444 research outputs found

    Opportunities and Risks of Digitalization for Climate Protection in Switzerland

    Full text link
    Information and Communication Technology (ICT) is an important enabler for a low-carbon economy in Switzerland. ICT has the potential to avoid up to 3.37 times more greenhouse gas (GHG) emissions than the amount of emissions caused by the production, operation and disposal of ICT devices and infrastructures used in Switzerland in 2025. In absolute terms, ICT will enable the Swiss economy to save up to 6.99 Mt CO2-equivalents (CO2e) per year, with an own carbon footprint of 2.08 Mt CO2e per year. This opportunity for the ICT sector to contribute to climate protection, however, can only be realized under optimistic assumptions. In particular, it is necessary that the existing technological and economic potentials are systematically exploited by taking ambitious and targeted actions. Such actions can be especially effective in the transportation, building and energy sectors, which have the highest potential for ICT-enabled (“smart”) solutions to reduce GHG emissions. At the same time, the carbon footprint of the ICT sector itself must be reduced by 17%, which is technologically and economically feasible due to efficiency gains

    Impact of marine mercury cycling on coastal atmospheric mercury concentrations in the North- and Baltic Sea region

    Get PDF
    The cycling of mercury between ocean and atmosphere is an important part of the global Hg cycle. Here we study the regional contribution of the air-sea exchange in the North- and Baltic Sea region. We use a newly developed coupled regional chemistry transport modeling (CTM) system to determine the flux between atmosphere and ocean based on the meteorological model COSMO-CLM, the ocean-ecosystem model ECOSMO, the atmospheric CTM CMAQ and a newly developed module for mercury partitioning and speciation in the ocean (MECOSMO). The model was evaluated using atmospheric observations of gaseous elemental mercury (GEM), surface concentrations of dissolved gaseous mercury (DGM), and air-sea flux (ASF) calculations based on observations made on seven cruises in the western and central Baltic Sea and three cruises in the North Sea performed between 1991 and 2006. It was shown that the model is in good agreement with observations: DGM (Normalized Mean Bias NMB=-0.27 N=413), ASF (NMB=-0.32, N=413), GEM (NMB=0.07, N=2359). Generally, the model was able to reproduce the seasonal DGM cycle with the best agreement during winter and autumn (NMBWinter=-0.26, NMBSpring=-0.41, NMBSummer=-0.29, NMBAutumn=-0.03). The modelled mercury evasion from the Baltic Sea ranged from 3400 to 4000 kg/a for the simulation period 1994–2007 which is on the lower end of previous estimates. Modelled atmospheric deposition, river inflow and air-sea exchange lead to an annual net Hg accumulation in the Baltic Sea of 500 to 1000 kg/a. For the North Sea the model calculates an annual mercury flux into the atmosphere between 5700 and 6000 kg/a. The mercury flux from the ocean influenced coastal atmospheric mercury concentrations. Running CMAQ coupled with the ocean model lead to better agreement with GEM observations. Directly at the coast GEM concentrations could be increased by up to 10% on annual average and observed peaks could be reproduced much better. At stations 100km downwind the impact was still observable but reduced to 1–3%

    A Readout System for the STAR Time Projection Chamber

    Full text link
    We describe the readout electronics for the STAR Time Projection Chamber. The system is made up of 136,608 channels of waveform digitizer, each sampling 512 time samples at 6-12 Mega-samples per second. The noise level is about 1000 electrons, and the dynamic range is 800:1, allowing for good energy loss (dE/dxdE/dx) measurement for particles with energy losses up to 40 times minimum ionizing. The system is functioning well, with more than 99% of the channels working within specifications.Comment: 22 pages + 8 separate figures; 2 figures are .jpg photos to appear in Nuclear Instruments and Method

    Harmonic Balance and Averaging Techniques for Stick-Slip Limit-Cycle Determination in Mode-Coupling Friction Self-Excited Systems

