
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 675130, 11 pages
doi:10.1155/2012/675130

Research Article

A Hardware Efficient Random Number Generator for
Nonuniform Distributions with Arbitrary Precision

Christian de Schryver,1 Daniel Schmidt,1 Norbert Wehn,1 Elke Korn,2

Henning Marxen,2 Anton Kostiuk,2 and Ralf Korn2

1 Microelectronic Systems Design Research Group, University of Kaiserslautern, Erwin-Schroedinger-Straße,
67663 Kaiserslautern, Germany

2 Stochastic Control and Financial Mathematics Group, University of Kaiserslautern, Erwin-Schroedinger-Straße,
67663 Kaiserslautern, Germany

Correspondence should be addressed to Christian de Schryver, schryver@eit.uni-kl.de

Received 30 April 2011; Accepted 23 November 2011

Academic Editor: Ron Sass

Copyright © 2012 Christian de Schryver et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nonuniform random numbers are key for many technical applications, and designing efficient hardware implementations of non-
uniform random number generators is a very active research field. However, most state-of-the-art architectures are either tailored
to specific distributions or use up a lot of hardware resources. At ReConFig 2010, we have presented a new design that saves up
to 48% of area compared to state-of-the-art inversion-based implementation, usable for arbitrary distributions and precision. In
this paper, we introduce a more flexible version together with a refined segmentation scheme that allows to further reduce the
approximation error significantly. We provide a free software tool allowing users to implement their own distributions easily, and
we have tested our random number generator thoroughly by statistic analysis and two application tests.

1. Introduction

The fast generation of random numbers is essential for many
tasks. One of the major fields of application are Monte Carlo
simulation, for example widely used in the areas of financial
mathematics and communication technology.

Although many simulations are still performed on high-
performance CPU or general-purpose graphics processing
unit (GPGPU) clusters, using reconfigurable hardware accel-
erators based on field programmable gate arrays (FPGAs) can
save up to at least one order of magnitude of power con-
sumption if the random number generator (RNG) is located
on the accelerator. As an example, we have implemented
the generation of normally distributed random numbers
on the three mentioned architectures. The results for the
achieved throughput and the consumed energy are given in
Table 1. Since one single instance of our proposed hardware
design (together with a uniform random number generator)
consumes less than 1% of the area on the used Xilinx Virtex-
5 FPGA, we have introduced a line with the extrapolated

values for 100 instances to highlight the enormous potential
of hardware accelerators with respect to the achievable
throughput per energy.

In this paper, we present a refined version of the floating
point-based nonuniform random number generator already
shown at ReConFig 2010 [1]. The modifications allow a
higher precision while having an even lower area consump-
tion compared to the previous results. This is due to a refined
synthesis. The main benefits of the proposed hardware
architecture are the following:

(i) The area saving is even higher than the formerly
presented 48% compared to the state-of-the-art
FPGA implementation of Cheung et al. from 2007
[2].

(ii) The precision of the random number generator can
be adjusted and is mainly independent of the output
resolution of the auxiliary uniform RNG.

2 International Journal of Reconfigurable Computing

Table 1: Normal random number generator architecture comparison.

Implementation Architecture
Power

consumption
Throughput

[M samples/s]
Energy per

sample

Fast Mersenne Twister,
optimized for SIMD

Intel Core 2 Duo PC 2.0 GHz,
3 GB RAM, one core only

∼100 W 600 166.67 pJ

Nvidia Mersenne Twister
+ Box-Muller CUDA Nvidia GeForce 9800 GT ∼105 W

1510 69.54 pJ

Nvidia Mersenne Twister
+ Box-Muller OpenCL

1463 71.77 pJ

Proposed architecture, only one
instance [1] Xilinx FPGA Virtex-5FX70T-3 380 MHz

∼1.3 W 397 3.43 pJ

Proposed architecture, 100 instances ∼1.9 W 39700 0.05 pJ

(iii) Our design is exhaustively tested by statistical and
application tests to ensure the high quality of our
implementation.

(iv) For the convenience of the user, we provide a free tool
that creates the lookup table (LUT) entries for any
desired nonuniform distribution with a user-defined
precision.

The rest of the paper is organized as follows. In Section
2, we give an overview about current techniques to obtain
uniform (pseudo-)random numbers and to transform them
to nonuniform random numbers. Section 3 shows state-of-
the-art inversion-based FPGA nonuniform random number
generators, as well as a detailed description of the newly
introduced implementation. It also presents the LUT creator
tool needed for creating the lookup table entries. How
floating point representation can help to reduce hard-
ware complexity is explained in Section 4. Section 5 shows
detailed synthesis results of the original and the improved
implementation and elaborates on the excessive quality tests
that we have applied. Finally, Section 6 concludes the paper.

2. Related Work

The efficient implementation of random number generators
in hardware has been a very active research field for many
years now. Basically, the available implementations can be
divided into two main groups, that are

(i) random number generators for uniform distribu-
tions,

(ii) circuits that transform uniformly distributed random
numbers into different target distributions.

