97 research outputs found
Neurotophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders
Recommended from our members
A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche
Ex vivo studies of human disease, such as acute myeloid leukemia, are generally limited to the analysis of two-dimensional cultures which often misinterpret the effectiveness of chemotherapeutics and other treatments. Here we show that matrix metalloproteinase-sensitive hydrogels prepared from poly(ethylene glycol) and heparin functionalized with adhesion ligands and pro-angiogenic factors can be instrumental to produce robust three-dimensional culture models, allowing for the analysis of acute myeloid leukemia development and response to treatment. We evaluated the growth of four leukemia cell lines, KG1a, MOLM13, MV4-11 and OCI-AML3, as well as samples from patients with acute myeloid leukemia. Furthermore, endothelial cells and mesenchymal stromal cells were co-seeded to mimic the vascular niche for acute myeloid leukemia cells. Greater drug resistance to daunorubicin and cytarabine was demonstrated in three-dimensional cultures and in vascular co-cultures when compared with two-dimensional suspension cultures, opening the way for drug combination studies. Application of the C-X-C chemokine receptor type 4 (CXCR4) inhibitor, AMD3100, induced mobilization of the acute myeloid leukemia cells from the vascular networks. These findings indicate that the three-dimensional tri-culture model provides a specialized platform for the investigation of cell-cell interactions, addressing a key challenge of current testing models. This ex vivo system allows for personalized analysis of the responses of patients’ cells, providing new insights into the development of acute myeloid leukemia and therapies for this disease
In Vivo Expansion of Co-Transplanted T Cells Impacts on Tumor Re-Initiating Activity of Human Acute Myeloid Leukemia in NSG Mice
Human cells from acute myeloid leukemia (AML) patients are frequently transplanted into immune-compromised mouse strains to provide an in vivo environment for studies on the biology of the disease. Since frequencies of leukemia re-initiating cells are low and a unique cell surface phenotype that includes all tumor re-initiating activity remains unknown, the underlying mechanisms leading to limitations in the xenotransplantation assay need to be understood and overcome to obtain robust engraftment of AML-containing samples. We report here that in the NSG xenotransplantation assay, the large majority of mononucleated cells from patients with AML fail to establish a reproducible myeloid engraftment despite high donor chimerism. Instead, donor-derived cells mainly consist of polyclonal disease-unrelated expanded co-transplanted human T lymphocytes that induce xenogeneic graft versus host disease and mask the engraftment of human AML in mice. Engraftment of mainly myeloid cell types can be enforced by the prevention of T cell expansion through the depletion of lymphocytes from the graft prior transplantation
Case Report: ANXA2 Associated Life-Threatening Coagulopathy With Hyperfibrinolysis in a Patient With Non-APL Acute Myeloid Leukemia
Patients with acute promyelocytic leukemia (APL) often present with potentially lifethreatening
hemorrhagic diathesis. The underlying pathomechanisms of APLassociated
coagulopathy are complex. However, two pathways considered to be APLspecific
had been identified: 1) annexin A2 (ANXA2)-associated hyperfibrinolysis and 2)
podoplanin (PDPN)-mediated platelet activation and aggregation. In contrast, since
disseminated intravascular coagulation (DIC) is far less frequent in patients with non-
APL acute myeloid leukemia (AML), the pathophysiology of AML-associated hemorrhagic
disorders is not well understood. Furthermore, the potential threat of coagulopathy in non-
APL AML patients may be underestimated. Herein, we report a patient with non-APL AML
presenting with severe coagulopathy with hyperfibrinolysis. Since his clinical course
resembled a prototypical APL-associated hemorrhagic disorder, we hypothesized
pathophysiological similarities. Performing multiparametric flow cytometry (MFC) and
immunofluorescence imaging (IF) studies, we found the patient’s bone-marrow
mononuclear cells (BM-MNC) to express ANXA2 - a biomarker previously thought to be
APL-specific. In addition, whole-exome sequencing (WES) on sorted BM-MNC (leukemiaassociated
immunophenotype (LAIP)1: ANXAlo, LAIP2: ANXAhi) demonstrated high intratumor
heterogeneity. Since ANXA2 regulation is not well understood, further research to
determine the coagulopathy-initiating events in AML and APL is indicated. Moreover,
