for 16 weeks after transplantation (n=5 recipient mice for each 

genotype).  

c. Lepr-cre; Pdgfrafl/fl TOE mice displayed enlarged spleens and imatinib-treated TOE mice 

showed normal sized spleens.  

d. Representative reticulin staining on spleen sections from Lepr-cre; Pdgfrafl/fl TOE mice 

revealed excessive deposition of reticulin fibers, similar to control TOE mice. 

e. Confocal images showing similar levels of megakaryocyte hyperplasia in the bone marrow 

from Lepr-cre; Pdgfrafl/fl  and control TOE mice. CD41 is a marker for megakaryocytes (red). 

Nuclei were stained with DAPI (blue) 

f. Bone marrow sections from Lepr-cre; Pdgfrafl/fl and control TOE mice were subjected to 

reticulin staining. While control TOE mice robustly developed bone marrow fibrosis, none of 

the Lepr-cre; Pdgfrafl/fl TOE mice had bone marrow fibrosis.  

g. Representative flow cytometry plots showing effective suppression of bone marrow stromal 

cell expansion in Lepr-cre; Pdgfrafl/fl TOE and imatinib-treated TOE mice.  

h. Spleen sections from control and TOE+ imatinib were subjected to reticulin staining. 

Images are representative of at least 3 biological replicates. 
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Figure 2.9 Deletion of Pdgfra from mesenchymal stromal cells or administration of imatinib 

ameliorates bone marrow fibrosis 
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Figure 2.9 Deletion of Pdgfra from mesenchymal stromal cells or administration of 
imatinib ameliorates bone marrow fibrosis 
 
a. Lepr-cre; Pdgfrafl/fl TOE mice had an increase of spleen HSC frequency similar to control 

TOE mice while imatinib suppresses HSC mobilization (n=22 mice for vector, n=10 mice for 

Con, n=8 mice for Mut, n=7 mice for imatinib). vector = vector in control; Con = TOE in 

control; Mut = TOE in Lepr-cre; Pdgfrafl/fl ; imatinib = TOE treated with imatinib. 

b–c. Lepr-cre; Pdgfrafl/fl TOE mice but not imatinib-treated TOE mice displayed increased 

spleen weight (b, n=18 mice for vector, n=8 mice for Con, n=7 mice for Mut, n=7 mice for 

imatinib) and cellularity (c, n=15 mice for vector, n=7 mice for Con, n=7 mice for Mut, n=7 

mice for imatinib) compared with control TOE mice. 

d. Bone marrow from Lepr-cre; Pdgfrafl/fl TOE or imatinib-treated TOE mice had no significant 

change in HSC frequency, compared with control TOE mice (n=21 mice for vector, n=10 mice 

for Con, n=8 mice for Mut, n=7 mice for imatinib). 

e. Lepr-cre; Pdgfrafl/fl TOE and imatinib-treated TOE mice had significant increase of bone 

marrow cellularity compared with control TOE mice (n=21 mice for vector, n=10 mice for Con, 

n=8 mice for Mut, n=7 mice for imatinib). 

f. Deletion of Pdgfra from mesenchymal stromal cells led to blockage of reticulin deposition in 

the bone marrow from Lepr-cre; Pdgfrafl/fl TOE mice. 

g. Deletion of Pdgfra from Lepr+ stromal cells or administration of imatinib led to suppression of 

the overproliferation of bone marrow CD45/Ter119−PDGFRb+ mesenchymal stromal cells in 

TOE mice (n=17 mice for vector, n=8 mice for Con, n=6 mice for Mut, n=7 mice for imatinib). 
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h, Administration of imatinib led to blockage of reticulin fiber deposition in the bone marrow of 

TOE mice. 

i, Deletion of Pdgfra from Lepr+ stromal cells or administration of imatinib suppresses fibrotic 

genes in bone marrow mesenchymal stromal cells (n=4 mice for vector, n=4 mice for Con, n=4 

mice for Mut, n=4 mice for imatinib). *p<0.05, **p<0.01, NS, not significant. 
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Figure 2.10 Activation of PDGFRa pathway in Lepr+ cells leads to mesenchymal stromal cell 

expansion and HSC mobilization 
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Figure 2.10 Activation of PDGFRa pathway in Lepr+ cells leads to mesenchymal stromal 
cell expansion and HSC mobilization 

a. A scheme depicting the in vivo lineage tracing experiments with Lepr-cre; PdgfraD842V/+; 

tdTomato mice. 

b–c. Confocal images showing expansion of tdTomato+ stromal cells in the trabecular region of 

bone marrow from Lepr-cre; PdgfraD842V/+; tdTomato mice. 

d. Quantification of tdTomato+ cells on bone marrow images from trabecular region showing 

that tdTomato+ cells were significantly expanded in Lepr-cre; PdgfraD842V/+; tdTomato mice 

compared with controls (n=12 representative confocal images from 3 independent mice each). 

e–f. Bright-field images of the diaphysis region showing excessive bone formation in Lepr-cre; 

PdgfraD842V/+ mice. Arrows point to bone. 

g–h. Lepr-cre; PdgfraD842V/+ mice had normal bone marrow HSC frequency (g, n=4 mice for 

control, n=5 mice for D842V) and spleen cellularity (h, n=5 mice for control, n=6 mice for 

D842V). 

i–j. Lepr-cre; PdgfraD842V/+ mice displayed increased HSC (i, n=5 mice for control, n=6 mice for 

D842V) and haematopoietic progenitor HPC (LSK) (j, n=5 mice for control, n=6 mice for 

D842V) frequencies in the spleen. 

*p<0.05, ***p<0.001. Images are representative of at least 3 biological replicates. 
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Figure 2.11 Lepr-cre; PdgfraD842V/+ mice do not have frank fibrosis but show HSC mobilization 
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Figure 2.11 Lepr-cre; PdgfraD842V/+ mice do not have frank fibrosis but show HSC 
mobilization 
 
a. Flow cytometry analysis revealed normal bone marrow stromal cell frequency from Lepr-

cre; PdgfraD842V/+ mice (n=3 mice for control, n=4 mice for D842V KI). 

b. Representative reticulin staining on bone marrow sections from Lepr-cre; PdgfraD842V/+ and 

control mice. 

c. Normal bone marrow cellularity (n=4 mice for control, n=5 mice for D842V KI) and HPC 

frequency of Lepr-cre; PdgfraD842V/+ mice (n=5 mice for control, n=6 mice for D842V KI). 

d. HSC frequency in livers from Lepr-cre; PdgfraD842V/+ mice (n=5 mice for control, n=6 mice 

for D842V KI). Images are representative of at least 3 biological replicates. 
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DISCUSSION 

Although PMF has been recognized as a hematological disease originating from 

abnormal HSCs, its clinical features suggest a more complex pathogenesis. The bone marrow 

fibrosis associated with PMF has been hypothesized as a stromal reaction to the overproliferative 

hematopoietic clones, but the precise identity of the reactive myofibroblasts had not previously 

been identified. Our fate mapping data demonstrate that Lepr+ mesenchymal stromal cells are the 

cells of origin of myofibroblasts responsible for collagen fiber generation and deposition in PMF. 

The identification of these cells warrants further detailed investigation aimed at developing 

targeted therapies to treat bone marrow fibrosis. 

In this study we observed expansion of bone marrow Lepr+ mesenchymal stromal lineage 

cells in PMF. A report using Nestin as a marker suggests that bone marrow stromal cell number 

is reduced in Jak2V617F mice (Arranz et al., 2014). The authors performed Nestin-creER fate 

mapping and did not observe contribution from this lineage to myofibroblasts. Several previous 

studies have shown that Nestin-cre or Nestin-creER recombines in only rare bone marrow 

stromal cells (Ding et al., 2012; Zhou et al., 2014; Worthley et al., 2015). These cells are not 

CFU-Fs and contribute little, if any, to skeletal tissues (Zhou et al., 2014; Worthley et al., 2015). 

Thus, it is unlikely that Nestin-creER targets mesenchymal stromal cells. It should be noted that 

although low expression of a Nestin-GFP transgene is a marker for CFU-F, the expression of 

endogenous Nestin, or other Nestin transgenic lines (including Nestin-cre or Nestin-CreER) does 

not mark the same mesenchymal stromal cells (Ding et al., 2012; Zhou et al., 2014; Worthley et 

al., 2015). Thus, our data are consistent with the notion that Lepr+ stromal cells but 

not Nestin+, Nestin-cre+ or Nestin-creER+ cells are the source of bone marrow myofibroblasts in 

PMF. 
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NG2+ cells have been reported to contain bone marrow CFU-Fs (Kunisaki et al., 2013). 

However, a fate-mapping experiment demonstrated Ng2-creER+ cells did not contribute to 

PDGFRa+ stromal cells (Kunisaki et al., 2013), suggesting these cells are unlikely the source of 

bone marrow fibrosis. Gli1+ and Gremlin-1+ bone marrow stromal cells also contain CFU-Fs 

(Kramann et al., 2015; Worthley et al., 2015). Their contributions to bone marrow fibrosis are 

unknown. The contributions to bone marrow fibrosis by distinct yet overlapping mesenchymal 

stromal cells bearing different markers require further investigations. 