Both areas of research can, however, be treated as nearly
distinct. We will give an overview of available solutions out
of both groups.

2.1. Uniform Random Number Generators. Many highly
elaborate implementations for uniform RNGs have been
published over the last decades. The main common charac-
teristic of all is that they produce a bit vector with n bits that
represent (if interpreted as an unsigned binary-coded integer
and divided by 2n − 1) values between 0 and 1. The set of all

results that the generator produces should be as uniformly as
possible distributed over the range (0, 1).

A lot of fundamental research on uniform random
number generation has already been made before 1994. A
comprehensive overview of the work done until that point
in time has been given by L’Ecuyer [3] who summarized
the main concepts of uniform RNG construction and their
mathematical backgrounds. He also highlights the difficulties
of evaluating the quality of a uniform RNG, since in the
vast majority of the cases, we are dealing not with truly
random sequences (as, e.g., Bochard et al. [4]), but with
pseudorandom or quasirandom sequences. The latter ones
are based on deterministic algorithms. Pseudorandomness
means that the output of the RNG looks to an observer like
a truly random number sequence if only a limited period
of time is considered. Quasirandom sequences, however, do
not aim to look very random at all, but rather try to cover a
certain bounded range in a best even way. One major field
of application for quasirandom numbers is to generate a
suitable test point set for Monte Carlo simulations, in order
to increase the performance compared to pseudorandom
number input [5, 6].

One of the best investigated high-quality uniform RNGs
is the Mersenne Twister as presented by Matsumoto and
Nishimura in 1998 [7]. It is used in many technical appli-
cations and commercial products, as well as in the RNG
research domain. Well-evaluated and optimized software
programs are available on their website [8]. Nvidia has
adapted the Mersenne Twister to their GPUs in 2007 [9].

A high-performance hardware architecture for the Mer-
senne Twister has been presented in 2008 by Chandrasekaran
and Amira [10]. It produces 22 millions of samples per
second, running at 24 MHz. Banks et al. have compared
their Mersenne Twister FPGA design to two multiplier
pseudo-RNGs in 2008 [11], especially for the use in finan-
cial mathematics computations. They also clearly show that
the random number quality can be directly traded off against
the consumed hardware resources.

Tian and Benkrid have presented an optimized hardware
implementation of the Mersenne Twister in 2009 [12], where
they showed that an FPGA implementation can outperform
a state-of-the-art multicore CPU by a factor of about 25, and
a GPU by a factor of about 9 with respect to the throughput.
The benefit for energy saving is even higher.

International Journal of Reconfigurable Computing 3

We will not go further into details here since we concen-
trate on obtaining nonuniform distributions. Nevertheless,
it is worth mentioning that quality testing has been a big
issue for uniform RNG designs right from the beginning
[3]. L’Ecuyer and Simard invented a comprehensive test suite
named TestU01 [13] that is written in C (the most recent
version is 1.2.3 from August, 2009). This suite combines
a lot of various tests in one single program, aimed to
ensure the quality of specific RNGs. For users without
detailed knowledge about the meaning of each single test, the
TestU01 suite contains three test batteries that are predefined
selections of several tests:

(i) Small Crush: 10 tests,

(ii) Crush: 96 tests,

(iii) Big Crush: 106 tests.

TestU01 includes and is based on the tests from the
other test suites that have been used before, for example,
the Diehard Test Suite by Marsaglia from 1995 [14] or the
fundamental considerations made by Knuth in 1997 [15].

For the application field financial mathematics (what is
also our main area of research), McCullough has strongly
recommended the use of TestU01 in 2006 [16]. He comments
on the importance of random number quality and the need
of excessive testing of RNGs in general.

More recent test suites are the very comprehensive
Statistical Test Suite (STS) from the US National Institute of
Standards and Technology (NIST) [17] revised in August,
2010, and the Dieharder suite from Robert that was just
updated in March, 2011 [18].

2.2. Obtaining Nonuniform Distributions. In general, non-
uniform distributions are generated out of uniformly dis-
tributed random numbers by applying appropriate conver-
sion methods. A very good overview of the state-of-the-
art approaches has been given by Thomas et al. in 2007
[19]. Although they are mainly concentrating on the normal
distribution, they show that all applied conversion methods
are based on one of the four underlying mechanisms:

(i) transformation,

(ii) rejection sampling,

(iii) inversion,

(iv) recursion.

Transformation uses mathematical functions that provide
a relation between the uniform and the desired target dis-
tribution. A very popular example for normally distributed
random numbers is the Box-Muller method from 1958 [20].
It is based on trigonometric functions and transforms a pair
of uniformly distributed into a pair of normally distributed
random numbers. Its advantage is that it provides a pair of
random numbers for each call deterministically. The Box-
Muller method is prevalent nowadays and mainly used for
CPU and GPU implementations. A drawback for hardware
implementations is the high demand of resources needed to
accurately evaluate the trigonometric functions [21, 22].

