65 research outputs found

    Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer\u27s Disease, ALS, and Harmful Stress Conditions

    Get PDF
    Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer\u27s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors-such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFalpha), apoliprotein E (ApoE), and certain miRNAs-known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds

    4. Painful diabetic polyneuropathy

    Get PDF
    Introduction: Pain as a symptom of diabetic polyneuropathy (DPN) significantly lowers quality of life, increases mortality and is the main reason for patients with diabetes to seek medical attention. The number of people suffering from painful diabetic polyneuropathy (PDPN) has increased significantly over the past decades. Methods: The literature on the diagnosis and treatment of diabetic polyneuropathy was retrieved and summarized. Results: The etiology of PDPN is complex, with primary damage to peripheral nociceptors and altered spinal and supra-spinal modulation. To achieve better patient outcomes, the mode of diagnosis and treatment of PDPN evolves toward more precise pain-phenotyping and genotyping based on patient-specific characteristics, new diagnostic tools, and prior response to pharmacological treatments. According to the Toronto Diabetic Neuropathy Expert Group, a presumptive diagnosis of “probable PDPN” is sufficient to initiate treatment. Proper control of plasma glucose levels, and prevention of risk factors are essential in the treatment of PDPN. Mechanism-based pharmacological treatment should be initiated as early as possible. If symptomatic pharmacologic treatment fails, spinal cord stimulation (SCS) should be considered. In isolated cases, where symptomatic pharmacologic treatment and SCS are unsuccessful or cannot be used, sympathetic lumbar chain neurolysis and/or radiofrequency ablation (SLCN/SLCRF), dorsal root ganglion stimulation (DRGs) or posterior tibial nerve stimulation (PTNS) may be considered. However, it is recommended that these treatments be applied only in a study setting in a center of expertise. Conclusions: The diagnosis of PDPN evolves toward pheno-and genotyping and treatment should be mechanism-based.</p

    BET bromodomain inhibitors PFI-1 and JQ1 are identified in an epigenetic compound screen to enhance C9ORF72 gene expression and shown to ameliorate C9ORF72-associated pathological and behavioral abnormalities in a C9ALS/FTD model

    Get PDF
    BACKGROUND: An intronic GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), referred to as C9ALS/FTD. No cure or effective treatment exist for C9ALS/FTD. Three major molecular mechanisms have emerged to explain C9ALS/FTD disease mechanisms: (1) C9ORF72 loss-of-function through haploinsufficiency, (2) dipeptide repeat (DPR) proteins mediated toxicity by the translation of the repeat RNAs, and more controversial, (3) RNA-mediated toxicity by bidirectional transcription of the repeats that form intranuclear RNA foci. Recent studies indicate a double-hit pathogenic mechanism in C9ALS/FTD, where reduced C9ORF72 protein levels lead to impaired clearance of toxic DPRs. Here we explored whether pharmacological compounds can revert these pathological hallmarks in vitro and cognitive impairment in a C9ALS/FTD mouse model (C9BAC). We specifically focused our study on small molecule inhibitors targeting chromatin-regulating proteins (epidrugs) with the goal of increasing C9ORF72 gene expression and reduce toxic DPRs. RESULTS: We generated luciferase reporter cell lines containing 10 (control) or \u3e /= 90 (mutant) G4C2 HRE located between exon 1a and 1b of the human C9ORF72 gene. In a screen of 14 different epidrugs targeting bromodomains, chromodomains and histone-modifying enzymes, we found that several bromodomain and extra-terminal domain (BET) inhibitors (BETi), including PFI-1 and JQ1, increased luciferase reporter activity. Using primary cortical cultures from C9BAC mice, we further found that PFI-1 treatment increased the expression of V1-V3 transcripts of the human mutant C9ORF72 gene, reduced poly(GP)-DPR inclusions but enhanced intranuclear RNA foci. We also tested whether JQ1, an BETi previously shown to reach the mouse brain by intraperitoneal (i.p.) injection, can revert behavioral abnormalities in C9BAC mice. Interestingly, it was found that JQ1 administration (daily i.p. administration for 7 days) rescued hippocampal-dependent cognitive deficits in C9BAC mice. CONCLUSIONS: Our findings place BET bromodomain inhibitors as a potential therapy for C9ALS/FTD by ameliorating C9ORF72-associated pathological and behavioral abnormalities. Our finding that PFI-1 increases accumulation of intranuclear RNA foci is in agreement with recent data in flies suggesting that nuclear RNA foci can be neuroprotective by sequestering repeat transcripts that result in toxic DPRs

    PSD95 Suppresses Dendritic Arbor Development in Mature Hippocampal Neurons by Occluding the Clustering of NR2B-NMDA Receptors

    Get PDF
    Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2–25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.National Institutes of Health (U.S.) (Grant EY014074

    Mature iPSC-derived astrocytes of an ALS/FTD patient carrying the TDP43A90V mutation display a mild reactive state and release polyP toxic to motoneurons