Our Lepr-cre; Pdgfrafl/fl TOE mice still developed severe spleen fibrosis. It could be 

that Lepr-cre does not target all of the spleen fibrogenic cells and/or that PDGFRa is not required 

for spleen fibrosis. Over-activation of PDGFRa is sufficient to drive fibrosis in diverse organs 

(Olson and Soriano, 2009; Iwayama et al., 2015). We thus favor the first possibility. 

Identification of the spleen fibrogenic cells will directly distinguish these possibilities. Recently, 

spleen Tcf21+ perivascular stromal cells have been identified as an important component of the 

spleen niche (Inra et al., 2015). It will be interesting to determine the relative contributions of 

the Tcf21+ and Lepr+ cells to spleen fibrosis. Imatinib exerted more potent effects against bone 

marrow fibrosis and HSC mobilization than genetic deletion of Pdgfra from Lepr+ cells. Given 

that imatinib targets several tyrosine kinases including BCR-ABL, PDGFR and c-KIT, it is likely 

that the additional molecular and cellular targets account for the stronger effects of the drug. 

Lepr-cre; PdgfraD842V/+ mice showed regional stromal cell expansion and HSC 

mobilization (Figure 2.10). But the phenotypes were not as pronounced as the TOE model. This 

could reflect the partial activation of the PDGFRa pathway in the D842V model (Olson and 

Soriano, 2009). However, other pathways could be co-operating in TOE to induce more 
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prominent PMF pathology. Further elucidation of the PDGFRa and other pathways in PMF will 

deepen our understanding of the pathogenesis. 

The modification of the bone marrow niche by abnormal hematopoietic cells is a critical 

contributor to many hematological diseases (Schepers et al., 2015). Consistent with early 

observations 15, our data suggest that hyperplastic megakaryocytes are the source of PDGF and 

other cytokines promoting bone marrow mesenchymal stromal cell fibrosis and HSC niche 

dysfunction. Current therapies for PMF focused on the hematopoietic compartment by targeting 

the mutant hematopoietic clones. But the overall benefits are limited. Imatinib mesylate have 

been preliminarily explored in PMF (Tefferi et al., 2002; Hasselbalch et al., 2003) but its clinical 

benefits were limited due to side effects. Our results call for additional detailed study. We 

propose that combined therapy against both mutant hematopoietic clone (e.g. with JAK 

inhibitors) and dysfunctional, fibrotic bone marrow niche (e.g. with imatinib or other PDGFRa 

inhibitors) with careful treatment regimen may lead to better outcome. 
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EXPERIMENTAL METHODS 

Mice 

Lepr-cre (DeFalco et al., 2001), LoxptdTomato (Madisen et al., 2010), and Pdgfrafl (Tallquist and 

Soriano, 2003) mice were obtained from the Jackson Laboratory. Scfgfp, Cxcl12DsRed and Col-

gfp mice were described previously (Yata et al., 2003; Ding and Morrison, 2013; Ding et al., 

2012). PdgfraD842V mice (Olson and Soriano, 2009; Iwayama et al., 2015) were kindly provided 

by Drs. Lorin Olson and Philippe Soriano. All mice were maintained on C57BL/6 background. 

Experiments were started on 8-week-old young adult mice and gender was not selected. Mice 

were housed in specific pathogen-free, Association for the Assessment and Accreditation of 

Laboratory Animal Care (AAALAC)- approved facilities at the Columbia University Medical 

Center. All protocols were approved by the Institute Animal Care and Use Committee of 

Columbia University and were under the Animal Welfare Assurance A3007-01.  

 

Retroviral production and infection of bone marrow cells 

Mouse Tpo mRNA was cloned into pMIG retroviral vector. A DsRed version and a ‘colorless’ 

version of pMIG-Tpo were generated by replacing GFP reporter with DsRed or deleting GFP 

gene in pMIG, respectively. These versions of retroviral vectors allowed tracing of infected bone 

marrow cells in recipient mice. Retroviruses were produced by transfecting 293T cells with 

pMIG-Tpo or pMIG vectors along with pCL-Eco. Fluorouracil (5-FU) (150mg/kg) was injected 

into donor mice via I.V. route. Four to five days later, mice were euthanized and bone marrow 

cells were collected. DMEM with 15% heat-inactivated fetal bovine serum, 100ng/ml SCF, 

10ng/ml IL-3, 10ng/ml IL-6 (from Peprotech) and 50um 2-mercaptoethanol was used to pre-
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stimulate 5-FU-treated bone marrow cells overnight. Two spin infections were carried out before 

bone marrow cells were transplanted into lethally irradiated recipient mice at 1–10 million cells 

/mouse. 

 

Bone marrow transplantation 

Adult recipient mice were lethally irradiated by a Cesium 137 Irradiator (JL Shepherd and 

Associates) at 300 rad/minute with two doses of 540 rad (total 1080 rad) delivered at least 2h 

apart. Cells were transplanted by retro-orbital venous sinus injection of anesthetized mice. Mice 

were maintained on antibiotic water (Baytril 0.17g/L) for 14 days then switched to regular water. 

Recipient mice were periodically bled to assess the level of donor-derived blood cells (by flow 

cytometry), platelet (by CBC count) and serum TPO level (by ELISA). 

 

Flow cytometry 

Bone marrow cells were isolated by flushing the long bones or by crushing the long bones with 

mortal and pestle in Ca2+ and Mg2+ free HBSS with 2% heat-inactivated bovine serum. Spleen 

cells were obtained by crushing the spleen between two glass slides. The cells were drawn by 

passing through a 25G needle several times and filtered with a 70µm nylon mesh. The following 

antibodies were used to stain HSCs: anti-CD150 (TC15-12F12.2, Biolegend, Cat#115903 or 

115911, 1:200), anti-CD48 (HM48-1, Biolegend, Cat#103411, 1:200), anti-Sca-1 (E13-161.7, 

Biolegend, Cat#122513, 1:200), anti-cKit (2B8, Biolegend, Cat#105825, 1:200), lineage markers 

(anti-Ter119, Biolegend, Cat#116205 or 116207, 1:200; anti-B220 (6B2), Biolegend, 

Cat#103205 or 103207, 1:400; anti-Gr1 (8C5), Biolegend, Cat#108405 or 108407, 1:400; anti-
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CD2 (RM2-5), Biolegend, Cat#100105 or 100107, 1:200; anti-CD3 (17A2), Biolegend, 

Cat#100203 or 100205, 1:200; anti-CD5 (53-7.3), Biolegend, Cat#100605 or 100607, 1:400 and 

anti-CD8 (53-6.7), Biolegend, Cat#100705 or 100707, 1:400). DAPI was used to exclude dead 

cells. For flow cytometric analysis of stromal cells, bone marrow was flushed using HBSS- with 

2% bovine serum. Then the whole bone marrow was digested with Collagenase IV (200U/ml) 

and DNase I (200U/ml) at 37°C for 20 min. Samples were then stained with antibodies and 

analyzed by flow cytometry. Anti-CD140a (APA5), Biolegend, Cat#135909, 1:100; anti-

CD140b (APB5), Biolegend, Cat#136009, 1:100; anti-CD45 (30-F11), Biolegend, Cat#103111, 

1:400 and anti-Ter119, Biolegend, Cat#116211, 1:200 antibodies were used to stain 

mesenchymal stromal cells. For flow cytometric analysis of peripheral blood chimera levels, 

peripheral blood was subjected to ammonium chloride potassium red cell lysis before antibody 

staining. Antibodies including anti-CD45.2 (104), Biolegend, Cat#109805, 1:400; anti-CD45.1 

(A20), Biolegend, Cat#110715, 1:200; anti-Gr1 (8C5), Biolegend, Cat#108415, 1:400; anti-Mac-

1 (M1/70), Biolegend, Cat#101211, 1:400; anti-B220 (6B2), Biolegend, Cat#103209, 1:400 and 

anti-CD3 (17A2), Biolegend, Cat#100205, 1:200 were then added to stain cells. Samples were 

run on FACSAria II, LSRII or FACSCanto II flow cytometers. Data were analyzed by 

FACSDiva (BD) or FlowJo (Tree Star) software. 

 

Bone section and immunostaining 

Freshly dissected long bones were fixed in a Formalin-based fixative at 4°C for 3 hours. Then 

the bones were embedded in 8% gelatin in PBS. Samples were snap frozen with liquid N2 and 

stored at −80°C. Bones were sectioned using a CryoJane system (Instrumedics). Sections were 

dried overnight at room temperature (RT) and stored at −80°C. Sections were re-hydrated in PBS 
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for 5 min before immunostaining. 5% goat serum in PBS was used to block the sections. Primary 

antibodies were applied to the slides for 1h at RT followed by secondary antibody incubation for 

30min at RT with repetitive washes in between. Slides were mounted with anti-fade prolong gold 

(Life Tech) and images were acquired on a Zeiss 710 confocal microscope. Rat-anti-CD41 

(eBioscience, eBioMWReg30, Cat#13-0411, 1:100) was used as primary antibody. 