Rejection sampling can provide a very high accuracy for
arbitrary distributions. It only accepts input values if they
are within specific predefined ranges and discards others.
This behavior may lead to problems if quasirandom number
input sequences are used, and (especially important for
hardware implementations) unpredictable stalling might be
necessary. For the normal distribution, the Ziggurat method
[23] is the most common example of rejection sampling
and is implemented in many software products nowadays.
Some optimized high-throughput FPGA implementations
exist, for example, by Zhang et al. from 2005 [24] who
generated 169 millions of samples per second on a Xilinx
Virtex-2 device running at 170 MHz. Edrees et al. have
proposed a scalable architecture in 2009 [25] that achieves
up to 240 Msamples on a Virtex-4 at 240 MHz. By increasing
the parallelism of their architecture, they predicted to
achieve even 400 Msamples for a clock frequency of around
200 MHz.

The inversion method applies the inverse cumulative
distribution function (ICDF) of the target distribution to
uniformly distributed random numbers. The ICDF converts
a uniformly distributed random number x ∈ (0, 1) to one
output y = icdf(x) with the desired distribution. Since our
proposed architecture is based on the inversion method, we
go more into details in Section 3.

The so far published hardware implementations of in-
version-based converters are based on piecewise polyno-
mial approximation of the ICDF. They use lookup tables
(LUTs) to store the coefficients for various sampling points.
Woods and Court have presented an ICDF-based random
number generator in 2008 [26] that is used to perform
Monte Carlo simulations in financial mathematics. They
use a nonequidistant hierarchical segmentation scheme with
smaller segments in the steeper parts of the ICDF, what
reduces the LUT storage requirements significantly without
losing precision. Cheung et al. have shown a very elaborate
multilevel segmentation approach in 2007 [2].

The recursion method introduced by Wallace in 1996 [27]
uses linear combinations of originally normally distributed
random numbers to obtain further ones. He provides the
source code of his implementation for free [28]. Lee et al.
have shown a hardware implementation in 2005 [29] that
produces 155 millions of samples per second on a Xilinx
Virtex-2 FPGA running at 155 MHz.

3. The Inversion Method

The most genuine way to obtain nonuniform random num-
bers is the inversion method, as it preserves the properties
of the originally sampled sequence [30]. It uses the ICDF
of the desired distribution to transform every input x ∈
(0, 1) from a uniform distribution into the output sample
y = icdf(x) of the desired one. In case of a continuous and
strictly monotone cumulative distribution (CDF) function
F, we have

Fout(α) = P(icdf(U) ≤ α) = P(U ≤ F(α)) = F(α). (1)

4 International Journal of Reconfigurable Computing

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
x

−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0

ic
df

 (
x)

Figure 1: Segmentation of the first half of the Gaussian ICDF.

Identical CDFs always imply the equality of the corre-
sponding distributions. For further details, we refer to the
works of Korn et al. [30] or Devroye [31].

Due to the above mechanism, the inversion method
is applicable to transform also quasirandom sequences. In
addition to that, it is completable with variance reduction
techniques, for example, antithetic variates [26]. Inversion-
based methods in general can be used to obtain any desired
distribution using memory-based lookup tables. This is
especially advantageous for hardware implementations, since
for many distributions, no closed-form expressions for the
ICDF exist, and approximations have to be used. The most
common approximations for the Gaussian ICDF (see Peter
[32] and Moro [33]) are, however, based on higher-grade
rational polynomials, but, for that reason, they cannot be
efficiently used for a hardware implementation.

3.1. State-of-the-Art Architectures. In 2007, Cheung et al.
proposed to implement the inversion using the piecewise
polynomial approximation [2]. It is based on a fixed point
representation and uses a hierarchical segmentation scheme
that provides a good trade-off between hardware resources
and accuracy. For the normal distribution (as well as any
other symmetric distribution), it is also common to use the
following simplification: due to the symmetry of the normal
ICDF around x = 0.5, its approximation is implemented
only for values x ∈ (0, 0.5), and one additional random bit is
used to cover the full range. For the Gaussian ICDF, Cheung
et al. suggest to divide the range (0, 0.5) into nonequidistant
segments with doubling segment sizes from the beginning
to the end of the interval. Each of these segments should
then be subdivided into inner segments of equal size. Thus,
the steeper regions of the ICDF close to 0 are covered
by more smaller segments than the regions close to 0.5,
where the ICDF is almost linear. This segmentation of the
Gaussian ICDF is shown in Figure 1. By using a polynomial
approximation of a fixed degree within each segment, this
approach allows to obtain an almost constant maximal
absolute error over all segments. The inversion algorithm
first determines in which segment the input x is contained,
then retrieves the coefficients ci of the polynomial for this
segment from a LUT, and evaluates the output as y =∑ ci ·xi
afterwards.

