2,115 research outputs found

    Electrical Characterization of Textile-Based Enzymatic Biofuel Cell for Energy Harvesting Interface Circuit

    Get PDF
    International audienceThis paper presents electrical characterization and power management circuit of textile-based enzymatic biofuel cell. Firstly, static electrical characteristics (open circuit voltage, short circuit current, and maximum power) of the enzymatic biofuel cell have been investigated by imposing a voltage across the biofuel cell and measuring corresponding output current. Output power of the biofuel cell has been characterized as a function of load resistance, while a glucose solution of 100 mM is fed from one end of the textile-based biofuel cell. Two-step approach based on supercapacitor and DC-DC converter has been proposed and tested as power management of the proposed biofuel cell

    Recent Advances in Biofuel Cell and Emerging Hybrid System

    Full text link
    The present paper reviews the recent development of biofuel cell. Due to its renewable nature and milder operating conditions compared to conventional fuel cell, the electrochemical system has been extensively studied. However, major problems associated with this type of electrochemical system remain an intimidating challenge, the utmost being the low power output and stability of biocatalyst being used. Various attempts have been made to overcome these problems, some are reviewed here. The authors suggest a new direction in solving these problems by using hybrid system i.e. metal biofuel cell. The new hybrid system developed is of lower cost, less complex, higher OCV and greater power output

    Biological and microbial fuel cells

    Get PDF
    Biological fuel cells have attracted increasing interest in recent years because of their applications in environmental treatment, energy recovery, and small-scale power sources. Biological fuel cells are capable of producing electricity in the same way as a chemical fuel cell: there is a constant supply of fuel into the anode and a constant supply of oxidant into the cathode; however, typically the fuel is a hydrocarbon compound present in the wastewater, for example. Microbial fuel cells (MFCs) are also a promising technology for efficient wastewater treatment and generating energy as direct electricity for onsite remote application. MFCs are obtained when catalyst layer used into classical fuel cells (polymer electrolyte fuel cell) is replaced with electrogenic bacteria. A particular case of biological fuel cell is represented by enzyme-based fuel cells, when the catalyst layer is obtained by immobilization of enzyme on the electrode surface. These cells are of particular interest in biomedical research and health care and in environmental monitoring and are used as the power source for portable electronic devices. The technology developed for fabrication of enzyme electrodes is described. Different enzyme immobilization methods using layered structures with self-assembled monolayers and entrapment of enzymes in polymer matrixes are reviewed. The performances of enzymatic biofuel cells are summarized and approaches on further development to overcome current challenges are discussed. This innovative technology will have a major impact and benefit to medical science and clinical research, health care management, and energy production from renewable sources. Applications and advantages of using MFCs for wastewater treatment are described, including organic matter removal efficiency and electricity generation. Factors affecting the performance of MFC are summarized and further development needs are accentuated

    A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell

    Full text link
    Biocatalytic buckypaper electrodes modified with pyrroloquinoline quinone (PQQ)‐dependent glucose dehydrogenase and bilirubin oxidase for glucose oxidation and oxygen reduction, respectively, were prepared for their use in a biofuel cell. A small (millimeter‐scale; 2×3×2 mm3) enzyme‐based biofuel cell was tested in a model glucose‐containing aqueous solution, in human serum, and as an implanted device in a living gray garden slug (Deroceras reticulatum), producing electrical power in the range of 2–10 μW (depending on the glucose source). A microelectronic temperature‐sensing device equipped with a rechargeable supercapacitor, internal data memory and wireless data downloading capability was specifically designed for activation by the biofuel cell. The power management circuit in the device allowed the optimized use of the power provided by the biofuel cell dependent on the sensor operation activity. The whole system (power‐producing biofuel cell and power‐consuming sensor) operated autonomously by extracting electrical energy from the available environmental source, as exemplified by extracting power from the glucose‐containing hemolymph (blood substituting biofluid) in the slug to power the complete temperature sensor system and read out data wirelessly. Other sensor systems operating autonomously in remote locations based on the concept illustrated here are envisaged for monitoring different environmental conditions or can be specially designed for homeland security applications, particularly in detecting bioterrorism threats.Sluggish sensor? A microelectronic sensor device was powered by an enzyme biofuel cell implanted in a slug to operate autonomously.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/1/cphc201900700_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/2/cphc201900700.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/3/cphc201900700-sup-0001-misc_information.pd

    Healthy aims: developing new medical implants and diagnostic equipment

    Get PDF
    Healthy Aims is a €23-million, four-year project, funded under the EU’s Information Society Technology Sixth Framework program to develop intelligent medical implants and diagnostic systems (www.healthyaims.org). The project has 25 partners from 10 countries, including commercial, clinical, and research groups. This consortium represents a combination of disciplines to design and fabricate new medical devices and components as well as to test them in laboratories and subsequent clinical trials. The project focuses on medical implants for nerve stimulation and diagnostic equipment based on straingauge technology