 

Reticulin staining 

Bone sections prepared as above were stained with Reticulin Stain Kit (Polysciences, Inc.) per 

manufacture’s instruction. Images were taken on a Zeiss Axio Observer microscope. 

 

Cell cycle analysis 

For BrdU incorporation analysis, mice were given an intraperitoneal injection of 0.1mg BrdU in 

PBS per g of body weight. Then the mice were maintained on 0.5mg/ml BrdU water for 5 days 

before the analysis. The frequency of BrdU+ cells was determined by flow cytometry using an 

APC BrdU Flow Kit (BD Biosciences). 

 

Quantitative reverse transcription PCR 

Cells were double-sorted directly into Trizol. Total RNA was extracted according to 

manufacture’s instructions. Quantitative real-time PCR was run using SYBR green on a StepOne 

Plus (Life Tech) or a CFX Connect Real-time PCR machine (BioRad). β-actin was used to 

normalize the RNA content of samples. Primers used in this study were: Scf: OLD405: 5′-
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TTGTTACCTTCGCACAGTGG-3′ and OLD406: 5′-AATTCAGTGCAGGGTTCACA-

3′; Cxcl12: OLD35: 5′-TGCATCAGTGACGGTAAACCA-3′ and OLD36: 5′- 

GTTGTTCTTCAGCCGTGCAA-3′; β-actin: OLD27: GCTCTTTTCCAGCCTTCCTT-3′ and 

OLD28: 5′-CTTCTGCATCCTGTCAGCAA-3′; Col1a1: OLD826: 

ACGGCTGCACGAGTCACAC and OLD827: GGCAGGCGGGAGGTCTT; Col3a1: OLD828: 

5′-AGGCTGAAGGAAACAGCAAA-3′ and OLD829: 5′-TAGTCTCATTGCCTTGCGTG-

3′; Acta2: OLD830: ACTGGGACGACATGGAAAAG and OLD831: 

GTTCAGTGGTGCCTCTGTCA. 

 

Gene expression profiling and analysis 

Three independent, fresh isolated aliquots of approximately 5,000 Cxcl12-DsRed+ cells from 

bone marrow of from Cxcl12DsRed/+ recipient mice transplanted with Tpo-overexpressing virus-

infected bone marrow cells or control virus-infected bone marrow cells were flow cytometrically 

sorted into Trizol. Total RNA was extracted and amplified using the WT-Ovation Pico RNA 

Amplification system (Nugen) following manufacture’s instructions. Sense strand cDNA was 

generated using the WT-Ovation Exon Module (Nugen). Then, cDNA was fragmented and 

labeled using FL-Ovation DNA Biotin Module V2 (Nugen). The labeled cDNA was hybridized 

to Affymetrix Mouse Gene ST 1.0 chips following the manufacturer’s instructions. Expression 

values for all probes were normalized and determined using the robust multi-array average 

(RMA) method via Affymetrix Expression Console. Normalized data were analyzed using NIA 

Array Analysis (Sharov et al., 2005). Significantly up- or down-regulated genes (p<0.05 and 

fold>1.5) were used to performed gene ontology analysis using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) online tools (Huang et al., 2009a, 2009b). For 
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gene set enrichment analysis (GSEA), the complete gene expression profiles were ranked based 

on p values from NIA Array Analysis and used as metric. Gene sets associated with fibrogenesis 

and osteogenesis were obtained from www.qiagen.com. The analyses were performed as 

described (Mootha et al., 2003; Subramanian et al., 2005). 

 

Imatinib administration 

Imatinib meslyate (0.5g/kg) (Biotang INC) chow was custom made by Envigo. One month after 

bone marrow transplantation (Tpo overexpression), mice were started on imatinib chow for 2 

additional months before analysis. 

 

Statistics and reproducibility 

Sample size was not based on power calculations. No animals were excluded from the analysis. 

The experiments were not randomized. The investigators were not blinded to allocation during 

experiments and result assessment. Pairwise statistical significance was evaluated by two-tailed 

Student’s t-test. One-way ANOVA was used to analyze microarray data. All data and statistics 

were derived from at least three biological replicates. 293T cells were used to generate retrovirus 

in this study. No cell lines used in this study were found in the database of commonly 

misidentified cell lines that is maintained by ICLAC and NCBI Biosample. The cell lines were 

not authenticated. The cell lines were not tested for mycoplasma contamination. 
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Data availability 

Microarray data that support the findings of this study have been deposited in the Gene 

Expression Omnibus (GEO) under accession code GSE84387. Previously published expression 

data that were re-analyzed here are available online (De Minicis et al., 2007). All other data 

supporting the findings of this study are available from the corresponding author upon 

reasonable request. 
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Chapter 3 

Hepatic thrombopoietin is required for bone marrow 

hematopoietic stem cell maintenance 
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SUMMARY 
 

Hematopoietic stem cell (HSC) maintenance depends on extrinsic cues. Currently, only 

local signals arising from the bone marrow niche have been shown to maintain HSCs. However, 

it is not known whether systemic factors also sustain HSCs. Here, we assess the physiological 

source of thrombopoietin (TPO), a key cytokine required for maintaining HSCs. Using TpoDsRed-

CreER knockin mice, we show that TPO is expressed by hepatocytes but not by bone marrow cells. 

Deletion of Tpo from hematopoietic cells, osteoblasts, or bone marrow mesenchymal stromal 

cells does not affect HSC number or function. However, when Tpo is deleted from hepatocytes, 

bone marrow HSCs are depleted. Thus, the adult bone marrow niche is unable to maintain HSCs 

in the absence of circulating hepatic TPO, demonstrating cross-organ dependence of a tissue-

specific stem cell population.  Our results suggest that systemic factors are a critical extrinsic 

regulatory component of HSCs.  

 

INTRODUCTION 
 

HSCs primarily reside in the bone marrow and are maintained by extrinsic cues that arise 

from supporting niche cells (Morrison and Scadden, 2014). Endothelial cells (Ding et al., 2012; 

Ding and Morrison, 2013) and perivascular mesenchymal stromal cells (Sugiyama et al., 2006; 

Méndez-Ferrer et al., 2010; Ding et al., 2012; Ding and Morrison, 2013; Greenbaum et al., 2013) 

are critical components of the bone marrow niche. Growing functional genetic evidence suggests 

that HSCs may be largely maintained through signals arising directly from, or mediated through, 

these local niche cells (Scadden, 2014). However, olfaction maintains hematopoietic progenitors 

through systemic GABA levels in Drosophila (Shim et al., 2013), suggesting that long-range 

signals may likewise be able to directly maintain mammalian HSCs.  
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No such distal maintenance factors have yet been identified in the mammalian 

hematopoietic system, although long-range cues, such as estrogen from the ovaries and 

erythropoietin from the kidney, can acutely stimulate HSC proliferation and dictate HSC and 

progenitor differentiation (Grover et al., 2014; Nakada et al., 2014). Neurotransmitters from the 

nervous system can mobilize HSCs, but this effect is mediated through mesenchymal stromal 

cells in the niche (Méndez-Ferrer et al., 2008). Therefore, current evidence describes roles for 

long-range cues that modify HSC behavior, but direct evidence for constant maintenance of 

HSCs by a cross-organ long-range systemic factor is lacking. 

Signaling of the hematopoietic cytokine TPO through its receptor c-MPL is essential for 

thrombopoiesis (Kaushansky et al., 1994; Lok et al., 1994; de Sauvage et al., 1994) and HSC 

maintenance (Kimura et al., 1998; Qian et al., 2007; Yoshihara et al., 2007). Patients with loss-

of-function mutations in c-MPL or TPO develop congenital amegakaryocytic thrombocytopenia 

and display subsequent bone marrow failure (Ballmaier et al., 2003; Dasouki et al., 2013; Seo et 

al., 2017). Tpo mRNA is expressed through multiple cell types, including hepatocytes (de 

Sauvage et al., 1994; Sungaran et al., 1997), osteoblasts (Yoshihara et al., 2007), 

megakaryocytes (Nakamura-Ishizu et al., 2014, 2015) and stromal cells (Sungaran et al., 1997; 

McIntosh and Kaushansky, 2008). However, Tpo is under stringent translational control by 

inhibitory elements in the 5’-untranslated region (Ghilardi et al., 1998) so it is not clear whether 

any of the above cell types actually synthesize TPO protein. Tpo has not been conditionally 

deleted from any cell types to assess the functional source required for HSC maintenance. Thus it 

is not clear how TPO maintains bone marrow HSCs in vivo. Intriguingly, loss of hepatic TPO 

leads to low platelets (Qian et al., 1998), showing that TPO from the liver regulates 

thrombopoiesis. 
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RESULTS 
 
 

TPO is robustly translated by hepatocytes but not by bone marrow cells 
 

Using quantitative reverse transcription PCR (qRT-PCR) analysis, we found that Tpo 

transcripts are enriched in osteoblasts, mesenchymal stromal cells, and the liver (Figure 3.1a and 

Figure 3.2a-b), consistent with previous reports. To systemically assess the expression of TPO 

protein, we generated TpoDsRed-CreER knockin mice by replacing the stop codon of Tpo with a 

P2A-DsRed-P2A-CreER cassette (Figure 3.2c-f). The P2A elements allow the translation of 

TPO, DsRed and CreER recombinase under the control of Tpo endogenous regulatory elements. 

