92 research outputs found

    Cardiometabolic Risk Factors and Incident Cardiovascular Disease Events in Women vs Men With Type 1 Diabetes

    No full text
    Importance: The lower risk of cardiovascular disease (CVD) among women compared with men in the general population may be diminished among those with diabetes. Objective: To evaluate cardiometabolic risk factors and their management in association with CVD events in women vs men with type 1 diabetes enrolled in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Design, Setting, and Participants: This cohort study used data obtained during the combined DCCT (randomized clinical trial, conducted 1983-1993) and EDIC (observational study, conducted 1994 to present) studies through April 30, 2018 (mean [SD] follow-up, 28.8 [5.8] years), at 27 clinical centers in the US and Canada. Data analyses were performed between July 2021 and April 2022. Exposure: During the DCCT phase, patients were randomized to intensive vs conventional diabetes therapy. Main Outcomes and Measures: Cardiometabolic risk factors and CVD events were assessed via detailed medical history and focused physical examinations. Blood and urine samples were assayed centrally. CVD events were adjudicated by a review committee. Linear mixed models and Cox proportional hazards models evaluated sex differences in cardiometabolic risk factors and CVD risk over follow-up. Results: A total of 1441 participants with type 1 diabetes (mean [SD] age at DCCT baseline, 26.8 [7.1] years; 761 [52.8%] men; 1390 [96.5%] non-Hispanic White) were included. Over the duration of the study, compared with men, women had significantly lower body mass index (BMI, calculated as weight in kilograms divided by height in meters squared; β = -0.43 [SE, 0.16]; P = .006), waist circumference (β = -10.56 cm [SE, 0.52 cm]; P \u3c .001), blood pressure (systolic: β = -5.77 mm Hg [SE, 0.35 mm Hg]; P \u3c .001; diastolic: β = -3.23 mm Hg [SE, 0.26 mm Hg]; P \u3c .001), and triglyceride levels (β = -10.10 mg/dL [SE, 1.98 mg/dL]; P \u3c .001); higher HDL cholesterol levels (β = 9.36 mg/dL [SE, 0.57 mg/dL]; P \u3c .001); and similar LDL cholesterol levels (β = -0.76 mg/dL [SE, 1.22 mg/dL]; P = .53). Women, compared with men, achieved recommended targets more frequently for blood pressure (ie, \u3c130/80 mm Hg: 90.0% vs 77.4%; P \u3c .001) and triglycerides (ie, \u3c150 mg/dL: 97.3% vs 90.5%; P \u3c .001). However, sex-specific HDL cholesterol targets (ie, ≥50 mg/dL for women, ≥40 mg/dL for men) were achieved less often (74.3% vs 86.6%; P \u3c .001) and cardioprotective medications were used less frequently in women than men (ie, angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker: 29.6% [95% CI, 25.7%-33.9%] vs 40.0% [95% CI, 36.1%-44.0%]; P = .001; lipid-lowering medication: 25.3% [95% CI, 22.1%-28.7%] vs 39.6% [95% CI, 36.1%-43.2%]; P \u3c .001). Women also had significantly higher pulse rates (mean [SD], 75.2 [6.8] beats per minute vs 71.8 [6.9] beats per minute; P \u3c .001) and hemoglobin A1c levels (mean [SD], 8.3% [1.0%] vs 8.1% [1.0%]; P = .01) and achieved targets for tighter glycemic control less often than men (ie, hemoglobin A1c \u3c7%: 11.2% [95% CI, 9.3%-13.3%] vs 14.0% [95% CI, 12.0%-16.3%]; P = .03). Conclusions and Relevance: These findings suggest that despite a more favorable cardiometabolic risk factor profile, women with type 1 diabetes did not have a significantly lower CVD event burden than men, suggesting a greater clinical impact of cardiometabolic risk factors in women vs men with diabetes. These findings call for conscientious optimization of the control of CVD risk factors in women with type 1 diabetes