    Get PDF
    Astrocytes play a critical role in the maintenance of a healthy central nervous system and astrocyte dysfunction has been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There is compelling evidence that mouse and human ALS and ALS/FTD astrocytes can reduce the number of healthy wild-type motoneurons (MNs) in co-cultures or after treatment with astrocyte conditioned media (ACM), independently of their genotype. A growing number of studies have shown that soluble toxic factor(s) in the ACM cause non-cell autonomous MN death, including our recent identification of inorganic polyphosphate (polyP) that is excessively released from mouse primary astrocytes (SOD1, TARDBP, and C9ORF72) and human induced pluripotent stem cells (iPSC)-derived astrocytes (TARDBP) to kill MNs. However, others have reported that astrocytes carrying mutant TDP43 do not produce detectable MN toxicity. This controversy is likely to arise from the findings that human iPSC-derived astrocytes exhibit a rather immature and/or reactive phenotype in a number of studies. Here, we have succeeded in generating a highly homogenous population of functional quiescent mature astrocytes from control subject iPSCs. Using identical conditions, we also generated mature astrocytes from an ALS/FTD patient carrying the TDP43A90V mutation. These mutant TDP43 patient-derived astrocytes exhibit key pathological hallmarks, including enhanced cytoplasmic TDP-43 and polyP levels. Additionally, mutant TDP43 astrocytes displayed a mild reactive signature and an aberrant function as they were unable to promote synaptogenesis of hippocampal neurons. The polyP-dependent neurotoxic nature of the TDP43A90V mutation was further confirmed as neutralization of polyP in ACM derived from mutant TDP43 astrocytes prevented MN death. Our results establish that human astrocytes carrying the TDP43A90V mutation exhibit a cell-autonomous pathological signature, hence providing an experimental model to decipher the molecular mechanisms underlying the generation of the neurotoxic phenotype

    Contribution to van der Waerden's conjecture

    Get PDF
    AbstractIn this paper, we give two different elementary proofs for the inequality which states that the permanent of doubly stochastic matrices is greater than or equal to (n!/nn). This inequality was proved earlier by the author, and independently by Egorychev and Falikman

    Epigenetic control of the bone-master Runx2 gene during Osteoblast-lineage commitment by the Histone Demethylase JARID1B/KDM5B

    Get PDF
    Q2Q128329-28342Transcription factor Runx2 controls bone development and osteoblast differentiation by regulating expression of a significant number of bone-related target genes. Here, we report that transcriptional activation and repression of the Runx2 gene via its osteoblast-specific P1 promoter (encoding mRNA for the Runx2/p57 isoform) is accompanied by selective deposition and elimination of histone marks during differentiation of mesenchymal cells to the osteogenic and myoblastic lineages. These epigenetic profiles are mediated by key components of the Trithorax/COMPASS-like and Polycomb group complexes together with histone arginine methylases like PRMT5 and lysine demethylases like JARID1B/KDM5B. Importantly, knockdown of the H3K4me2/:3 demethylase JARID1B, but not of the demethylases UTX and N066, prevents repression of the Runx2 P1 promoter during myogenic differentiation of mesenchymal cells. The epigenetically forced expression of Runx2/p57 and osteocalcin, a classical bone-related target gene, under myoblastic-differentiation is accompanied by enrichment of the H3K/Ime3 and H3K27ac marks at the Runx2 P1 promoter region. Our results identify JARID1B as a key component of a potent epigenetic switch that controls mesenchymal cell fate into myogenic and osteogenic lineages

    Widespread loss of the silencing epigenetic mark H3K9me3 in astrocytes and neurons along with hippocampal-dependent cognitive impairment in C9orf72 BAC transgenic mice

    Get PDF
    Background: Hexanucleotide repeat expansions of the G4C2 motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC). Results: Chromocenters that constitute pericentric constitutive heterochromatin were visualized as DAPI- or Nucblue-dense foci in nuclei. Cultured C9BAC astrocytes exhibited a reduced staining signal for H3K9me3 (but not for H3K9me2) at chromocenters that was accompanied by a marked decline in the global nuclear level of this mark. Similar depletion of H3K9me3 at chromocenters was detected in astrocytes and neurons of the spinal cord, motor cortex, and hippocampus of C9BAC mice. The alterations of H3K9me3 in the hippocampus of C9BAC mice led us to identify previously undetected neuronal loss in CA1, CA3, and dentate gyrus, as well as hippocampal-dependent cognitive deficits. Conclusions: Our data indicate that a loss of the repressive mark H3K9me3 in astrocytes and neurons in the central nervous system of C9BAC mice represents a signature during neurodegeneration and memory deficit of C9ALS/FTD. © 2020 The Author(s).Indexación: Scopu

    Digital Scholarly Editions as Interfaces

    Get PDF
    The present volume “Digital Scholarly Editions as Interfaces” is the follow-up publication of the same-titled symposium that was held in 2016 at the University of Graz and the twelfth volume of the publication series of the Institute for Documentology and Scholarly Editing (IDE). It is the result of a successful collaboration between members of the Centre for Information Modelling at the University of Graz, the Digital Scholarly Editions Initial Training Network DiXiT, a EC Marie SkƂodowska-Curie Action, and the IDE. All articles have undergone a peer reviewing process and are published in Open Access. They document the current state of research on design, application and implications of both user and machine interfaces in the context of digital scholarly editions. The editors of the volume are grateful to the Marie SkƂodowska-Curie Actions for enabling not only the symposium in 2016 but also the publication of the present volume with their financial support. Special thanks are also due to the staff of the Centre for Information Modelling, above all Georg Vogeler, who contributed to the successful organisation and completion of the symposium and this volume with their ideas and continuous support. Furthermore we want to thank all authors as well as all peer reviewers for the professional cooperation during the publication process. Last but not least we want to thank the many people involved in creating the present volume: Barbara Bollig (Trier) for language corrections and formal suggestions, Bernhard Assmann and Patrick Sahle (Cologne) for support and advises during the typese ing process, Selina Galka (Graz) for verifying and archiving (archive.org) all referenced URLs in January 2018, Julia Sorouri (Cologne) for the design of the cover as well as the artist Franz Konrad (Graz), who provided his painting “Desktop” (www.franzkonrad.com/gallery/desktop-2008-2010/) as cover image. We hope you enjoy reading and get as much intrigued by the topic “Digital Scholarly Editions as Interfaces” as we did

    Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS)

    Get PDF
    The human SOD1G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3–4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved
    • 

    corecore