38 research outputs found

    Design of Functionalized Lipids and Evidence for Their Binding to Photosystem II Core Complex by Oxygen Evolution Measurements, Atomic Force Microscopy, and Scanning Near-Field Optical Microscopy

    Get PDF
    AbstractPhotosystem II core complex (PSII CC) absorbs light energy and triggers a series of electron transfer reactions by oxidizing water while producing molecular oxygen. Synthetic lipids with different alkyl chains and spacer lengths bearing functionalized headgroups were specifically designed to bind the QB site and to anchor this large photosynthetic complex (240 kDa) in order to attempt two-dimensional crystallization. Among the series of different compounds that have been tested, oxygen evolution measurements have shown that dichlorophenyl urea (DCPU) binds very efficiently to the QB site of PSII CC, and therefore, that moiety has been linked covalently to the headgroup of synthetic lipids. The analysis of the monolayer behavior of these DCPU-lipids has allowed us to select ones bearing long spacers for the anchoring of PSII CC. Oxygen evolution measurements demonstrated that these long-spacer DCPU-lipids specifically bind to PSII CC and inhibit electron transfer. With the use of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM), it was possible to visualize domains of PSII CC bound to DCPU-lipid monolayers. SNOM imaging has enabled us to confirm that domains observed by AFM were composed of PSII CC. Indeed, the SNOM topography images presented similar domains as those observed by AFM, but in addition, it allowed us to determine that these domains are fluorescent. Electron microscopy of these domains, however, has shown that the bound PSII CC was not crystalline

    A Hardware Efficient Random Number Generator for Nonuniform Distributions with Arbitrary Precision

    Get PDF
    Nonuniform random numbers are key for many technical applications, and designing efficient hardware implementations of non-uniform random number generators is a very active research field. However, most state-of-the-art architectures are either tailored to specific distributions or use up a lot of hardware resources. At ReConFig 2010, we have presented a new design that saves up to 48% of area compared to state-of-the-art inversion-based implementation, usable for arbitrary distributions and precision. In this paper, we introduce a more flexible version together with a refined segmentation scheme that allows to further reduce the approximation error significantly. We provide a free software tool allowing users to implement their own distributions easily, and we have tested our random number generator thoroughly by statistic analysis and two application tests

    Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration

    Get PDF
    [Image: see text] Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    AXI4-Stream Upsizing/Downsizing Data Width Converters for Hardware-In-the-Loop Simulations

    Get PDF
    Hardware prototyping is an essential part in the hardware design flow. Furthermore, hardware prototyping usually relies on system-level design and hardware-in-the-loop simulations in order to develop, test and evaluate intellectual property cores. One common task in this process consist on interfacing cores with different port specifications. Data width conversion is used to overcome this issue. This work presents two open source hardware cores compliant with AXI4-Stream bus protocol, where each core performs upsizing/downsizing data width conversion

    100% Green Computing At The Wrong Location?

    Get PDF
    Modern society relies on convenience services and mobile communication. Cloud computing is the current trend to make data and applications available at any time on every device. Data centers concentrate computation and storage at central locations, while they claim themselves green due to their optimized maintenance and increased energy efficiency. The key enabler for this evolution is the microelectronics industry. The trend to power efficient mobile devices has forced this industry to change its design dogma to: ”keep data locally and reduce data communication whenever possible”. Therefore we ask: is cloud computing repeating the aberrations of its enabling industry

    AXI4-Stream Upsizing/Downsizing Data Width Converters for Hardware-In-the-Loop Simulations

    No full text
    Hardware prototyping is an essential part in the hardware design flow. Furthermore, hardware prototyping usually relies on system-level design and hardware-in-the-loop simulations in order to develop, test and evaluate intellectual property cores. One common task in this process consist on interfacing cores with different port specifications. Data width conversion is used to overcome this issue. This work presents two open source hardware cores compliant with AXI4-Stream bus protocol, where each core performs upsizing/downsizing data width conversion

    100% Green Computing At The Wrong Location?

    No full text
    Modern society relies on convenience services and mobile communication. Cloud computing is the current trend to make data and applications available at any time on every device. Data centers concentrate computation and storage at central locations, while they claim themselves green due to their optimized maintenance and increased energy efficiency. The key enabler for this evolution is the microelectronics industry. The trend to power efficient mobile devices has forced this industry to change its design dogma to: ”keep data locally and reduce data communication whenever possible”. Therefore we ask: is cloud computing repeating the aberrations of its enabling industry
    corecore