662 research outputs found

    Bonding, structure and mechanical behavior of vanadium carbide single crystals

    Get PDF
    Bonding, structure, and mechanical behavior of vanadium carbide single crystal

    Microstructure and mechanical behavior of carbides

    Get PDF
    Microstructure and mechanical properties of carbide

    Directional and balancing selection in human beta-defensins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations.</p> <p>Results</p> <p>We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of <it>DEFB127 </it>in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For <it>DEFB132</it>, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations.</p> <p>Conclusion</p> <p>Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.</p

    Determination of Beta-Defensin Genomic Copy Number in Different Populations: A Comparison of Three Methods

    Get PDF
    There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and β-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with disease. At present, real-time quantitative PCR (QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is being used in more and more laboratories.In this study we compare a Pyrosequencing-based Paralogue Ratio Test (PPRT) for determining beta-defensin gene copy number with two currently used methods for gene copy number determination, QPCR and triplex PRT by typing five different cohorts (UK, Danish, Portuguese, Ghanaian and Czech) of DNA from a total of 576 healthy individuals. We found a systematic measurement bias between DNA cohorts revealed by QPCR, but not by the PRT-based methods. Using PRT, copy number ranged from 2 to 9 copies, with a modal copy number of 4 in all populations.QPCR is very sensitive to quality of the template DNA, generating systematic biases that could produce false-positive or negative disease associations. Both triplex PRT and PPRT do not show this systematic bias, and type copy number within the correct range, although triplex PRT appears to be a more precise and accurate method to type beta-defensin copy number

    Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    Get PDF
    Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2) is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF), and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found

    Human β-defensin 3 has immunosuppressive activity in vitro and in vivo

    Get PDF
    β-defensins are antimicrobial peptides with an essential role in the innate immune response. In addition β-defensins can also chemoattract cells involved in adaptive immunity. Until now, based on evidence from dendritic cell stimulation, human β defensin-3 (hBD3) was considered pro-inflammatory. We present evidence here that hBD3 lacks pro-inflammatory activity in human and mouse primary Mφ. In addition, in the presence of LPS, hBD3 and the murine orthologue Defb14 (but not hBD2), effectively inhibit TNF-α and IL-6 accumulation implying an anti-inflammatory function. hBD3 also inhibits CD40/IFN-γ stimulation of Mφ and in vivo, hBD3 significantly reduces the LPS-induced TNF-α level in serum. Recent work has revealed that hBD3 binds melanocortin receptors but we provide evidence that these are not involved in hBD3 immunomodulatory activity. This implies a dual role for hBD3 in antimicrobial activity and resolution of inflammation

    Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    Get PDF
    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies

    A Comparison of Assays for Accurate Copy Number Measurement of the Low-Affinity Fc Gamma Receptor Genes FCGR3A and FCGR3B

    Get PDF
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (RT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method’s performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs

    Extensive variation in the intelectin gene family in laboratory and wild mouse strains

    Get PDF
    Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease

    A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation

    Get PDF
    BACKGROUND: Cryptic structural abnormalities within the subtelomeric regions of chromosomes have been the focus of much recent research because of their discovery in a percentage of people with mental retardation (UK terminology: learning disability). These studies focused on subjects (largely children) with various severities of intellectual impairment with or without additional physical clinical features such as dysmorphisms. However it is well established that prevalence of schizophrenia is around three times greater in those with mild mental retardation. The rates of bipolar disorder and major depressive disorder have also been reported as increased in people with mental retardation. We describe here a screen for telomeric abnormalities in a cohort of 69 patients in which mental retardation co-exists with severe psychiatric illness. METHODS: We have applied two techniques, subtelomeric fluorescence in situ hybridisation (FISH) and multiplex amplifiable probe hybridisation (MAPH) to detect abnormalities in the patient group. RESULTS: A subtelomeric deletion was discovered involving loss of 4q in a patient with co-morbid schizoaffective disorder and mental retardation. CONCLUSION: The precise region of loss has been defined allowing us to identify genes that may contribute to the clinical phenotype through hemizygosity. Interestingly, the region of 4q loss exactly matches that linked to bipolar affective disorder in a large multiply affected Australian kindred
    corecore