This enables us to monitor the translational expression of TPO in vivo. We generated TpoDsRed-

CreER; loxpZsGreen mice (Figure 3.1b). Consistent with the low expression level of Tpo in vivo 

(Ghilardi et al., 1998), no DsRed fluorescence was detected (Figure 3.1c-f). However, upon 

tamoxifen administration to 8-week old mice, there was broad and specific expression of 

ZsGreen in hepatocytes (Figure 3.1g-j and Figure 3.2g-o). We also observed rare ZsGreen+ 

cells in the kidney (Figure 3.2p). However, no ZsGreen+ bone marrow cells could be detected 

(Figure 3.1k-n and Figure3.2q). Thus, TPO is robustly translated by hepatocytes but not by 

cells in the bone marrow. 
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Figure 3.1 TPO is expressed by hepatocytes but not bone marrow cells 
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Figure 3.1 TPO  is expressed by hepatocytes but not bone marrow cells 

a. qRT-PCR analysis of Tpo transcript levels in whole liver lysate, whole bone marrow lysate, 

and purified bone marrow populations (n = 3). BM = whole bone marrow, Mk = 

megakaryocytes, Lepr+ = Lepr+ mesenchymal stromal cells, Ob = osteoblasts.  

b. Schema of TPO expression analysis in TpoDsRed-CreER; loxpZsGreen reporter mice. 

c-f. Confocal images of liver sections from sham-treated (Sham) TpoDsRed-CreER; loxpZsGreen 

mice. There was no apparent ZsGreen expression in hepatocytes (green). DsRed fluorescence 

could not be appreciated (red). Nuclei were stained with DAPI (blue). 

g-j. Confocal images of liver sections from tamoxifen-treated (TMX) TpoDsRed-CreER; 

loxpZsGreen mice. There was prominent ZsGreen expression in the liver (green) while DsRed 

fluorescence could not be appreciated (red). Nuclei were stained with DAPI (blue). 

k-n. Confocal images of femur sections from sham-treated (Sham) or tamoxifen-treated (TMX) 

TpoDsRed-CreER; loxpZsGreen mice. There was no apparent ZsGreen expression in the bone 

marrow (green). Nuclei were stained with DAPI (blue). 
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Figure 3.2 TpoDsRed-CreER reporter mice show translational expression of TPO in hepatocytes but 
not in the bone marrow 
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Figure 3.2 TpoDsRed-CreER reporter mice show translational expression of TPO in heaptocytes 
but not in the bone marrow 
 
a-b. Image of gels loaded with PCR product from amplification with b-actin (A) and Tpo (B) 

primers. BM = whole bone marrow (lanes 1-3), Mk = CD41+ megakaryocytes (lanes 4-6), Lepr+ 

= Lepr+ mesenchymal stromal cells (lanes 7-9), Ob = Col2.3-GFP+ osteoblasts (lanes 10-12). 

c. Targeting strategy for the generation of TpoDsRed-CreER allele. 

d. PCR screen of ES cell lysates showing correct insertion of the targeting vector. 

e. Genotyping PCR showing germline transmission of the TpoDsRed-CreER allele. 

f. Genotyping PCR showing successful generation of homozygosity of the TpoDsRed-CreER allele. 

g-j. Confocal images of liver sections from sham-treated (Sham) TpoDsRed-CreER; loxpZsGreen 

mice. Hepatocytes were stained with an antibody against HNF4a (red).  There was no apparent 

ZsGreen expression in hepatocytes (green). Nuclei were stained with DAPI (blue). 

k-n. Confocal images of liver sections from tamoxifen-treated (TMX) TpoDsRed-CreER; 

loxpZsGreen mice. Hepatocytes were stained with an antibody against HNF4a (red). There is 

prominent ZsGreen in hepatocytes (green). Nuclei were stained with DAPI (blue). 

o. Quantification of hepatic efficiency and specificity of the inducible Cre recombinase in 

tamoxifen-treated (+Tamoxifen) TpoDsRed-CreER; loxpZsGreen mice. Three representative 20x 

images from three different mice were counted for each condition. 

p. Confocal image showing a kidney section from a tamoxifen-treated (TMX) TpoDsRed-CreER; 

loxpZsGreen mouse. There is apparent CreER activity in two kidney cells. 

q. A representative flow cytometric plot showing no ZsGreen+ cells in CD45/Ter119- Pdgfra+ 

stromal cells from TpoDsRed-CreER; loxpZsGreen mice after treatment with tamoxifen. 
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Whole body loss of TPO depletes HSCs and megakaryocyte-lineage cells 

We generated a loss-of-function allele of Tpo (Tpogfp) by recombining enhanced green 

fluorescent protein (gfp) into the start codon of Tpo (Figure 3.3a-c). As expected, Tpo transcripts 

were depleted from Tpogfp/gfp mouse livers (Figure 3.3d). Consistent with earlier reports (Gurney 

et al., 1994; Alexander et al., 1996), whole body loss of TPO led to reduced platelets (Figure 

3.4a-c) and reduced megakaryocytes (Figure 3.4d-j). Bone marrow from Tpogfp/gfp mice had 

normal cellularity, but CD150+CD48-Lin-Sca1+cKit+ HSC frequency (percentage of live whole 

bone marrow cells) decreased about 70-fold compared with Tpo+/+ controls (Figure 3.4k-m). 

CD150-CD48- Lin-Sca1+cKit+ multipotent progenitor (MPP) and Lin-Sca1+cKit+ (LSK) 

hematopoietic progenitor frequencies declined by 10-fold and 3-fold, respectively (Figure 3.4n-

o). Lineage-restricted hematopoietic progenitors appeared normal, except that CD34+FcgR-

Lineage-Sca1-cKit+ common myeloid progenitors (CMPs) were reduced (Figure 3.4p). Bone 

marrow and spleen cells from Tpogfp/gfp mice formed fewer colonies in methylcellulose (Figure 

3.4q). There was no change in spleen cellularity but spleen HSC frequency was reduced (Figure 

3.4r-s). Tpo+/gfp heterozygous mice displayed intermediate phenotypes (Figure 3.4). Thus, TPO 

is a major factor required for HSC maintenance. 
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Figure 3.3 Tpogfp mice show loss of Tpo expression 

a. Targeting strategy for the generation of a Tpogfp allele. 

b. Southern blots showing correct insertion of targeting vector into the endogenous Tpo locus. 

c. Genotyping PCR showing germline transmission of the Tpogfp allele. 

d. qPCR showing significant loss of Tpo expression in Tpogfp/gfp (gfp/gfp) mouse liver lysate 

relative to Tpo+/+ and Tpo+/gfp control liver lysate. 
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Figure 3.4 Tpo is required for HSC maintenance and normal thrombopoiesis  
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Figure 3.4 Tpo is required for HSC maintenance and normal thrombopoiesis  

a-c. Peripheral blood count analysis of Tpo+/+, Tpo+/gfp, and Tpogfp/gfp mice showed decreased 

platelet levels (a) in Tpogfp/gfp animals but no change in white blood cell (b) or red blood cell (c) 

counts (n = 4 for Tpo+/+, n = 6 for Tpo+/gfp, n = 3 for Tpogfp/gfp). 

d. Bone marrow CD41+ megakaryocyte lineage cell frequency was significantly decreased in 

Tpogfp/gfp mice relative to both Tpo+/+ and Tpo+/gfp animals (n = 5 for Tpo+/+, n = 7 for Tpo+/gfp, n 

= 6 for Tpogfp/gfp). 

e-j. Confocal images of femur sections from Tpo+/+ (e-g) and Tpogfp/gfp (h-j) mice showing a 

depletion of CD41+ megakaryocyte lineage cells in Tpogfp/gfp mice. CD41 was stained red. Nuclei 

were stained with DAPI (blue). 

k. Bone marrow cellularity was normal in Tpogfp/gfp mice (n = 5 for Tpo+/+, n = 6 for Tpo+/gfp, n = 

5 for Tpogfp/gfp). 

l. Representative flow cytometric plots showing decreased Lin- Sca1+cKit+ (LSK) and Lin- 

Sca1+cKit+CD150+CD48- HSC frequency in bone marrow from Tpo+/gfp and Tpogfp/gfp mice. 

m-o. Bone marrow HSC, Lin- Sca1+cKit+CD150-CD48- multipotent progenitor (MPP) and LSK 

frequencies were decreased in Tpogfp/gfp mice relative to both Tpo+/+ and Tpo+/gfp animals (n = 5 

for Tpo+/+, n = 6 for Tpo+/gfp, n = 5 for Tpogfp/gfp). 

p. Bone marrow lineage-committed progenitor frequencies were not significantly affected in 

Tpogfp/gfp mice relative to controls except CMP (n = 3 each genotype). MEP: myeloerythroid 

progenitor, GMP: granulocyte-macrophage progenitor, CMP: common myeloid progenitor, CLP: 

common lymphoid progenitor. 

q. Myeloerythroid colony-forming cell frequency was significantly decreased in the bone 

marrow and spleens from Tpogfp/gfp mice relative to controls. (n=3 for each genotype). 
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r. Spleen cellularity was normal in Tpogfp/gfp mice (n = 5 for Tpo+/+, n = 6 for Tpo+/gfp, n = 5 for 

Tpogfp/gfp). 

s. Spleen HSC frequency was reduced in Tpogfp/gfp mice (n = 5 for Tpo+/+, n = 6 for Tpo+/gfp, n = 5 

for Tpogfp/gfp). 