Figure 2 explains how, for a given fixed point input x, the
coefficients of the polynomial are retrieved from the lookup
table (that means how the address of the corresponding

−1

k

1

1

1 1 1

1 1 1 11 1

1 1 1 11 10 0 0 0

0

0 0 0

0

0

0 0 0 0

1 1 10

Sign

Fixed point input x

Count
LZ

Logical left shifter

N
u

m
be

r
of

le
ad

in
g

ze
ro

s
(L

Z
)

Shift out
first 1

ROM

c 0 c 1

xsig

Fill up with 0

LZ + 1

· · ·

· · ·

<<

Figure 2: State-of-the-art architecture.

segment in the LUT is generated). It starts with counting the
number of leading zeros (LZ) in the binary representation
of x. It uses a bisection technique to locate the segment of
the first level: that means numbers with the most significant
bit (MSB) 1 lie in the segment [0.25, 0.5) and those with
0 correspondingly in (0, 0.25), numbers with second MSB
1 (i.e., x = 01 . . .) lie in the segment [0.125, 0.25) and
those with 0 (i.e., x = 00 . . .) in (0, 0.125), and so forth.
Then the input x is shifted left by LZ + 1 bits, such that
xsig is the bit sequence following the most significant 1-bit
in x. The k MSBs of xsig determine the subsegments of the
second level (the equally sized ones). Thus, the LUT address
is the concatenation of LZ and MSBk(xsig). The inverted
value equals the approximating polynomial for the ICDF
in that segment evaluated on the remaining bits of xsig.
The architecture for the case of linear interpolation [2] is
presented in Figure 2. It approximates the inversion with a
maximum absolute error of 0.3 · 2−11.

The works of Lee et al. [34, 35] are also based on this
segmentation/LUT approach. They use the same technique
to create generators for the log-normal and the exponential
distributions, with only slight changes in the segmentation
scheme. For the exponential distribution, the largest segment
starts near 0, sequentially followed by the twice smaller
segments towards 1. For the log-normal distribution, neigh-
boring segments double in size starting from 0 until 0.5 and
halve in size towards 1.

But this approach has a number of drawbacks as follows.

(i) Two uniform RNGs needed for a large output range:
due to the fixed point implementation, the output
range is limited by a number of input bits. The
smallest positive value that can be represented by an

International Journal of Reconfigurable Computing 5

m bit fixed point number is 2−m, what in the case
of a 32-bit input value leads to the largest inverted
value of icdf(2−32) = 6.33σ . To obtain a larger range
of normal random variable up to 8.21σ , the authors
of [2] concatenate the input of two 32-bit uniform
RNGs and pass a 53-bit fixed point number into the
inversion unit, at the cost of one additional uniform
RNG. The large number of input bits results in the
increased size of the LZ counter and shifter unit, that
dominate the hardware usage of the design.

(ii) A large number of input bits is wasted: as a multiplier
with a 53-bit input requires a large amount of
hardware resources, the input is quantified to 20
significant bits before the polynomial evaluation.
Thus, in the region close to the 0.5, a large amount
of the generated input bits is wasted.

(iii) Low resolution in the tail region: for the tail region
(close to 0), there are much less than 20 significant
bits left after shifting over the LZ. This limits the
resolution in the tail of the desired distribution. In
addition, as there are no values between 2−53 and
2−52 in this fixed point representation, the proposed
RNG does not generate output samples between
icdf(2−52) = 8.13σ and icdf(2−53) = 8.21σ .

3.2. Floating Point-Based Inversion. The drawbacks men-
tioned before result from the fixed point interpretation of
the input random numbers. We therefore propose to use a
floating point representation.

First of all, we do not use any floating point arithmetics
in our implementation. Our design does not contain any
arithmetic components like full adders or multipliers that
usually blow up a hardware architecture. We just exploit the
representation of a floating point number consisting of an
exponent and a mantissa part. We also do not use IEEE
754 [36] compliant representations, but have introduced our
own optimized interpretation of the floating point encoded
bit vector.

3.2.1. Hardware Architecture. We have enhanced our for-
merly architecture presented at ReConFig 2010 [1] with a
second part bit that is used to split the encoded half of the
ICDF into two parts. The additionally necessary hardware is
just one multiplexer and an adder with one constant input,
that is, the offset for the address range of the LUT memory
where the coefficients for the second half are located.

Figure 3 shows the structure of our proposed ICDF
lookup unit. Compared to our former design, we have
renamed the sign half bit to symmetry bit. This term is more
appropriate now since we use this bit to identify in which
half of a symmetrical ICDF the output value is located. In
this case, we also only encode one half and use the symmetry
bit to generate a symmetrical coverage of the range (0, 1) (see
Section 3.1).

Each part itself is divided further into octaves (formerly
segments), that are halved in size by moving towards the
outer borders of the parts (compare with Section 3.1). One
exception is that the both very smallest octaves are equally

MSB
m bits

LSB

Symm. Part Exponent
Mantissa

exp bw k bits mant bw−k bits

O
ff

se
t

0

Section
address address

Subsection

Coefficient ROM

−1

Nonuniform
random number MAC unit

c 0 c 1

Figure 3: ICDF lookup structure for linear approximation.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
x

−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0

ic
df

 (
x)

Figure 4: Double segmentation refinement for the normal ICDF.

sized. In general, the number of octaves for each part can be
different. As an example, Figure 4 shows the left half of the
Gaussian ICDF with a nonequal number of octaves in both
parts.

