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A b s t r a c t - - I n  this paper, we give two different elementary proofs for the inequality which states 
tha t  the permanent  of doubly stochastic matrices is greater than or equal to ( n ! / n ~ ) .  This inequality 
was proved earlier by the author, and independently by Egorychev and Falikman. @ 2001 Elsevier 
Science Ltd. All rights reserved. 
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1.  I N T R O D U C T I O N  

In  this paper,  we use the  following notations.  Let AA be the set of the n × n matr ices  with real 

entries, where n _> 2 is a fixed integer. Let ~ be the set of the column stochast ic  matrices.  Let 
7-( c / (2  be the set of  the doubly  stochastic matrices. A* E 2t4 denotes the t ranspose  of A E 2vl. 

Let  the  mat r ix  

A :=  (ajk) E 3,4 

be given. Then,  

A J I ' " J ~  : . . . . . . . . . .  
i 1"'" ik 

a i ~ j l  " • " a i ~ j l  

where 

i~ ((~ = 1 , . . . , k ) ,  jZ (/~ = 1 . . . .  ,l),  

are positive integers satisfying 

l < _ i l < . . . < i k < _ n ,  l < _ j l < . . . < j z < _ n ,  

and k and l run over the  set { 1 , . . . ,  n}. Moreover, let 

: =  E a l i l  • • • a n i , ,  Per A 

be the  pe rmanen t  of  A, where the  summat ion  is extended over all pernmtat ions .  The  propert ies  
of the  permanents  used in this paper  can be found in the monograph  [1]. 
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The following conjecture was formulated by van der Waerden in 1926 [2]. If A ~ 7-/, then 

'lz! 
Per A > - -  

- -  , l l n  ' 

with equality if and only if A = A0, where A0 C ?-/is the matr ix  with all entries a~j = 1/n. 

The first complete proof of this conjecture was given by Egorychev in [3], and independently 
by Falikman in [4]. Their proof is based on a theorem of Alexandrov [5] which was generalised 
by London [6]. In the following, we shall refer to it as the van der Waerden-Egoroychev-Falikman 

(WEF) theorem. 
In the following, we give two elementary proofs of the WEF theorem. These two proofs are 

quite different from that  given in [3] and [4]. We shall not even use theorems of London and 

Alexandrov. 

In the first proof, we shall use the following lemma [7, Lemma 4.1]. 

LEMIvIA 1.1. Let  us suppose that  the real numbers aj ,  bj (j = 1 , . . .  ,n) satis(v the tbllowing 

monotonic i ty  conditions: 

al  >_ "'" >_ a~, bl >_ . . .  >_ bn. 

Then,  the inequality 

1 ajbj >_ 1 aj bj >_ ajb,~_j+l 

j = l  j = l  j = l  j = l  

(1.1) 

holds, wi th  equali ty  i f  and only i f  either al = a~, or bl = bn. 

One can explain inequality (1.1) saying that  the maximum corresponds to "similar ordering" 
of a l , . . .  ,an, and b l , . . . ,  b~, and the minimmn to "opposite ordering" of them; some remarks 

with respect to this lemma can be found in the paper [8). The second proof of W E F ' s  theorem 
is based on its equivalency to the theorem of the author [9]. This remark shows that  the proof 

of W E F ' s  theorem was ready in 1977. 
The structure of the paper  is the following. Section 2 gives the first proof of WEE's  theorem, 

and Section 3 the second one, respectively. 

2. T H E  F I R S T  P R O O F  

By Theorem 3.1 of the paper  [7], it is enough to prove the following. 

T t l E O R E M  2 . 1 .  E q u a t i o n  

has only one solution A = Ao over 7-{. 

PROOF. Let A :=(aoA. ) E ~/. Then, 

Per A - 
It n 

n k 
Per A = E aj~: Pet" Aj,  

k =  1 

where 1 < 3 -< 'n is a fixed integer, and A)' is tlm (n - 1) × (n - 1) matr ix  obtained from A by 
deleting the jth row, and k th column. 

Let us denote now by permutat ions a-j1,... ,~j,, and a j~ , . . . , a j , ,  of elements a a l , . . . , a j , ,  the 
similar ordering, and opposite ordering, respectively, with respect to the elenmnts of the sequence 

Per A ] , . . . ,  Per A) ~. 
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Then,  

E g j k  Per  A)" > e e r A  > E a _ j k  e e r A ~  
k = l  k = l  

(see [10, T h e o r e m  368]), and consequent ly  by L e m m a  1.1, the equal i ty  

P e r A =  1 Eajk PerA~ (2.1) 
k=l  k = l  

holds if and only if ei ther  

OI" 

1 
a j l  = . . . .  ajn = - ,  (2.2) 

?t 

Per A] . . . . .  Per  A} ~. 