+/+: Tpo+/+, +/gfp: Tpo+/gfp, gfp/gfp: Tpogfp/gfp. All data represent mean ± s.d. ns, not significant. 

* P<0.05, ** P<0.01, ***, P<0.001. 
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Conditional deletion of TPO from megakaryocytes, osteoblasts, and mesenchymal stromal 
cells does not affect HSC function 
 

We generated a floxed allele of Tpo (Tpofl) by inserting loxp sequences flanking exons 2-

4 of Tpo (Figure 3.5a-c). Recombination of the loxp sites will lead to the deletion of the start 

codon and the generation of a frameshift. We recombined the Tpofl allele in the germline to 

generate Tpo- by mating with EIIa-cre (Figure 3.5d). As expected, Tpo transcripts were absent 

from homozygous Tpo-/- mice (Figure 3.5e). Tpo-/- mice had significant reduction of HSCs, 

MPPs, and megakaryocytes (Figure 3.5f-h), nearly identical to the Tpogfp/gfp mice (Figure 3.4). 

Recombination of the Tpofl allele therefore gave a strong loss of Tpo function.  

Megakaryocytes have been proposed to be a major source of TPO for HSCs (Nakamura-

Ishizu et al., 2014, 2015). However, we did not detect any Tpo expression in megakaryocytes by 

qRT-PCR (Figure 3.1a) or by reporter mice (Figure 3.1k-n). Nonetheless, we directly tested 

whether megakaryocytes (or any hematopoietic cells) are sources of TPO for HSC maintenance 

in vivo by generating Vav1-cre; Tpofl/gfp mice. Vav1-cre efficiently deleted Tpo from the 

hematopoietic system (Figure 3.6a). Eight-week-old Vav1-cre; Tpofl/gfp mice had normal blood 

counts, cellularity, and HSC frequency (Figure 3.6b-d) and normal restricted hematopoietic 

progenitors and megakaryocytic cells in the bone marrow (Figure 3.6e-h). Spleen cellularity, 

HSC frequency, and megakaryocytic cells were also unaffected (Figure 3.6i-k). Bone marrow 

cells from Vav1-cre; Tpofl/gfp mice formed normal number of colonies in methylcellulose and 

reconstituted irradiated recipients normally (Figure 3.6l-m). Thus, hematopoietic cells, including 

megakaryocytes, are not a critical source of TPO for HSC maintenance. 

Osteoblasts have also previously been proposed to be the main source of TPO in the bone 

marrow (Yoshihara et al., 2007) and osteoblasts express Tpo transcripts (Figure 3.1a); however, 

we could not detect any Tpo translational activity in osteoblasts from our reporter mice (Figure 
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3.1k-n). We directly tested whether deletion of Tpo from osteoblasts affects HSCs. Consistent 

with previous reports (Ding et al., 2012; Ding and Morrison, 2013), Col2.3-cre recombined 

efficiently in bone-lining osteoblasts (Figure 3.7a-f). Eight-week-old Col2.3-cre; Tpofl/gfp mice 

had normal platelet counts (Figure 3.7g), cellularity and HSC frequency in the bone marrow and 

spleens (Figure 3.7h-i and Figure 3.7k-l). There was no effect on the capacity of bone marrow 

or spleen cells to form colonies in methylcellulose (Figure 3.7j and Figure 3.7m). Col2.3-cre; 

Tpofl/gfp bone marrow cells had normal capacities to reconstitute irradiated recipients (Figure 

3.7n-o). Thus, osteoblasts are not a critical source of TPO for HSC maintenance. 

Bone marrow Lepr+ mesenchymal stromal cells are a critical source of HSC niche 

factors, including SCF and CXCL12 (Ding et al., 2012; Ding and Morrison, 2013). These cells 

express Tpo transcripts (Figure 3.1a), although we could not detect Tpo translational activity 

(Figure 3.1k-n). We conditionally deleted Tpo from mesenchymal stromal cell by generating 

Lepr-cre; Tpofl/gfp mice. Tpo was efficiently deleted from these cells (Figure 3.8a-f) . Eight-

week-old Lepr-cre; Tpofl/gfp had normal platelet counts (Figure 3.8g), cellularity, and HSC 

frequency in the bone marrow and spleens (Figure 3.7h-i and Figure 3.7k-l). Bone marrow and 

spleen cells from Lepr-cre; Tpofl/gfp mice formed normal numbers of hematopoietic colonies in 

methylcellulose (Figures 3.7j and Figure 3.7m). Bone marrow cells from Lepr-cre; Tpofl/gfp 

mice reconstituted irradiated recipient mice normally (Figures 3.7n-o). Thus, bone marrow 

mesenchymal stromal cells are not a critical source of TPO for HSC maintenance.   
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Figure 3.5 Germline recombination of Tpofl allele causes loss of Tpo expression and decreased 
HSC, MPP, and CD41+ cell frequencies 
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Figure 3.5 Germline recombination of Tpofl allele causes loss of Tpo expression and 
decreased HSC, MPP, and CD41+ cell frequencies 
 
a. Targeting strategy for the generation of a Tpofl allele. 

b. Southern blots showing correct insertion of targeting vector into the Tpo endogenous locus. 

c. Genotyping PCR showing germline transmission of the Tpofl allele. 

d. Genotyping PCR showing the detection of Tpo- allele in the progeny of EIIA Cre x Tpofl/+ 

mating. 

e. RT-PCR showing the loss of Tpo transcripts in Tpo-/- mouse liver. 

f-h. Bone marrow HSC frequency (F), MPP frequency (G), and megakaryocyte frequency (H) 

were all significantly decreased in Tpo-/- (-/-) mice relative to Tpo+/+ (+/+) controls (n = 4 for 

Tpo-/-, n = 3 for Tpo+/+). All data represent mean ± s.d. ** P<0.01, ***, P<0.001. 
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Figure 3.6 Efficient deletion of Tpo from hematopoietic cells does not perturb hematopoiesis or 
thrombopoiesis 
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Figure 3.6 Efficient deletion of Tpo from hematopoietic cells does not perturb 
hematopoiesis or thrombopoiesis 
 
a. Representative genotyping results for quantifying deletion efficiency in hematopoietic 

colonies formed by individual sorted HSCs.  

b. No significant differences were observed in platelet, white and red cell counts in Vav1-cre; 

Tpofl/gfp mice compared with controls (n = 6 for controls and Vav1-cre; Tpofl/gfp each). 

c-h. No significant differences were observed in cellularity (C), HSC frequency (D), MPP 

frequency (E), LSK frequency (F), MEP, GMP, CMP, CLP frequencies (G) and CD41+ 

megakaryocyte lineage cell frequency (H) in the bone marrow from Vav1-cre; Tpofl/gfp mice 

compared with controls (n = 4 for controls and Vav1-cre; Tpofl/gfp each). 

i-k. No significant differences were observed in cellularity (I), HSC frequency (J) and CD41+ 

megakaryocyte lineage cell frequency (K) in the spleen from Vav1-cre; Tpofl/gfp mice compared 

with controls (n = 4 for controls and Vav1-cre; Tpofl/gfp each). 

l. Cells from bone marrow or spleens of Vav1-cre; Tpofl/gfp mice formed normal number of 

colonies in methylcellulose (n= 4 for controls and 5 for Vav1-cre; Tpofl/gfp). 

m. 5 x 105 bone marrow cells from Vav1-cre; Tpofl/gfp mice gave similar levels of donor cell 

reconstitution relative to controls (two experiments with a total of 7 recipient mice for controls 

and 8 recipient mice for Vav1-cre; Tpofl/gfp). 

Con: Vav1-cre; Tpo+/gfp or Tpofl/gfp. Δ/gfp: Vav1-cre; Tpofl/gfp. All data represent mean ± s.d. ns, 

not significant. 

 

 

 

 



 91 

 

Figure 3.7 Osteoblasts are not a critical source of TPO for HSC maintenance 
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Figure 3.7 Osteoblasts are not a critical source of TPO for HSC maintenance 

a-f. Confocal images of femur sections from Col2.3-cre; loxpTdTomato mice showing efficient 

recombination in osteoblasts. Nuclei were stained with DAPI (blue). 

g. Peripheral blood platelet counts were not significantly affected in Col2.3-cre; Tpofl/gfp mice 

relative to controls (n = 3 for each genotype). 

h-j. Bone marrow cellularity (H), HSC frequency (I), and myeloerythroid-colony-forming cell 

frequency (J) were not significantly affected in Col2.3-cre; Tpofl/gfp mice relative to controls (n = 

4 for controls, n = 5 for Col2.3-cre; Tpofl/gfp). 

k-m. Spleen cellularity (K), HSC frequency (L), and myeloerythroid-colony-forming cell 

frequency (M) were not significantly affected in Col2.3-cre; Tpofl/gfp mice relative to controls (n 

= 4 for controls, n = 5 for Col2.3-cre; Tpofl/gfp). 

n. 5 x 105 bone marrow cells from Col2.3-cre; Tpofl/gfp mice gave similar levels of donor cell 

reconstitution in major hematopoietic lineages (B, T and myeloid) relative to controls (two 

experiments with a total of 8-9 recipient mice per genotype).  

o. Similar HSC chimerism levels were in the recipient bone marrow 16 weeks after bone marrow 

transplantation relative to controls (n=9 for controls, n=8 for Col2.3-cre; Tpofl/gfp). 