Each octave is again divided into 2k equally sized subsec-
tions, where k is the number of bits taken from the mantissa
part in Figure 3. k therefore has the same value for both parts,
but is not necessarily limited to powers of 2.

The input address for the coefficient ROM is now
generated in the following way.

(i) The offset is exactly the number of subsections in part
0, that means all subsections in the range from 0 to
0.25 for a symmetric ICDF:

offset = 2k · number of octaves in part 0. (2)

(ii) In part 0, the address is the concatenation of the
exponent (giving the number of the octave) and the
k dedicated mantissa bits (for the subsection).

(iii) In part 1, the address is the concatenation of (expo-
nent + offset) and the k mantissa bits.

6 International Journal of Reconfigurable Computing

Table 2: Selected tool configuration for provided error values.

Parameter Value

Growing octaves 54

Diminishing octaves 4

Subsection bits (k) 3

Mantissa bits (mant bw − k) 18

Output precision bits 42

This floating point-based addressing scheme efficiently
exploits the LUT memory in a hardware friendly way since
no additional logic for the address generation is needed
compared to other state-of-the-art implementations (see
Sections 2.2 and 3.1). The necessary LUT entries can easily
be generated with our freely available tool presented in
Section 3.2.2.

3.2.2. The LUT Creator Tool. For the convenience of the users
who like to make use of our proposed architecture, we have
developed a flexible C++ class package that creates the LUT
entries for any desired distribution function. The tool has
been rewritten from scratch, compared to the one presented
at ReConFig 2010 [1]. It is freely available for download on
our website (http://ems.eit.uni-kl.de/).

Most of the detailed documentation is included in the
tool package itself. It uses Chebyshev approximation, as
provided by the GNU Scientific Library (GSL) [37]. The
main characteristics of the new tool are as follows.

(i) It allows any function defined on the range (0,
1) to be approximated. However, the GSL already
provides a large number of ICDFs that may be used
conveniently.

(ii) It provides configurable segmentation schemes with
respect to

(i) symmetry,

(ii) one or two parts,

(iii) independently configurable number of octaves
per part,

(iv) number of subsections per octave.

(iii) The output quantization is configurable by the user.

(iv) The degree of the polynomial approximation is
arbitrary.

Our LUT creator tool also has a built-in error estimation
that directly calculates the maximum errors between the
provided optimal function and the approximated version.
For linear approximation and the configuration shown
in Table 2, we present a selection of maximum errors in
Table 3. For optimized parameter sets that take the specific
characteristics of the distributions into account, we expect
even lower errors.

Table 3: Maximum approximation errors for different distribu-
tions.

Distribution Symmetry Maximum absolute error

Normal Point 0.000383397

Log-normal (0, 1) None 0.00233966

Gamma (0, 1) None 0.00787368

Laplace (1) Point 0.000901326

Exponential (1) None 0.000787368

Rayleigh (1) None 0.000300666

MSB
m bits

LSB

Symm.

Symm.

Part

Part

Exponent

Exponent part

Counting direction

Mantissa

Mantissa part

LZ

 Count
leading zeros
 (LZ)

data valid Uniform floating point number

CTRL

 mant bw bitsm−mant bw−2 bits

Uniform RNG
(e.g. MT19937)

0

Figure 5: Architecture of the proposed floating point RNG.

4. Generating Floating Point Random Numbers

Our proposed LUT-based inversion unit shown in
Section 3.2.1 requires dedicated floating point encoded
numbers as inputs. In this section, we present an efficient
hardware architecture for generating these numbers. Our
design consumes an arbitrary-sized bit vector from any
uniform random number generator and transforms it into
the floating point representation with adjustable precisions.
In Section 5.2, we show that our floating point converter
maintains the properties of the uniform random numbers
provided by the input RNG.

Figure 5 shows the structure of our unit and how it maps
the incoming bit vector to the floating point parts. Compared
to our architecture presented on ReConFig 2010 [1], we have
enhanced our converter unit with an additional part bit. It
provides the information if we use the first or the second
segmentation refinement of the ICDF approximation (see
Section 3.2).

For each floating point random number that is to be
generated, we extract the symmetry and the part bit in the
first clock cycle, as well as the mantissa part that is just
mapped to the output one to one. The mantissa part in
our case is encoded with a hidden bit, for a bit width of

International Journal of Reconfigurable Computing 7

mant bw bits, it can therefore represent the values 1, 1 +
(1/2mant bw), 1 + (2/2mant bw), . . . , 2− (1/2mant bw).

The exponent in our floating point encoding represents
the number of leading zeros (LZs) that we count from the
exponent part of the incoming random number bit vector.
We can use this exponent value directly as the segment
address in our ICDF lookup unit described in Section 3.2.1.
In the hardware architecture, the leading zeros computation
is, for efficiency reasons, implemented as a comparator tree.

