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Abstract—In this paper, we give two different elementary proofs for the inequality which states
that the permanent of doubly stochastic matrices is greater than or equal to (n!/n™). This inequality
was proved earlier by the author, and independently by Egorychev and Falikman. ©) 2001 Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we use the following notations. Let M be the set of the n x n matrices with real

entries, where n > 2 is a fixed integer. Let K be the set of the column stochastic matrices. Let

H C K be the set of the doubly stochastic matrices. A* € M denotes the transpose of 4 € M.
Let the matrix

A:= (ajk) eM
be given. Then,
o Qiygy 0 Gy
Jregr .
Al = ,
Qipjy 1 Qigy

where

are positive integers satisfying
1<) < < <, 1< <--- < g <n,
and k& and [ run over the set {1,...,n}. Moreover, let
Per A:= Z G1iy - Qni,

be the permanent of A, where the summation is extended over all permutations. The properties
of the permanents used in this paper can be found in the monograph [1].
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The following conjecture was formulated by van der Waerden in 1926 [2]. If A € M, then

Per A > —71—!-,
,’lﬂ.
with equality if and only if A = Ay, where Ap € H is the matrix with all entries a;; = 1/n.

The first complete proof of this conjecture was given by Egorychev in (3], and independently
by Falikman in [4]. Their proof is based on a theorem of Alexandrov [5] which was generalised
by London [6]. In the following, we shall refer to it as the van der Waerden-Egoroychev-Falikman
(WEF) theorem.

In the following, we give two elementary proofs of the WEF theorem. These two proofs are
quite different from that given in [3] and [4]. We shall not even use theorems of London and
Alexandrov.

In the first proof, we shall use the following lemma [7, Lemma 4.1}.

LEMMA 1.1. Let us suppose that the real numbers a;, b; (j = 1,...,n) satisfy the following
monotonicity conditions:
ay z - 2 ap, by 2+ 2 by.

Then, the inequality

1 n 1 mn 1 k() 1 n
;Z%by‘ > ;}:ajgzbj = Ezajbn—ﬂ—l (1.1)
j=1 =1 = P

holds, with equality if and only if either ay = a,, or by = b,,.

One can explain inequality (1.1) saying that the maximum corresponds to “similar ordering”
of a1,...,an, and by,...,b,, and the minimum to “opposite ordering” of them; some remarks
with respect to this lemma can be found in the paper [8]. The second proof of WEF’s theorem
is based on its equivalency to the theorem of the author [9]. This remark shows that the proof
of WEF’s theorem was ready in 1977.

The structure of the paper is the following. Section 2 gives the first proof of WEF’s theorem,
and Section 3 the second one, respectively.

2. THE FIRST PROOF
By Theorem 3.1 of the paper [7], it is enough to prove the following.

THEOREM 2.1. Equation

nl
Per A = »

n"
has only one solution A = Ay over H.

PRrOOF. Let A:=(a;;) € H. Then,

T
Per A = Z a i, Per A;*',
k=1

where 1 < 5 < n is a fixed integer, and A;‘f is the (n — 1) x (n — 1) matrix obtained from A by

th row, and k™ column.

deleting the j
Let us denote now by permutations @y, ,...,a;, and g, ....,q;, of elements a;,,....q;, the

similar ordering, and opposite ordering, respectively, with respect to the elements of the sequence

PerAJI-, .., Per A7,
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Then,

n n
— k ) k
a5k PerAj > Per A > Zgjk PerAj
k=1 k=1

(see [10, Theorem 368]), and consequently by Lemma 1.1, the equality

1 72 n
er A nZ(l]kZPel A3 (2.1)
k=1 k=1
holds if and only if either
1
Ay, == 0Qjn = ﬁ) (22)
or
PerAjl- = =Per A7 (2.3)

Applying this procedure for j = 1,...,n, we get that equalities (2.2) and (2.3) must hold for
7=1,...,n.

Let denote now the permutations @y, ..., Gk and @y, . .., &, of the elements ayy, ..., ans by
similar ordering, and opposite ordering, respectively, with respect to the elements of the sequence

Per Af, ..., Per A%

Then, in the same way as above,
k13 n
Zﬁjk Per A§ > PerA > Zgjk Per Aﬁ”

j=1 j=1

Consequently, equality

1 T n i
Per A = EZaijPerAjY (2.4)
j=1  j=1
holds if and only if either
1
a1k = = Qnk = ;7 (2 5)
or
Per AY = ... = Per AF (2.6)

holds. Applying this procedure for k = 1,...,n, we get that equalities (2.5) and (2.6) are satisfied
fork=1,...,n.

Summing up, we get that equalities (2.1) and (2.4) are satisfied in the cases j,k = 1,...,n if
and only if either A = Ay, or all the quantities

PerAf, Bhk=1,...,n, (2.7)

are equal.
From here, if all the quantities (2.7) are equal, then

PerAj”f = Per A, Jk=1,...,n. (2.8)

Consequently, it remains to show if condition (2.8) is satisfied, then A = A;. 1
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THEOREM 2.2. Let A € H. If condition (2.8) is satisfied, then A = Ay.