Con: Col2.3-cre; Tpo+/gfp or Tpofl/gfp. Δ/gfp: Col2.3-cre; Tpofl/gfp. All data represent mean ± s.d. 

ns, not significant. * P<0.05, ** P<0.01, ***, P<0.001 
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Figure 3.8 Lepr+ mesenchymal stromal cells are not a critical source of TPO for HSC 
maintenance 
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Figure 3.8 Lepr+ mesenchymal stromal cells are not a critical source of TPO for HSC 
maintenance 
 

a-f. Confocal images of femur sections from Lepr-cre; loxpTdTomato mice showing specific 

recombination in bone marrow perivascular stromal cells. Vasculature was stained with an 

antibody against Laminin (green). Nuclei were stained with DAPI (blue). 

g. Platelet counts were not significantly affected in Lepr-cre; Tpofl/gfp mice relative to controls (n 

= 3 for controls, n =3 for Lepr-cre; Tpofl/gfp). 

h-i. Bone marrow cellularity (H) and HSC frequency (I), were not significantly affected in Lepr-

cre; Tpofl/gfp mice relative to controls (n = 5 for controls, n =6 for Lepr-cre; Tpofl/gfp). 

j. Bone marrow cells from Lepr-cre; Tpofl/gfp mice formed similar number of myeloerythroid 

colonies relative to controls (n = 3 for each genotype). 

k-l. Spleen cellularity (K) and HSC frequency (L) were not significantly affected in Lepr-cre; 

Tpofl/gfp mice relative to controls (n = 5 for controls, n =6 for Lepr-cre; Tpofl/gfp). 

m. Spleen cells from Tpofl/gfp mice formed similar number of myeloerythroid colonies relative to 

controls (n =3 for each genotype). 

n. 5 x 105 bone marrow cells from Lepr-cre; Tpofl/gfp mice gave similar levels of donor cell 

reconstitution in multiple major hematopoietic lineages relative to controls (two experiments 

with a total of 8 recipient mice per genotype).  

o. Recipient mice who received Lepr-cre; Tpofl/gfp bone marrow cells showed similar donor bone 

marrow HSC chimerism sixteen weeks post-transplant relative to controls (n = 8 mice per 

genotype).  

Con: Lepr-cre; Tpo+/gfp or Tpofl/gfp. Δ/gfp: Lepr-cre; Tpofl/gfp. All data represent mean ± s.d. ns, 

not significant. * P<0.05, ** P<0.01, ***, P<0.001. 
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Hepatocyte-derived TPO is required for HSC maintenance 

The above data suggest that TPO produced locally by osteoblasts or mesenchymal 

stromal cells is not required for HSC maintenance. To test whether systemic TPO generated by 

the liver is important for HSC maintenance, we generated Alb-cre; Tpofl/fl mice. As expected 

(Postic et al., 1999), Alb-cre recombined specifically and efficiently in hepatocytes but not in the 

bone marrow (Figure 3.9a-d). Eight-week-old Alb-cre; Tpofl/fl mice had a 5-fold reduction of 

platelet count (Figure 3.9e), and a 5-fold reduction of megakaryocytic cells in the bone marrow 

(Figure 3.9f). Alb-cre; Tpofl/fl mice exhibited normal bone marrow and spleen cellularity (Figure 

3.9g). The frequency of bone marrow HSCs was reduced 24-fold compared to controls (Figure 

3.9h). Bone marrow and spleen cells from Alb-cre; Tpofl/fl mice formed fewer colonies in 

methylcellulose (Figure 3.9i-j). Spleen HSC frequency was normal in Alb-cre; Tpofl/fl mice 

(Figure 3.9h), suggesting that there was no compensatory extramedullary hematopoiesis. Bone 

marrow cells from Alb-cre; Tpofl/fl had severe defects in their ability to reconstitute irradiated 

recipients (Figure 3.9k-l). Overall, these data show that hepatic TPO is critical for the 

maintenance of bone marrow HSCs. 

During development, HSCs transiently reside in the fetal liver (Mikkola and Orkin, 

2006), where Alb-cre recombines (Weisend et al., 2009). Thus, it is possible that bone marrow 

HSCs in Alb-cre; Tpofl/fl mice acquire a persistent defect during development. Nonetheless, we 

conditionally deleted Tpo from adult hepatocytes by administrating the hepatotropic Cre-bearing 

virus AAV8-TBG-cre. Consistent with a prior report (Yanger et al., 2013), we observed specific 

and efficient recombination in hepatocytes after a single intravenous administration of AAV8-

TBG-cre to adult mice (Figure 3.10a-d). 
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We administered AAV8-TBG-cre virus once to 8-week old Tpofl/fl and wild-type 

littermate control mice and analyzed them 4-8 weeks later. AAV8-TBG-cre-treated wild-type 

mice had identical phenotypes as buffer-treated Tpofl/fl mice. They were pooled together as 

controls. There was no change in bone marrow and spleen cellularity (Figure 3.10e). However, 

AAV8-cre; Tpofl/fl mice had reductions in bone marrow and spleen HSC cell frequencies (Figure 

3.10f-g). The colony-forming capacity of bone marrow and spleen cells was also reduced 

(Figure 3.10h-i). Bone marrow cells from AAV8-cre; Tpofl/fl mice 2 months after the virus 

treatment had a significant decrease in their ability to reconstitute irradiated recipients, whereas 

bone marrow cells from AAV8-cre; Tpofl/fl mice 1 month after the virus treatment had an 

intermediate phenotype (Figure 3.10j). To quantify the frequency of functional HSCs, we 

performed limit dilution assays. In these assays, the frequency of long-term multilineage 

reconstituting cells in bone marrow cells from control and AAV8-cre; Tpofl/fl were 1/87,660 and 

1/498,020, respectively, corresponding to a 6-fold reduction (Figure 3.10k). There was no 

significant difference in Annexin V+ bone marrow HSCs from AAV8-cre; Tpofl/fl mice compare 

with controls (Figure 3.10l) but HSCs from AAV8-cre; Tpofl/fl mice cycled more (Figure 

3.10m). These data indicate that adult HSCs lacking a hepatocyte-derived TPO signal are 

depleted through a self-renewal defect, not senescence or apoptosis. 

Tpo transcription is upregulated in the bone marrow during hematopoietic stress 

(Sungaran et al., 1997), and mice deficient in TPO signaling show an impaired hematopoietic 

response to treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) (Li and Slayton, 

2013). We injected tamoxifen-treated TpoDsRed-CreER; loxpZsGreen mice with 5-FU but failed to 

detect ZsGreen expression in the bone marrow (Figure 3.11), suggesting that bone marrow does 

not significantly upregulate translation of TPO in response to hematopoietic challenge by 5-FU. 
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Further studies are required to determine the role of local and systemic TPO in other non-

homeostatic conditions. 
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Figure 3.9 Hepatocyte-derived TPO is required for HSC maintenance 
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Figure 3.9 Hepatocyte-derived TPO is required for HSC maintenance 

a-d. Confocal images of liver sections from Alb-cre; loxpTdTomato mice. 

e. Platelet count was decreased in Alb-cre; Tpofl/fl mice (n = 4). 

f. Bone marrow CD41+ cell frequency was decreased in Alb-cre; Tpofl/fl mice (n = 3-5). 

g. Cellularity was normal in the bone marrow and spleens from Alb-cre; Tpofl/fl mice (n = 5-6). 

h. HSCs were depleted in the bone marrow but not in spleens from Alb-cre; Tpofl/fl mice (n = 6-

8). 

i-j. Colony-forming cell numbers were decreased in the bone marrow and trended lower in 

spleens from Alb-cre; Tpofl/fl mice (n = 5-6). 

k. 5 x 105 bone marrow cells from Alb-cre; Tpofl/fl mice gave lower levels of donor cell 

reconstitution (two experiments with a total of 8-9 recipient mice per genotype). 

l. Recipient mice from (K) showed significant decrease in donor bone marrow HSC chimerism 

16 weeks post-transplant (n = 6 mice per genotype). 