Apply ing  this procedure  for j = 1 , . . . ,  n, we get t ha t  equalities (2.2) 
j : I~ . . .~ lZ .  

Let  denote  now the pe rmuta t ions  g l k , - . .  ,a~k and a m , . . .  ,a~m of the  e lements  a m , . . . ,  a~m by 

similar  ordering,  and opposi te  ordering,  respectively, with respect  to the  e lements  of the  sequence 

Pet" Af ,  . . . , Per  A,~. 

Then ,  in the  same  way as above, 

n 

E ajk Per  A~ > Per A > _ajk Per  Ak 
_ _ d • 

j= t  j= l  

Consequent ly,  equal i ty  

holds if and only if ei ther  

o r  

Per A = _1 k n aj k Per  Aj 
j = l  j = l  

(2.3) 

and (2.3) nmst  hold for 

(2.4) 

1 
a l ~ -  . . . . .  a , ~ .  = - ,  ( 2 . 5 )  

Per A~ . . . . .  Per  A,~ (2.6) 

holds. Apply ing  this procedure  fl)r k = 1 . . . .  , 'n, we get t h a t  equalities (2.5) and (2.6) are satisfied 
for k = 1 , . . . , n .  

Sumnring up, we get t ha t  equalities (2.1) and (2.4) are satisfied in the  cases j ,  k = 1 , . . . ,  .,~ if 
and only if e i ther  A = A0, or all the  quant i t ies  

Pet" A~, j ,  k = 1 . . . . .  n, (2.7) 

are equal.  

F rom here, if all the quant i t ies  (2.7) are equal, then  

(2.8) Per  A)  = Per  A, j ,  k = 1 . . . . .  n. 

Consequent ly,  it remains  to show if condit ion (2.8) is satisfied, then  A = A0. | 
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THEOREM 2.2. Let  A E 7-[. I f  condition (2.8) is satisfied, then A = Ao. 

PROOF. Let  us wri te  ma t r ix  A in the form 

A = (A~,-2a,~-lan), 

where 
A,~-2 = A 1 ' ' ' n - 2  (2 .9)  

and a ~ - i  and a,~ are the (n - 1) th and n th cohnnn vector  of A, respectively. 

Let  
Ajk,  1 <_ j < k < n, (2.10) 

be the  p e r m a n e n t s  of the (n - 2) x (n - 2) mat r ix ,  which one can obta in  fi 'om ma t r ix  (2.9) by 
delet ing the  j th and k th rows. Thus,  

Per  (A,~_ 2a,~-  I an ) = 

P e r ( A n - 2 a n - l a n - 1 )  = 

Per(An_2ana~) = 

E P e r ( a ' m - 1  aJ '~ )AJk '  
\ akn-1 akn J l<j<k~n 

E Per(ajn-1 a j n - ' )  
\ akn-1 akn-1 Ajk' l~j<k~n 

E Per(aJ~z aJn) Ajk" 
\ akn akn l~j<k~n 

(2.11) 

Using condit ion (2.8), 

Per(AT,-2an- la~)  = Per (An -2an - la ,~ - l )  = Per(A,~_ua,~an) = Per A, 

and consequently,  

1 [Per(An-2an- la ,~- l )  + Per(A,~_2a~a~)]; Per(A,~_2a,~_la,~) = -~ 

i .e . ,  

Let 

be the upper  sunl, and 

l<_j<k<_n 

A:= 
l_<j<k<_n 

AjA.(aa,,~ - ak,,-1) (aj,~-i - a j , J  = 0. 

Ajk (akn -- akn-1) (ajn-1 -- ajn) 

Z~X:= E AJ k ( a k n - a k n - 1 ) ( a j n - l - a j n )  
l<j<k_<n 

tile lower sum of e lements  (2.10), wi th  respect  to the sequence 

(akn - ak.,~-t) (aj,~-i ao,~), 1 < j < k _< 'n. (2.12) 

Consequently,  
k _ > k = O > k .  