    Risk of Foot Ulcer and Lower-Extremity Amputation Among Participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study

    No full text
    OBJECTIVE: Intensive glycemic control reduces the risk of kidney, retinal, and neurologic complications in type 1 diabetes (T1D), but whether it reduces the risk of lower-extremity complications is unknown. We examined whether former intensive versus conventional glycemic control among Diabetes Control and Complications Trial (DCCT) participants with T1D reduced the long-term risk of diabetic foot ulcers (DFUs) and lower-extremity amputations (LEAs) in the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) study. RESEARCH DESIGN AND METHODS: DCCT participants (n = 1,441) completed 6.5 years on average of intensive versus conventional diabetes treatment, after which 1,408 were enrolled in EDIC and followed annually over 23 years for DFU and LEA occurrences by physical examination. Multivariable Cox proportional hazard regression models estimated associations of DCCT treatment assignment and time-updated exposures with DFU or LEA. RESULTS: Intensive versus conventional glycemic control was associated with a significant risk reduction for all DFUs (hazard ratio 0.77 [95% CI 0.60, 0.97]) and a similar magnitude but nonsignificant risk reduction for first-recorded DFUs (0.78 [0.59, 1.03]) and first LEAs (0.70 [0.36, 1.36]). In adjusted Cox models, clinical neuropathy, lower sural nerve conduction velocity, and cardiovascular autonomic neuropathy were associated with higher DFU risk; estimated glomerular filtration rate \u3c60 mL/min/1.73 m2, albuminuria, and macular edema with higher LEA risk; and any retinopathy and greater time-weighted mean DCCT/EDIC HbA1c with higher risk of both outcomes (P \u3c 0.05). CONCLUSIONS: Early intensive glycemic control decreases long-term DFU risk, the most important antecedent in the causal pathway to LEA

    Second asymptomatic carotid surgery trial (ACST-2) : a randomised comparison of carotid artery stenting versus carotid endarterectomy

    No full text
    Background: Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence. Methods: ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362. Findings: Between Jan 15, 2008, and Dec 31, 2020, 3625 patients in 130 centres were randomly allocated, 1811 to CAS and 1814 to CEA, with good compliance, good medical therapy and a mean 5 years of follow-up. Overall, 1% had disabling stroke or death procedurally (15 allocated to CAS and 18 to CEA) and 2% had non-disabling procedural stroke (48 allocated to CAS and 29 to CEA). Kaplan-Meier estimates of 5-year non-procedural stroke were 2·5% in each group for fatal or disabling stroke, and 5·3% with CAS versus 4·5% with CEA for any stroke (rate ratio [RR] 1·16, 95% CI 0·86-1·57; p=0·33). Combining RRs for any non-procedural stroke in all CAS versus CEA trials, the RR was similar in symptomatic and asymptomatic patients (overall RR 1·11, 95% CI 0·91-1·32; p=0·21). Interpretation: Serious complications are similarly uncommon after competent CAS and CEA, and the long-term effects of these two carotid artery procedures on fatal or disabling stroke are comparable

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Relationship of Hepatitis C Virus Infection With Diabetes in the U.S. Population

    No full text
    An association of hepatitis C virus (HCV) infection with diabetes has been reported in many studies, but few have been population based and applied standard criteria for diabetes diagnosis. We examined this relationship using recent population-based data from the U.S. National Health and Nutrition Examination Survey. Adult participants 2 An association of HCV infection with type 2 diabetes has been reported since shortly after the discovery of HCV in 1989. For example, in two meta-analyses of a total of 47 unique studies, HCV was associated with diabetes with an adjusted odds ratio (OR) of 1.7 (95% confidence interval [CI]: 1.2-2.2) in cross-sectional studies and an adjusted hazard ratio (HR) of 1.7 (95% CI: 1.3-2.1) in cohort studies in the first report 4 However, many of these studies were based on clinical series and may have suffered from ascertainment bias

    Five insights from the Global Burden of Disease Study 2019