Con: Alb-cre; Tpo+/+ or Tpofl/fl or Tpofl/+; Δ/ Δ: Alb-cre; Tpofl/fl. Data represent mean ± s.d. ns, 

not significant. * P<0.05, ** P<0.01, *** P<0.001. 
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Figure 3.10 TPO from adult hepatocytes regulates bone marrow HSC maintenance and 
quiescence 
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Figure 3.10 TPO from adult hepatocytes regulates bone marrow HSC maintenance and 
quiescence. 
 
a-d. Confocal images of liver sections from AAV8-TBG-cre-treated loxpTdTomato mice. 

e. Bone marrow and spleen cellularity was normal in Alb-cre; Tpofl/fl mice (n = 7-8). 

f. Bone marrow HSCs were depleted in AAV8-TBG-cre-treated Tpofl/fl mice (n = 4-5). 

g. Spleen HSC frequency had a trend to decrease in AAV8-TBG-cre-treated Tpofl/fl mice. 

h-i. Bone marrow and spleen colony-forming cell frequency was decreased in AAV8-cre; Tpofl/fl 

mice (n = 6-7). 

j. 5 x 105 bone marrow cells from AAV8-cre; Tpofl/fl mice gave lower levels of donor cell 

reconstitution (2-3 experiments with a total of n=16 for controls, n=9 for 1 month after AAV8 

treatment and n=14 for 2 months after AAV8 treatment). 

k. Limit dilution assays showed that this was a 6-fold reduction of functional HSCs in the bone 

marrow from AAV8-cre; Tpofl/fl mice compared with controls (two independent experiments). 

l. Annexin V+ DAPI- bone marrow HSC frequency was not affected in AAV8-cre; Tpofl/fl mice (n 

= 5). 

m. Bone marrow HSCs incorporated more BrdU in AAV8-cre; Tpofl/fl mice (n = 4). 

Con: Tpo+/+ mice treated with AAV8-TBG-cre or Tpofl/fl mice treated with PBS; Δ/ Δ: Tpofl/fl 

mice treated with AAV8-TBG-cre. Data represent mean ± s.d. ns, not significant. * P<0.05, ** 

P<0.01, *** P<0.001. 
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Figure 3.11 The bone marrow is not a major source of TPO in stress induced by 5-FU 
treatment. 
 
a-c. Representative confocal images of a femur section from tamoxifen-treated TpoDsRed-CreER; 

loxpZsGreen mice dosed with 5-FU showing no ZsGreen expression in the bone marrow. 

d-f. Representative confocal images of liver sections from tamoxifen-treated TpoDsRed-CreER; 

loxpZsGreen mice dosed with 5-FU showing robust expression of ZsGreen. 

g. Representative flow cytometry plots showing no ZsGreen expression in bone marrow 

CD45/Ter119-PDGFRa+ mesenchymal stromal cells. Con, tamoxifen-treated loxpZsGReen mice 

administered with 5-FU. +5-FU, tamoxifen-treated TpoDsRed-CreER; loxpZsGreen mice dosed with 

5-FU. All images representative of 3 biological replicates. 
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DISCUSSION 

Our data demonstrate that bone marrow HSCs do not depend on previously identified 

local sources of TPO, but instead are maintained by hepatic TPO. To our knowledge, this is the 

first direct evidence of an endocrine-type regulation of HSC maintenance. Our results highlight 

the importance of systemic regulators in HSC biology, and raise questions about how these 

regulators communicate with HSCs in a coordinated manner. It is conceivable that hepatocytes 

sense certain physiological perimeters to appropriately maintain HSCs and hematopoiesis in the 

bone marrow. One possibility is that hepatocytes rely on detection of aging platelets via the 

Ashwell-Morell receptor (Grozovsky et al., 2015) as a proxy for HSC activity.  

Our finding that hepatic TPO is critical for HSC maintenance is consistent with clinical 

observations on patients with liver diseases (Lv et al., 2014; Bihari et al., 2016). A recent clinical 

study showed an adverse correlation between liver cirrhosis and HSC number (Bihari et al., 

2016). A separate study found that treatment of hepatitis B patients with entecavir 

simultaneously improved liver function and increased the number of circulating and peripheral 

HSCs by 2-4 fold (Lv et al., 2014). Consideration of the impact of liver defects on HSCs and 

hematopoiesis may lead to better management of these diseases. 

Other than the liver and bone marrow stroma, several other organs have been reported to 

express Tpo transcripts (de Sauvage et al., 1994). It has been suggested that megakaryocytes are 

a source of TPO (Nakamura-Ishizu et al., 2014, 2015). However, we could not detect any Tpo 

expression in megakaryocytes by qRT-PCR or reporter mice (Figure 3.1). Despite the presence 

of Tpo  transcripts in non-hepatic populations, HSC numbers in Alb-cre; Tpofl/fl or AAV8-cre; 

Tpofl/fl mice were depleted to levels comparable to whole body Tpo knockout mice (Tpo-/- or 

Tpogfp/gfp ) (compare Figure 3.4m, Figure 3.5f, Figure 3.9h, and Figure 3.10f). Thus, 
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hepatocytes in the liver appear to be the major functional source of TPO for HSC maintenance. 

The role of the TPO expressed by other organs or cell types need further investigation. 

Megakaryocytes are an important component of the bone marrow HSC niche (Bruns et 

al., 2014; Zhao et al., 2014). In Alb-cre; Tpofl/fl or AAV8-cre; Tpofl/fl mice, HSCs were depleted 

and megakaryocytes were also reduced (Figure 3.9 and Figure 3.10) This raises the question of 

whether the HSC phenotype was mediated by a reduction of megakaryocytes. However, ablation 

of megakaryocytes leads to more HSCs and higher reconstitution activity (Bruns et al., 2014; 

Zhao et al., 2014), the opposite of what we observed when TPO was deleted from hepatocytes. 

Thus, it is likely that hepatic TPO directly regulates bone marrow HSCs. 

Although we have determined that osteoblasts and mesenchymal stromal cells are not 

critical sources of TPO at steady state, these cells could be critical sources of TPO under other 

conditions. It has been shown that Tpo transcription is upregulated in the bone marrow during 

hematopoietic stress (Sungaran et al., 1997), and that TPO/cMPL signaling is crucial to bone 

marrow recovery from irradiation and 5-FU treatment (Li and Slayton, 2013; Olson et al., 2013). 

While we have shown that TPO is not robustly translated in the bone marrow following 5-FU 

administration (Figure 3.11), other studies will be required to determine the functional role of 

local and systemic TPO in non-homeostatic conditions. 
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EXPERIMENTAL METHODS 

 

Mice 

Lepr-cre (DeFalco et al., 2001), LoxptdTomato (Madisen et al., 2010), LoxpZsGreen (Madisen et 

al., 2010), and EIIa-cre (Lakso et al., 1996) mice were obtained from the Jackson Laboratory and 

maintained on C57BL/B6 background. Col2.3-cre mice were described previously (Liu et al., 

2004). Targeting vectors for generating Tpogfp, TpoDsRed-creER and Tpofl mice were constructed by 

recombineering (Liu et al., 2003). Linearized targeting vector was electroporated into KV1 ES 

cells (129B6 hybrid). Positive clones were identified by PCR and/or Southern blotting and then 

injected into B6 blastocysts. Chimeric mice were bred with B6 mice to obtain germline 

transmission. The Frt flanked Neo cassette was subsequently removed by mating with Flpe mice. 

These mice were backcrossed at least 5 times onto C57BL/6 background before analysis. All 

mice were housed in specific pathogen-free, Association for the Assessment and Accreditation of 

Laboratory Animal Care (AAALAC)- approved facilities at the Columbia University Medical 

Center. All protocols were approved by the Institute Animal Care and Use Committee of 

Columbia University.  

 

Genotyping PCR 

Primers for genotyping Tpo-DsRed-CreER: OLD815, 5’-CCACCACCATGCCTAACTCT-3’; 

OLD816, 5’-GTTCTCCTCCACGTCTCCAG-3’; and OLD817, 5’-

TCGCTAGCTGCTCTGATGAA-3’. 
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Primers for genotyping loxpTdTomato: OLD558, 5’-AAGGGAGCTGCAGTGGAGTA-3’ ; 

OLD559, 5’-CCGAAAATCTGTGGGAAGTC-3’ ; OLD560, 5’-

GGCATTAAAGCAGCGTATCC-3’; OLD561, 5’-CTGTTCCTGTACGGCATGG-3’.   

Primers for genotyping loxpZsGreen: OLD GGCATTAAAGCAGCGTATCC and 

AACCAGAAGTGGCACCTGAC 

Primers for genotyping Tpofl: OLD581, 5’-CATCTCGCTGCTCTTAGCAGGG-3’ and OLD582, 

5’-GAGCTGTTTGTGTTCCAACTGG-3’. 

Primers for genotyping Tpogfp: OLD292, 5’-CGGACACGCTGAACTTGTGG-3’; OLD528 5’-

ACTTATTCTCAGGTGGTGACTC-3’ and OLD653 5’-AGGGAGCCACTTCAGTTAGAC-3’. 

Primers for genotyping Tpodel: OLD748, 5’-TTAGGGAGCAGGAGGGATCT-3’ and OLD749 

5’-CCCAGCTAACAACCAATGCT-3’. 

Primers for genotyping Lepr-cre: OLD434 5’-CATTGTATGGGATCTGATCTGG-3’ and 

OLD435 5’-GGCAAATTTTGGTGTACGGTC-3’. 

Primers for genotyping cre: OLD338, 5’-GCATTTCTGGGGATTGCTTA-3’ and OLD339, 5’-

ATTCTCCCACCGTCAGTACG-3’. 