Moreover,  
- -  1 

- ( ~ )  l ~ j < k < . ,  t < j < ~ : < ~  



van der Waerden's Conjecture 1435 

by L e m m a  1.1, wi th  equal i ty  if and only if ei ther  all the  quant i t ies  (2.8), or all the quant i t ies  (2.12) 

are equal.  In this case, 

E Ajk E (akn - a/~,~-1)(aj,~_, - aj,~) = 0, (2.13) 
l<_j<k<_n l<_j<k<_n 

by L e m m a  1.1. Since the  numbers  (2.10) are positive, we get t ha t  necessari ly 

- - = O ,  ( 2 . 1 4 )  

l<_ j<k<n  

by (2.13), and all the  quant i t ies  (2.12) are equal. On the  other  hand,  

E (ak~ --  a k n - 1 ) ( a j n - I  --  a j n )  
l_<j<k<_n 

, } = I_ ( a k n  - -  akn--l) ( a j , n _  I - -  a j , ~ )  - -  ( a i , ~  - -  a j n - t ) ( a o n - 1  - -  a j n )  
2 ~,k=l j= l  j= l  

= ~ ( a j n  --  a j n - 1 ) 2 ;  

j= l  

i.e., we ob ta ined  t h a t  (2.14) holds if and only if a,~ = an-1 .  Since a n - i ,  an m a y  be two a rb i t r a ry  
co lumns  of A, we ob ta ined  tha t  two a rb i t r a ry  columns of A are equal; i.e., all columns of A are 
equal; i.e., A = A0 if A C 7/. This  means  the condit ion t h a t  all the  e lements  of (2.14) are equal  

is satisfied. 
This  finishes the  proof  of T h e o r e m  2.2, and of Theo rem 2.1, too. | 

3 .  T H E  S E C O N D  P R O O F  

In  his pape r  [9], the  au thor  proved the following theorem.  (This pape r  has a Hungar i an  

version [11].) 
If  the  row sums and the  column sums of A c 2t4 are equal to one, moreover  

x E R ,  y E R ,  x + y = l ,  

then  
n~ 

x2 Per(AA.)l/2 + y2 Per(A.A)l/2 + 2xy P e r A  > - -  
, _ _  ~ l n  ~ 

with  equal i ty  if and only if A = A0. 
We need the  following par t icular  case of this theorem.  

THEOREM 3.1. If  A C 7~ and 
x_>O, y > O ,  : r + y =  1, 

then the permanental equation 

x2 Per(AA,)l/2 + y2 Per(A,A)l/2 + 2xy Per A - 

has  only one solution A = Ao over 7-{. 

T h e  sui table  par t icu lar  case of the  W E F ' s  theorem is the following. 

TIIEOREM 3.2. I[ A C H, then the equation 

n! 
Pet' A - 

I t  n 

has only one solution A = Ao over ~ .  

T h e  aim of this sect ion is to show the following theorem.  

n! 
'n '~ (3.1) 
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THEOREIVl 3.3. IrA E "H, then Theorems 3.1 and 3.2 are equivalent. 

PROOF. First  we show if Theorem 3.2 holds, then Theorem 3.1 holds, too. Namely, if Theorem 3.2 

holds, then the W E F ' s  theorem is valid, too. Consequently, 

Per A >_ --,n ~n! Per(AA.)V2 >_ --,n nn! Per(A.A)l/2 _> __n '~n! , 

with equali ty in the three inequalities if and only if 

A = (AA*) 1/2 = (A'A) 1/2 = Ao. 

Consequently,  

x2 Per(AA.)l/2 + y2 Per(A.A)U2 + 2zy P e r A  > (x + y)2 n! _ n! 

with equali ty if and only if 

Per(AA*) 1/2 = Per(A'A) t/2 = Pet 'A = n: 

i.e., if A = A0 by Theorem 3.2. This means Theorem 3.2 contains Theorem 3.1. 

\~.~ show now tha t  conversely, Theorem 3.1 contains Theorem 3.2. Namely, identi ty (3.1) can 

be wri t ten in the form 

x'Z [ Per(AA*) t/2 + Per(A'A) 1/2-  2 P e r A ]  

?~n j 

Thus,  (3.1) holds if and only if 

1[ Por/A A lJ ] P e r A  = ~ Per(AA* + 

Pet" A = Per(A'A) 1/2, 
/Z ! 

Per(A*A)l/2 = - - .  
?)n 

From here, 

Subst i tu t ing 

Per A = Per(AA*)t /2  = Per (A* A) 1/2. 

Per(AA*) 1/2 = Pet' A, 

into polynomial  (3.1), we get 

Per(A'A) 1/2 = Per A, 

n! 
P e r A  = - - ,  ?l n 

which has the only solution A = A0 over 7-{ by Theorem 3.1. Compar ing  the two proved state- 

ments,  we get Theorem 3.2. 

Since Theorem 3.2 contains tile full W E F ' s  theorem, we obtained a new proof  of this theorem 

by Theorem 3.3. | 
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