However, if we would only consider one random number
available at the input of our converter, the maximum value
for the floating point exponent would be m−mant bw − 2,
with all the bits in the input exponent part being zero.
To overcome this issue, we have introduced a parameter
determining the maximum value of the output floating point
exponent, max exp. If now all bits in the input exponent part
are detected to be zero, we store the value of already counted
leading zeros and consume a second random number where
we continue counting. For the case that we have again only
zeros, we consume a third number and continue if either
one is detected in the input part or the predefined maximum
of the floating point exponent, max exp, is reached. In this
case, we set the data valid signal to 1 and continue with
generating the next floating point random number.

For the reason that we have to wait for further input
random numbers to generate one floating point result, we
need a stalling mechanism for all subsequent units of the
converter. Nevertheless, depending on size of the exponent
part in the input bit vector that is arbitrary, the probability
for necessary stalling can be decreased significantly. A second
random number is needed with the probability of P2 =
1/2m−mant bw−2, a third with P3 = 1/22·(m−mant bw−2), and so
on. For an input exponent part with the size of 10 bits, for
example, P2 = 1/210 = 0.976 · 10−3, which means that on
average one additional input random number has to be
consumed for generating about 1,000 floating point results.

We have already presented pseudocode for our converter
unit at the ReConFig 2010 [1] that we have enhanced now for
our modified design by storing two sign bits. The modified
version is shown in Algorithm 1.

5. Synthesis Results and Quality Test

In addition to our conference paper presented at ReConFig
2010 [1], we provide detailed synthesis results in this
section on a Xilinx Virtex-5 device, for both speed and area
optimization. Furthermore, we show quality tests for the
normal distribution.

5.1. Synthesis Results. Like for the proposed architecture
from ReConFig 2010, we have optimized the bit widths to
exploit the full potential of the Virtex-5 DSP48E slice that
supports an 18 · 25 bit + 48 bit MAC operation. We therefore
selected the same parameter values that are as follows: input
bitwidth m = 32, mant bw = 20, max exp = 54, and k = 3
for subsegment addressing. The coefficient c0 is quantized to
46 bits, and c1 has 23 bits.

We have synthesized our proposed design and the
architecture presented at ReConFig with the newer Xilinx

rn← get random number();
symmetr y ← rn.get symmetr y();
part ← rn.get part();
mant ← rn.get mantissa();
exp ← rn.get exponent();
LZ ← exp.count leading zeros();
while (exp == 0) and (LZ < max exp) do∣
∣
∣
∣
∣
∣
∣

rn← get random number();
exp ← rn.get exponent();
LZ ← LZ + exp.count leading zeros();

end

LZ ← min(LZ,max exp);
return symmetr y, part, mant, LZ

Algorithm 1: Floating point generation algorithm.

Table 4: ReConFig 2010 [1]: optimized for speed.

Slices FFs LUTs BRAMs DSP48E

Floating point converter 30 62 40 — —

LUT evaluator 12 47 — 1 1

Complete design 40 108 39 1 1

Table 5: Proposed design: optimized for speed.

Slices FFs LUTs BRAMs DSP48E

Floating point converter 30 62 40 — —

LUT evaluator 18 47 7 1 1

Complete design 42 109 46 1 1

Table 6: ReConFig 2010 [1]: optimized for area.

Slices FFs LUTs BRAMs DSP48E

Floating point converter 13 11 26 — —

LUT evaluator 12 47 — 1 1

Complete design 26 84 26 1 1

ISE 12.4, allowing a fair comparison of the enhancement
impacts. Both implementations have been optimized for area
and speed, respectively. The target device is a Xilinx Virtex-5
XC5FX70T-3. All provided results are post place and route.

From Tables 4 and 5, we see that just by using the newer
ISE version, we already save area of the whole nonuniform
random number converter compared to the ReConFig result
that was 44 slices (also optimized for speed) [1]. The
maximum clock frequency is now 393 MHz compared to
formerly 381 MHz.

Even with the ICDF lookup unit extension described in
Section 3.2.1, the new design is two slices smaller than in the
former version and can run at 398 MHz. We still consume
one 36 Kb BRAM and one DSP48E slice.

The synthesis results for area optimization are given in
Tables 6 and 7. The whole design now only occupies 31 slices
on a Virtex-5 and still runs at 286 MHz instead of 259 MHz
formerly. Compared to the ReConFig 2010 architecture, we

8 International Journal of Reconfigurable Computing

Table 7: Proposed design: optimized for area.

Slices FFs LUTs BRAMs DSP48E

Floating point converter 13 11 26 — —

LUT evaluator 18 47 7 1 1

Complete design 31 85 34 1 1

therefore consume about 20% more area by achieving a
speedup of about 10% at a higher precision.

5.2. Quality Tests. Quality testing is an important part in the
creation of a random number generator. Unfortunately, there
are no standardized tests for nonuniform random number
generators. Thus, for checking the quality of our design, we
proceed in three steps: in the first step, we test the floating
point uniform random number converter, and then we check
the nonuniform random numbers (with a special focus on
the normal distribution here). Finally, the random numbers
are tested in two typical applications: an option pricing
calculation with the Heston model [38] and the simulation of
the bit error rate and frame error rate of a duo-binary turbo
code from the WiMax standard.