    Doctor of Philosophy

    Get PDF
    dissertationEnzymatic biofuel cells use enzymes to catalyze electrochemical reactions, directly converting chemical energy to electricity. In this research, three enzymatic biofuel cell devices were created and a focus was placed on their electrode structure in order to improve current density, power density, and/or biocompatibility. The first device, a flow-through glucose biofuel cell, was fabricated from laser-cut poly(methyl methacrylate) and utilized a porous anode to increase current density through improved mass transfer. The maximum current and power density of 705 μA cm-2 and 146 μW cm-2 were among the highest for a flowing biofuel cell in the literature. The second device was a contact lens lactate biofuel cell fabricated in two iterations: one using buckypaper electrodes and the other with carbon paste electrodes, both electrode types being molded into a contact lens. These were the first reported examples of a biofuel cell on a contact lens. The first prototype suffered from poor stability as well as biocompatibility issues, but the second prototype was more stable and amenable to possibly being worn on the eye. The current and power density of the second prototype were, respectively, 22 ± 4 μA cm-2 and 2.4 ± 0.9 μW cm-2 at 0.18 ± 0.06 V. As the device was limited by its cathode, simulations were created to investigate two important factors: carbon nanotube (CNT) connectivity to the electrode and enzyme loading on the CNT surface. It was found that ca. 20% of the CNTs were connected to the electrode; furthermore, only 1-2% of the enzyme was wired to the electrode through the CNT network and roughly 20% of the CNT surfaces were in communication with enzyme. The ferrocene redox polymer/lactate oxidase enzyme-mediator anode system used on the second contact lens biofuel cell prototype performed very well, so it was also used in the third device-a self-powered lactate sensor. Coupled with a bilirubin oxidase cathode, the sensor had a detection range between 0-5 mM lactate, a sensitivity of 45 μA cm-2 mM-1, and a current and power density of 657 ± 17 μA cm-2, 122 ± 5 μW cm-2, respectively

    A Novel Non-Enzymatic Glucose Biofuel Cell with Mobile Glucose Sensing

    Get PDF
    Herein, we report a novel non-enzymatic glucose biofuel cell with mobile glucose sensing. We characterized the power generation and biosensing capabilities in presence of glucose analyte. This system was developed using a non-enzymatic glucose biofuel cell consisting of colloidal platinum coated gold microwire (Au-co-Pt) employed as an anode and the cathode which was constructed using a Gas diffusion electrode (GDE) with a platinum catalyst. The non-enzymatic glucose biofuel cell produced a maximum open circuit voltage of 0.54 V and delivered and a maximum short circuit current density of 1.6 mA/cm2 with a peak power density of 0.226 mW/cm2 at a concentration of 1 M glucose. The non-enzymatic glucose biofuel cell produced an open circuit voltage of 0.38 V and delivered and a short circuit current density of 0.225 mA/cm2 with a peak power density of 0.022 mW/cm 2 at a concentration of 5 mM glucose. These findings showed that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor. When used as self-powered glucose sensor, the system showed a good sensitivity of 0.616 μA mM−1 and linear dependence with a correlation coefficient of 0.995 in the glucose concentration range of 2 mM to 50 mM. The system was further characterized by testing the performance of the system at various temperature, pH and amidst various interfering and competing chemical species such as uric acid, ascorbic acid, fructose, maltose and galactose. A charge pump circuit consisting of a blinking LED was connected to the biofuel cell to amplify the input voltage to power small electronic devices. The blinking frequency of the LED corresponds to the glucose concentration. An android mobile phone camera application was used to measure this LED blinking frequency which was in turn converted into the glucose concentration readings using image processing in MATLAB. The user was notified via text message and an email

    Development of enzymatic biofuel cell based on carbon nanotube electrodes on porous silicon

    Get PDF
    The work presented in this thesis has focused on designing and characterizing biofuel cell electrodes using porous silicon (p-Si) as the substrate or current collecting platform on which carbon nanotubes (CNTs), both single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MiWNTs), were synthesized directly, followed by enzyme catalyst immobilization on the CNTs. Laccase and glucose oxidase (GOx) were used as enzymatic biocatalysts, which were immobilized on the CNT walls and tips using an electrochemical technique. Cyclic voltammetry showed well-defined redox peaks which indicated that the enzyme (GOx and laccase) were successfully immobilized on the CNTs. The amperometric responses of the laccase electrode upon additions of bubbled air and potentiometric responses of GOx electrode to additions of glucose demonstrated that the immobilized enzymes retained their bioelectrocatalytic activity after electrochemical deposition. Working biofuel cells with p-Si/SWNTs and p-Si/MWNTs based electrodes with immobilized enzymes were studied at room temperature in a 0. iM phosphate buffer solution of pH 7.0, containing 4 mM glucose. The peak power output of the biofuel cell with p-SiISWNTs based electrodes was 3.32 μW at 357 mV vs. SCE (Saturated Calomel Electrode). It provided much better performance than the biofuel cell with p-Si/MWNTs electrodes, which yielded a peak power of 1.23 nW at 5.6 mV. The combination of p-Si/CNTs with redox enzymes provided a convenient prototype for a direct electron transfer, membrane-less biofuel cell

    A Hybrid Biofuel Cell Based on Electrooxidation of Glucose Using Ultra-Small Silicon Nanoparticles

    Get PDF
    The ultra-small silicon nanoparticle was shown to be an electrocatalyst for the electrooxidation of glucose. The oxidation appeared to be a first order reaction which involves the transfer of 1 electron. The oxidation potential showed a low onset of −0.4V vs. Ag/AgCl (−0.62V vs. RHE). The particle was used as the anode catalyst of a prototype hybrid biofuel cell, which operated on glucose and hydrogen peroxide. The output power of the hybrid cell showed a dependence on the enzymes used as the cathode catalyst. The power density was optimized to 3.7μW/cm2 when horseradish peroxidase was replaced by microperoxidase-11 (MP-11). Comparing the output power of the hybrid cell to that of a biofuel cell indicates enhanced cell performance due to the fast reaction kinetics of the particle. The long-term stability of the hybrid cell was characterized by monitoring the cell voltage for 5 days. It appeared to that the robustness of the silicon particle resulted in more cell stability compared to the long-term performance of a biofuel cell
    corecore