 

Tamoxifen administration 

Tamoxifen (Sigma) was dissolved in corn oil for a final concentration of 20mg/mL. Every other 

day for 10 days, 50uL of the solution was administered by oral gavage. Mice were analyzed 2-4 

days after the final tamoxifen administration. 
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Viral infections 

Replication-incompetent AAV8-TBG-cre was obtained from the Penn Vector Core. AAV8-

TBG-cre carries Cre recombinase under the regulatory control of the hepatocyte-specific thyroid-

binding globulin (TBG) promoter. Efficient recombination was achieved at a dose of 2.5 x 1011 

viral particles diluted in sterile 1x PBS. AAV8-TBG-cre was administered to mice via retro-

orbital venous sinus injection. 

 

Long-term competitive reconstitution assay and limit dilution assay 

Adult recipient mice were lethally irradiated by a Cesium 137 Irradiator (JL Shepherd and 

Associates) at 300 rad/min with two doses of 540 rad (total 1080 rad) delivered at least two 

hours apart. Cells were transplanted by retro-orbital venous sinus injection of anesthetized mice. 

5 x 105 donor bone marrow cells were transplanted along with 5 x 105 competitor bone marrow 

cells unless otherwise indicated. Mice were maintained on antibiotic water (Baytril 0.17g/L) for 

14 days then switched to regular water. Recipient mice were periodically bled to assess the level 

of donor-derived blood lineages, including myeloid, B, and T cells for at least 16 weeks. Blood 

was subjected to ammonium chloride potassium red cell lysis before antibody staining. 

Antibodies including anti-CD45.2 (104), anti-CD45.1 (A20), anti-CD3 (17A2), anti-B220 (6B2), 

anti-Gr-1 (8C5), and anti-Mac-1 (M1/70) were used to stain cells.   

 

Flow cytometry 

Bone marrow cells were isolated by flushing the long bones or by crushing the long bones, 

pelvis, and vertebrae with mortar and pestle in Ca2+ and Mg2+free HBSS with 2% heat-

inactivated bovine serum. Spleen cells were obtained by crushing the spleens between two glass 
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slides. The cells were passed through a 25G needle several times and filtered with a 70µm nylon 

mesh. The following antibodies were used to perform HSC staining: lineage markers (anti-CD2 

(RM2-5), anti-CD3 (17A2), anti-CD5 (53-7.3), anti-CD8a (53-6.7), anti-B220 (6B2), anti-Gr-1 

(8C5), anti-Ter119), anti-Sca-1 (E13-161.7), anti-c-kit (2B8), anti-CD48 (HM48-1), anti-CD150 

(TC15-12F12.2). Additionally, the following antibodies were used to perform hematopoietic 

progenitor staining as previously described6: lineage markers (anti-CD2 (RM2-5), anti-CD3 

(17A2), anti-CD5 (53-7.3), anti-CD8a (53-6.7), anti-B220 (6B2), anti-Gr-1 (8C5), anti-Ter119), 

anti-Sca-1 (E13-161.7), anti-c-kit (2B8), anti-CD34 (RAM34), anti-FLT3 (A2F10), anti-

CD16/32 (93), anti-IL7Ra (A7R34). 

For flow cytometric analysis of stromal cells, bone marrow plugs were flushed as described 

above, then digested with collagenase IV (200 U/mL) and DNase1 (200 U/mL) at 37°C for 

20min. Samples were then stained with anti-CD140a (APA-5), anti-CD45 (30F-11), and anti-

Ter119 antibodies and analyzed by flow cytometry. 

 

Methylcellulose culture 

10,000 bone marrow cells or 100,000 spleen cells were plated in 1.5mL of methylcellulose 

culture medium (StemCell Technology) and incubated at 37°C for 12-15 days. Colonies were 

counted on an Olympus CKX41 microscope (Olympus Life Science). 

 

Bone and liver sectioning 

Freshly disassociated long bones were fixed for 3h in a solution of 4% paraformaldehyde, 7% 

picric acid, and 10% sucrose (W/V). The bones were then embedded in 8% gelatin, immediately 

snap frozen in liquid N2, and stored at -80°C. Bones were sectioned using a CryoJane system 
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(Instrumedics). For liver, cardiac perfusion with formalin was performed immediately after 

mouse sacrifice, and perfused liver tissue was dehydrated in a 30% sucrose solution overnight at 

4°C. Liver tissue was then placed in PELCO Cryo-Embedding compound (Ted Pella, Inc.), 

frozen on dry ice, and stored at -80°C. Liver tissue was sectioned and directly transferred onto 

microscope slides. Both bone and liver sections were dried overnight at room temperature and 

stored at -80°C. 

 

Immunostaining 

Bone and liver sections were rehydrated in PBS for 5min before immunostaining. 5% goat serum 

and 0.02% Triton X-100 in PBS was used to block the sections. Primary antibodies were applied 

to the slides overnight at 4°C, followed by secondary antibody incubation for 2h at RT with 

repetitive washes in-between. Slides were mounted with ProLong Gold anti-fade reagent 

(LifeTech) and images were acquired on a Nikon Eclipse Ti microscope (Nikon Instruments). 

Rabbit-anti-HNF4a (Abcam), rabbit-anti-laminin (Sigma) and rat-anti-CD41 (eBioscience) were 

used as primary antibodies. 

 

qRT-PCR 

Cells were sorted directly into Trizol. Total RNA was extracted according to manufacture’s 

instructions. Total RNA was subjected to reverse transcription using SuperScript III (Invitrogen). 

Quantitative real-time PCR was run using SYBR green on a CFX Connect (Biorad) or a Stepone 

Plus (Invitrogen) system. b-actin was used to normalize the RNA content of samples. Primers 

used were: Tpo: OLD390, CCTTTGTCTATCCCTGTTCTGC and OLD391, 
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ACTGCCCCTAGAATGTCCTGT. b-actin: OLD27, 5’-GCTCTTTTCCAGCCTTCCTT-3’ and 

OLD28, 5’-CTTCTGCATCCTGTCAGCAA-3’. 

 

Cell cycle analysis 

For BrdU incorporation analysis, mice were given an intraperitoneal injection of 0.1mg BrdU in 

water per g of body weight. Then the mice were maintained on 0.5mg/ml BRDU water for 5 

days before the analysis. The frequency of BrdU+ cells was determined by flow cytometry using 

an APC BrdU Flow Kit (BD Biosciences). 
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Chapter 4 

General Discussion 

Hematopoietic stem cells provide a reservoir of regenerative potential that helps the body 

endure the insults of trauma, disease, and age. Maintenance of a robust HSC population is 

therefore essential for a long and healthy life. This maintenance depends not only on cell-

intrinsic homeostatic processes, but on the complex milieu of extrinsic cues that reinforce the 

internal programs of HSCs. The most well characterized components of this external regulatory 

network are in bone marrow microenvironment, where local paracrine signaling from a variety of 

cell populations drives HSC retention, self-renewal, and quiescence.  

Changes to this local microenvironment can have a host of cascading pathologic effects. 

In Chapter 2, we found that inappropriate expansion of mature myeloid cells converts bone 

marrow stromal cells from their normal niche identity into a fibrogenic cell fate through PDGFR 

signaling. The disruption of the bone marrow caused by the combined stromal transformation 

and mature hematopoietic cell expansion leads to HSC dysfunction. This triad of clonal 

expansion, stromal transformation, and hematopoietic failure is seen in many human diseases. 

While most available clinical therapeutics targeting driver mutations of clonal expansion, niche-

targeting therapies that block pathways such as PDGFR may also have a place in treatment 

regimens. It is important to note that while PDGFR signaling is necessary for robust induction of 

bone marrow fibrosis, it is not sufficient to drive severe pathological change. Further work is 

needed to elucidate other pathways that contribute to bone marrow fibrosis. Additional studies 
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could utilize targeted therapies with low side-effect profiles, such as monoclonal antibodies, to 

prevent signal transduction of niche-altering cues. In total the types of investigations described 

could significantly advance our understanding and treatment of chronic hematologic disease. 

Although the bone marrow remains the center of much scientific and clinical interest, the 

essential role of extramedullary factors such as hepatocyte-derived thrombopoietin is shown in 

Chapter 3. The complete depletion of the body’s HSC reserve after loss of a single circulating 

endocrine factor demonstrates a remarkably integrated regulatory program that governs a tissue-

specific adult stem cell population. However, very little is known about the feedback 

mechanisms or pathways that allow organ systems such as the liver and the blood to coordinate 

HSC regulation, or if analogous mechanisms may maintain other adult stem cell populations. 

With the recent development of powerful genomic and proteomic screening techniques, the field 

has an opportunity to begin careful investigation into these questions. Our interest should not 

only be directed at steady-state biology, but also how these inter-organ relationships change in 

response to physiological challenge. In the case of the hematopoietic system, better 

understanding how common therapeutic modalities like chemotherapy and radiation affect HSC 

regulation has major implications for developing clinical guidelines and treatments. 

Together the studies described in previous chapters have helped expand our 

understanding of the homeostatic and pathological extrinsic regulators of HSCs, and set the stage 

for exciting new basic and translational research in hematopoietic biology. 
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