5.2.1. Uniform Floating Point Generator. We have already
elaborated on the widely used TestU01 suite for uniform
random number generators in Section 2.1. TestU01 needs an
equivalent fixed point precision of at least 30 bits, and for the
big crush tests even 32 bits. The uniformly distributed float-
ing point random numbers have been created as described
in Section 4 with a mantissa of 31 bits from the output of a
Mersenne Twister MT19937 [7].

The three test batteries small crush, crush, and big crush
have been used to test the quality of the floating point
random number generator. The Mersenne Twister itself is
known to successfully complete all except two tests. These
two tests are linear complexity tests that all linear feedback
shift-register and generalized feedback shift-register-based
random number generators fail (see [13] for more details).
Our floating point transform of Mersenne random numbers
also completes all but the specific two tests successfully.
Thus, we conclude that our floating point uniform random
number generator preserves the properties of the input
generator and shows the same excellent structural properties.

For computational complexity reasons, for the following
tests, we have restricted the output bit width of the floating
point converter software implementation to 23 bits. The
resolution is lower than the fixed point input in some
regions, whereas in other regions a higher resolution is
achieved. Due to the floating point representation, the
regions with higher resolutions are located close to zero.
Figure 6 shows a zoomed two-dimensional plot of random
vectors produced by our design close to zero. It is important
to notice that no patterns, clusters, or big holes are visible
here.

Besides the TestU01 suite, the equidistribution of our
random numbers has also been tested with several variants of

0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06 0.08 0.1

3 million × 3 million RNs, detail

Figure 6: Detail of uniform 2D vectors around 0.

the frequency test mentioned by Knuth [15]. While checking
the uniform distribution of the random numbers up to
12 bits, no extreme P value could be observed.

5.2.2. Nonuniform Random Number Generator. For the
nonuniform random number generator, we have selected a
specific set of commonly applied tests to examine and ensure
the quality of the produced random numbers. In this paper,
we focus on the tests performed for normally distributed
random numbers, since those are most commonly used in
many different fields of applications. Also the application
tests presented below use normally distributed random
numbers.

As a first step, we have run various χ2-tests. In these tests,
the empirical number of observations in several groups is
compared with the theoretical number of observations. Test
results that would only occur with a very low probability
indicate a poor quality of the random numbers. This may be
the case if either the structure of the random numbers does
not fit to the normal distribution or if the numbers show
more regularity than expected from a random sequence.
The batch of random numbers in Figure 7 shows that the
distribution is well approximated. The corresponding χ2-test
with 100 categories had a P value of 0.4.

The Kolmogorov-Smirnov test compares the empirical
and the theoretical cumulative distribution function. Nearly
all tests with different batch sizes were perfectly passed. Those
not passed did not reveal an extraordinary P value. A refined
version of the test, as described in Knuth [15] on page 51,
sometimes had low P values. This is likely to be attributed to
the lower precision in some regions of our random numbers,
as the continuous CDF can not be perfectly approximated
with random numbers that have fixed gaps. Other normality
tests were perfectly passed, including the Shapiro-Wilk [39]
test. Stephens [40] argues that the latter one is more suitable

International Journal of Reconfigurable Computing 9

−3 −2 −1 0 1 2 3

1 million RNs

0

0.1

0.2

0.3

0.4

D
en

si
ty

Figure 7: Histogram of Gaussian random numbers.

for testing the normality than the Kolmogorov-Smirnov test.
The test showed no deviation from normality.

We not only compared our random numbers with the
theoretical properties, but also with those taken from the
well-established normal random number generator of the R
language. It is based on a Mersenne Twister as well. Again,
we used the Kolmogorov-Smirnov test, but no difference in
distribution could be seen. Comparing the mean with the
t-test and the variance with the F-test gave no suspicious
results. The random numbers of our generator seem to have
the same distribution as standard random numbers, with an
exception of the reduced precision in the central region and
an improved precion in the extreme values. This difference
can be seen in Figures 8 and 9. Both depict the empirical
results of a draw of 220 random numbers, the first with the
presented algorithm and the second with the RNG of R.

The tail distribution of the random numbers of the
presented algorithm seems to be better in the employed test
set. The area of extreme values is fitted without large gaps
in contrast to the R random numbers. The smallest value
from our floating point-based random number generator is
1 · 2−54, compared to 1 · 2−32 in standard RNGs, thus values
of−8.37σ and 8.37σ can be produced. Our approximation of
the inverse cumulative distribution function has an absolute
error of less than 0.4 · 2−11 in the achievable interval.
Thus, the good structural properties of the uniform random
numbers can be preserved. Due to the good properties of
our random number generator, we expect it to perform well
in the case of a long and detailed approximation, where
rare extreme events can have a huge impact (consider risk
simulations for insurances, e.g.).