ANXA2 and PDPN MFC assessment as a tool to determine the risk of life-threatening DIC
in AML and APL patients should be evaluated
Graft-versus-Host disease Prophylaxis with Everolimus and Tacrolimus Is Associated with a High Incidence of Sinusoidal Obstruction Syndrome and Microangiopathy: Results of the EVTAC Trial
AbstractA calcineurin inhibitor combined with methotrexate is the standard prophylaxis for graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Everolimus, a derivative of sirolimus, seems to mediate antileukemia effects. We report on a combination of everolimus and tacrolimus in 24 patients (median age, 62 years) with either myelodysplastic syndrome (MDS; n = 17) or acute myeloid leukemia (AML; n = 7) undergoing intensive conditioning followed by HSCT from related (n = 4) or unrelated (n = 20) donors. All patients engrafted, and only 1 patient experienced grade IV mucositis. Nine patients (37%) developed acute grade II-IV GVHD, and 11 of 17 evaluable patients (64%) developed chronic extensive GVHD. Transplantation-associated microangiopathy (TMA) occurred in 7 patients (29%), with 2 cases of acute renal failure. The study was terminated prematurely because an additional 6 patients (25%) developed sinusoidal obstruction syndrome (SOS), which was fatal in 2 cases. With a median follow-up of 26 months, the 2-year overall survival rate was 47%. Although this new combination appears to be effective as a prophylactic regimen for acute GVHD, the incidence of TMA and SOS is considerably higher than seen with other regimens
Reproducible measurable residual disease detection by multiparametric flow cytometry in acute myeloid leukemia
Measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC) is associated with unfavorable outcome in patients with AML. A simple, broadly applicable eight-color panel was implemented and analyzed utilizing a hierarchical gating strategy with fixed gates to develop a clear-cut LAIP-based DfN approach. In total, 32 subpopulations with aberrant phenotypes with/without expression of markers of immaturity were monitored in 246 AML patients after completion of induction chemotherapy. Reference values were established utilizing 90 leukemia-free controls. Overall, 73% of patients achieved a response by cytomorphology. In responders, the overall survival was shorter for MRDpos patients (HR 3.8, p = 0.006). Overall survival of MRDneg non-responders was comparable to MRDneg responders. The inter-rater-reliability for MRD detection was high with a Krippendorffs α of 0.860. The mean time requirement for MRD analyses at follow-up was very short with 04:31 minutes. The proposed one-tube MFC approach for detection of MRD allows a high level of standardization leading to a promising inter-observer-reliability with a fast turnover. MRD defined by this strategy provides relevant prognostic information and establishes aberrancies outside of cell populations with markers of immaturity as an independent risk feature. Our results imply that this strategy may provide the base for multicentric immunophenotypic MRD assessment
Recommended from our members
Retargeting of UniCAR T cells with an in vivo synthesized target module directed against CD19 positive tumor cells
Recent treatments of leukemias with T cells expressing chimeric antigen receptors (CARs) underline their impressive therapeutic potential but also their risk of severe side effects including cytokine release storms and tumor lysis syndrome. In case of cross-reactivities, CAR T cells may also attack healthy tissues. To overcome these limitations, we previously established a switchable CAR platform technology termed UniCAR. UniCARs are not directed against typical tumor-associated antigens (TAAs) but instead against a unique peptide epitope: Fusion of this peptide epitope to a recombinant antibody domain results in a target module (TM). TMs can cross-link UniCAR T cells with tumor cells and thereby lead to their destruction. So far, we constructed TMs with a short half-life. The fast turnover of such a TM allows to rapidly interrupt the treatment in case severe side effects occur. After elimination of most of the tumor cells, however, longer lasting TMs which have not to be applied via continous infusion would be more convenient for the patient. Here we describe and characterize a TM for retargeting UniCAR T cells to CD19 positive tumor cells. Moreover, we show that the TM can efficiently be produced in vivo from producer cells housed in a sponge-like biomimetic cryogel and, thereby, serving as an in vivo TM factory for an extended retargeting of UniCAR T cells to CD19 positive leukemic cells
- …