    Get PDF
    A minimal model for mode-coupling friction induced instability with Coulomb-type frictional nonlinearity is set up to investigate the applicability and quality of approximative methods to determine the limit cycles of unstable system configurations. It turns out that - due to the multi-degree-of-freedom nature of the mode-coupling instability - harmonic balance approaches yield reasonable results only if applied carefully, i.e. with respect to the special effects of the nonlinearities under consideration. The Krylov-Bogoliubov-Mitropolsky approach yields good results in a straightforward manner, the technique is however formally much more cumbersome

    Biochar and ash amendment effects on mine reclamation in the boreal forest

    Get PDF
    Natural re-vegetation of gold mine tailings, the main waste products of ore processing for gold extraction consisting of crushed rock, is difficult due to their high bioavailability of heavy metals, low nutrient status and limited organic carbon 1-3. Charcoal produced from the burning of organic matter through controlled pyrolysis, hereafter referred to as ‘biochar’, has been utilized extensively in agriculture as a climate-friendly option to remediate nutrient-poor and contaminated soils 4,5. Biochar produced from wood is highly recalcitrant, has a large surface area due to its porous structure and can bind nutrients and water, improving soil fertility 5-7. Biochar can also bind undesirable compounds within the soil such as heavy metals, limiting their bioavailability to plants. Please click on the file below for full content of the abstract

    Opportunities of 5G Mobile Technology for Climate Protection in Switzerland

    Full text link
    5G mobile networks are intended to meet the increasing requirements placed on mobile communications. Producing and operating 5G infrastructure causes direct effects on greenhouse gas (GHG) emissions. Meanwhile, 5G is expected to support applications that contribute to GHG abatement. We investigated (i) the GHG footprint of 5G infrastructure, and (ii) the GHG abatement potential of four 5G-supported use cases (i.e., flexible work, smart grids, automated driving and precision farming) for Switzerland in 2030. Our results show that 5G infrastructure is expected to cause 0.018 Mt CO2 e/year. Per unit of data transmitted, 5G is expected to cause 85% less GHG emissions in 2030 than today’s 2G/3G/4G network mix. The four 5G-supported use cases have the potential to avoid up to 2.1 Mt CO2 e/year; clearly more than the predicted GHG footprint of 5G infrastructure. The use cases benefit especially from ultra-low latency, the possibility to connect many devices, high reliability, mobility, availability and security provided by 5G. To put 5G at the service of climate protection, measures should be taken in two fields. First, the GHG footprint of 5G should be kept small, by installing only as much 5G infrastructure as required, running 5G with electricity from renewable energy sources, and decommissioning older network technologies once 5G is widely available. Second, the GHG abatements enabled by 5G-supported use cases should be unleashed by creating conditions that target GHG reductions and mitigate rebound effects. The final outcome depends largely on the political will to steer the development into the direction of a net GHG reduction

    Sensitivity model study of regional mercury dispersion in the atmosphere

    Get PDF
    Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 ∕ OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat bogs, etc., is highlighted in this study

    Correcting for Distortions due to Ionization in the STAR TPC

    Full text link
    Physics goals of the STAR Experiment at RHIC in recent (and future) years drive the need to operate the STAR TPC at ever higher luminosities, leading to increased ionization levels in the TPC gas. The resulting ionic space charge introduces field distortions in the detector which impact tracking performance. Further complications arise from ionic charge leakage into the main TPC volume from the high gain anode region. STAR has implemented corrections for these distortions based on measures of luminosity, which we present here. Additionally, we highlight a novel approach to applying the corrections on an event-by-event basis applicable in conditions of rapidly varying ionization sources.Comment: 6 pages, 7 figures, proceedings of the Workshop on Tracking in High Multiplicity Environments (TIME 05) in Zurich, Switzerland, submitted to Nucl. Instr. and Meth.

    SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe

    Get PDF
    The US EPA regional emission model SMOKE was adopted and modified to create temporally and spatially distributed emission for Europe and surrounding countries based on official reports and public domain data only. The aim is to develop a flexible model capable of creating consistent high resolution emission data for long-term runs of Chemical Transport Models (CTMs). This modified version of SMOKE, called SMOKE for EUROPE (SMOKE-EU) was successfully used to create hourly gridded emissions for the timespan 1970–2010. <br><br> In this paper the SMOKE-EU model and the underlying European datasets are introduced. Emission data created by SMOKE-EU for the year 2000 are evaluated by comparison to data of three different state-of-the-art emission models. SMOKE-EU produced a range of values comparable to the other three datasets. Further, concentrations of criteria pollutants calculated by the CTM CMAQ using the four different emission datasets were compared against EMEP measurements with hourly and daily resolution. Using SMOKE-EU gave the most reliable modelling of O<sub>3</sub>, NO<sub>2</sub> and SO<sub>4</sub><sup>2−</sup>. The amount of simulated concentrations within a factor of 2 (F2) of the observations for these species are: O<sub>3</sub> (F2 = 0.79, <i>N</i> = 329 197), NO<sub>2</sub> (F2 = 0.55, <i>N</i> = 11 465) and SO<sub>4</sub><sup>2−</sup> (F2 = 0.62, <i>N</i> = 17 536). The lowest values were found for NH<sub>4</sub><sup>+</sup> (F2 = 0.34, <i>N</i> = 7400) and NO<sub>3</sub><sup>−</sup> (F2 = 0.25, <i>N</i> = 6184). NH<sub>4</sub><sup>+</sup> concentrations were generally overestimated, leading to a fractional bias (FB) averaged over 22 measurement stations of (FB = 0.83 ± 0.41) while better agreements with observations were found for SO<sub>4</sub><sup>2−</sup> (FB = 0.06 ± 0.38, 51 stations) and NO<sub>3</sub><sup>−</sup> (FB = 0.13 ± 0.75, 18 stations). <br><br> CMAQ simulations using the three other emission datasets were similar to those modelled using SMOKE-EU emissions. Highest differences where found for NH<sub>4</sub><sup>+</sup> while O<sub>3</sub> concentrations were almost identical

    Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory

    Get PDF
    Nitrogen input from agricultural ammonia emissions into the environment causes numerous environmental and health problems. The purpose of this study is to present and evaluate an improved ammonia emission inventory based on a dynamical temporal parameterization suitable to compare and assess ammonia abatement strategies. The setup of the dynamical time profile (DTP) consists of individual temporal profiles for ammonia emissions, calculated for each model grid cell, depending on temperature, crop type, fertilizer and manure application, as well as on local legislation. It is based on the method of Skjþth et al., 2004 and Gyldenkérne et al., 2005. The method has been modified to cover the study area and to improve the performance of the emission model. To compare the results of the dynamical approach with the results of the static time profile (STP) the ammonia emission parameterizations have been implemented in the SMOKE for Europe emission model. Furthermore, the influence on secondary aerosol formation in the North Sea region and possible changes triggered through the use of a modified temporal distribution of ammonia emissions were analysed with the CMAQ chemistry transport model. The results were evaluated with observations of the European Monitoring and Evaluation Programme (EMEP). The correlation coefficient of NH3 improved significantly for 12 out of 16 EMEP measurement stations and an improvement in predicting the Normalized Mean Error can be seen for particulate NH4+ and NO3−. The prediction of the 95th percentile of the daily average concentrations has improved for NH3, NH4+ and NO3−. The NH3 concentration modelled with the STP is 157% higher in winter, and about 22% lower in early summer than the one modelled with the new DTP. Consequently, the influence of the DTP on the formation of secondary aerosols is particularly noticeable in winter, when the PM2.5 concentration is 25% lower in comparison to the use of STP for temporal disaggregation. Besides, the formation of particulate SO42− is not influenced by the use of the DTP
    • 

    corecore