PROOF. Let us write matrix A in the form
A= (An-‘zan‘lan):

where
Ap_g = A2 (2.9)

thand nt column vector of A, respectively.

and a,_1 and a, are the (n — 1)
Let,

Ajk, 1<j<k<n, (2.10)

be the permanents of the (n — 2) x (n — 2) matrix, which one can obtain from matrix (2.9) by
deleting the j*" and k*" rows. Thus,

Ajp— a;
. _ E : jn—1 n
Per (A‘IL*"Za’Il‘—la‘n) = Per ( ! ) Ajlca

Qkn~1 Ckn

1<j<k<n
Ajn—1 Gjp—1
Per(An_gan_10,-1) = Z Per (a]n a]n >Ajk., (2.11)
1<j<k<n kn—1 kn-1

Per(A, _sana,) = Z Per (aj" @jn > Ak

Uk Ok
1< jk<n kn kn
Using condition (2.8),
Per(Ay,—2an_10,) = Per(An_sa,_1a,-1) = Per(A,.2ana,) = Per A,

and consequently,

1
Per(A, -2ay_1an) = 3 [Per(An—2an—1an-1) + Per(An_2ana,)];

A= Z Ajk(akn — Qpn-1) ((lfjnvl - (lljn) = 0.

1<j<k<n

Let

>

= > A (arn — hn1) (@jn-1 — ajn)

1<j<k<n

be the upper sum, and

_é_ = Z Ajk(a'k'n - akn—l) (ajn~1 - ajn)

1<j<k<n
the lower sum of elements (2.10), with respect to the sequence
(a;m — a;m_l) ((L]'nA] — ajn) , 1 <3< k <n. (212)

Consequently,

A

v

A=02>A.

Moreover,

Zgl

Z Ajk Z (akn - akn—l) (”jnAl - ajn) Z _A_,

n
(k 1<j<k<n 1<j<k<n
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by Lemma 1.1, with equality if and only if either all the quantities (2.8), or all the quantities (2.12)
are equal. In this case,

S Ak D (akn — tkno1) (a1 — @) =0, (2.13)

1<j<k<n 1<j<k<n

by Lemma 1.1. Since the numbers (2.10) are positive, we get that necessarily

Z (arn — akn—l) (ajnﬂl - ajn) =0, (214)

1<j<k<n

by (2.13), and all the quantities (2.12) are equal. On the other hand,

Z (akn - akn—l) (ajn—l - ajn)

1<j<k<n

n mn

n
Z(akn - akn«l) Z (ajn—l - afjn) - Z (a'jn - ajn—l) ((L]n—l - ajn)

k=1 j=1 j=1

Il
SR

<
=

2
= (ajn - aj'n—l) :
ij=1

i.c., we obtained that (2.14) holds if and only if a,, = a,,—1. Since a,_1, a,, may be two arbitrary
columns of A, we obtained that two arbitrary columns of A are equal; i.e., all columns of A are
equal; i.e., A = Ag if A € H. This means the condition that all the elements of (2.14) are equal
is satisfied.

This finishes the proof of Theorem 2.2, and of Theorem 2.1, too. ]

3. THE SECOND PROOF

In his paper [9], the author proved the following theorem. (This paper has a Hungarian
version [11].)
If the row sums and the column sums of A € M are equal to one, moreover

r€R, y€R, T+y=1,

then \
22 Per(AA*)/? 4 o2 Per(A*A)Y/? 4 22y Per A > l,
n"
with equality if and only if A = Ay.
We need the following particular case of this theorem.
THEOREM 3.1. If A € H and
>0, y>0, z4+y=1,
then the permanental equation
. . . ‘ !
2 Per(AA®)/2 4 y? Per(A*A)/? 4 22y Per A = — (3.1)
n

has only one solution A = Ag over H.

The suitable particular case of the WEF’s theorem is the following.

THEOREM 3.2. If A € H, then the equation

!
Per A = n

nn

has only one solution A = Ay over 'H.

The aim of this section is to show the following theorem.
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THEOREM 3.3. If A € H, then Theorems 3.1 and 3.2 are equivalent.

Proovr. First we show if Theorem 3.2 holds, then Theorem 3.1 holds, too. Namely, if Theorem 3.2
holds, then the WEF’s theorem is valid, too. Consequently,

| I I
PerA> =, Per(AA")Y/2> 2 Pper(av4)i/2 > =
n n

—pn’

with equality in the three inequalities if and only if
A= (AAY? = (A*A)V? = A,.

Consequently,

; anl nl
22 Per(AA)Y? + 42 Per(A*A)Y? + 20y Per A > (x + y)zl = i’
n" n»

with equality if and only if

!
Per(AA")/? = Per(A"A)!/? = Per A = .

nm
i.e., if A= Ay by Theorem 3.2. This means Theorem 3.2 contains Theorem 3.1.

We show now that conversely, Theorem 3.1 contains Theorem 3.2. Namely, identity (3.1) can
be written in the form

2% | Per(AA*)Y? + Per(A*A)Y? — 2 Per A}

0.

I

nn

: : !
- 21{Per(A*A)1/2 — Per A} + [Per(A*A)l/Z - ﬁ_]
Thus, (3.1) holds if and only if

Per 4 = % [Per(AA*)l/‘Z + Per(A” A)l/Z],

Per A = Per(A*A)'/?,
!
Per(A*A)Y/? = .
n’ll
From here,
Per A = Per(AA*)Y/2 = Per(A* A)V/2.

Substituting
Per(AA*)Y/? = Per A,  Per(4*A)Y/? = Per A,

into polynomial (3.1), we get
|
Per A = n_.’
T
which has the only solution A = Ay over H by Theorem 3.1. Comparing the two proved state-
ments, we get Theorem 3.2.
Since Theorem 3.2 contains the full WEF’s theorem, we obtained a new proof of this theorem

by Theorem 3.3. ]
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