5.2.3. Application Tests. Random number generators are
always embedded in a strongly connected application envi-
ronment. We have tested the applicability of our normal
RNG in two scenarios: first, we have calculated an option

0.0005

0.001

0.0015

0.002

0

dn
or

m
 (

x)

3.5 4 4.5 5

x

normal RNs, extreme values220

Figure 8: Tail of the empirical distribution function.

0.0005

0.001

0.0015

0.002

0

dn
or

m
 (

xR
)

3.5 4 4.5 5

 xR

normal R-RNs, extreme values220

Figure 9: Tail of the empirical distribution function for the R RNG.

price with the Heston model [38]. This calculation was done
using the Monte Carlo simulation written in Octave. The
provided RNG of Octave randn() has been replaced by a
bit true model of our presented hardware design. For the
whole benchmark set, we could not observe any peculiarities
with respect to the calculated results and the convergence
behavior of the Monte Carlo simulation. For the second
application, we have produced a vast set of simulations
of a wireless communications system. For comparison to
our RNG, a Mersenne Twister and inversion using the
Moro approximation [33] has been used. Also in this test,

10 International Journal of Reconfigurable Computing

no significant differences between the results from both
generators could be observed.

6. Conclusion

In this paper, we present a new refined hardware architecture
of a nonuniform random number generator for arbitrary
distributions and precision. As input, a freely selectable
uniform random number generator can be used. Our unit
transforms the input bit vector into a floating point notation
before converting it with an inversion-based method to the
desired distribution. This refined method provides more
accurate random numbers than the previous implemen-
tation presented at ReConFig 2010 [1], while occupying
roughly the same amount of hardware resources.

This approach has several benefits. Our new implemen-
tation saves now more than 48% of the area on an FPGA
compared to state-of-the-art implementations, while even
achieving a higher output precision. The design can run at up
to 398 MHz on a Xilinx Virtex-5 FPGA. The precision itself
can be adjusted to the users’ needs and is mainly independent
of the output resolution of the uniform RNG. We provide a
free tool allowing to create the necessary look-up table entries
for any desired distribution and precision.

For both components, the floating point converter and
the ICDF lookup unit, we have presented our hardware
architecture in detail. Furthermore, we have provided
exhaustive synthesis results for a Xilinx Virtex-5 FPGA. The
high quality of the random numbers generated by our design
has been ensured by applying extensive mathematical and
application tests.

Acknowledgment

The authors gratefully acknowledge the partial financial sup-
port from the Center for Mathematical and Computational
Modeling (CM)2 of the University of Kaiserslautern.

References

[1] C. de Schryver, D. Schmidt, N. Wehn et al., “A new hardware
ecient inversion based random number generator for non-
uniform distributions,” in Proceedings of the International
Conference on Recongurable Computing and FPGAs (ReConFig
’10), pp. 190–195, December 2010.

[2] R. C. C. Cheung, D.-U. Lee, W. Luk, and J. D. Villasenor,
“Hardware generation of arbitrary random number distribu-
tions from uniform distributions via the inversion method,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 8, pp. 952–962, 2007.

[3] P. L’Ecuyer, “Uniform random number generation,” Annals of
Operations Research, vol. 53, no. 1, pp. 77–120, 1994.

[4] N. Bochard, F. Bernard, V. Fischer, and B. Valtchanov, “True-
randomness and pseudo-randomness in ring oscillator-based
true random number generators,” International Journal of
Reconfigurable Computing, vol. 2010, article 879281, 2010.

[5] H. Niederreiter, “Quasi-Monte Carlo methods and pseudo-
random numbers,” American Mathematical Society, vol. 84, no.
6, p. 957, 1978.

[6] H. Niederreiter, Random Number Generation and Quasi-
Monte Carlo Methods, Society for Industrial Mathematics,
1992.

[7] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random num-
ber generator,” ACM Transactions on Modeling and Computer
Simulation, vol. 8, no. 1, pp. 3–30, 1998.

[8] M. Matsumoto, Mersenne Twister, http://www.math.sci.hiro-
shima-u.ac.jp/?m-mat/MT/emt.html, 2007.

[9] V. Podlozhnyuk, Parallel Mersenne Twister, http://developer
.download.nvidia.com/compute/cuda/2 2/sdk/website/proje-
cts/MersenneTwister/doc//MersenneTwister.pdf, 2007.

[10] S. Chandrasekaran and A. Amira, “High performance FPGA
implementation of the Mersenne Twister,” in Proceedings of the
4th IEEE International Symposium on Electronic Design, Test
and Applications (DELTA ’08), pp. 482–485, January 2008.

[11] S. Banks, P. Beadling, and A. Ferencz, “FPGA implementation
of Pseudo Random Number generators for Monte Carlo
methods in quantitative finance,” in Proceedings of the Inter-
national Conference on Reconfigurable Computing and FPGAs
(ReConFig ’08), pp. 271–276, December 2008.

[12] X. Tian and K. Benkrid, “Mersenne Twister random number
generation on FPGA, CPU and GPU,” in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS ’09), pp. 460–464, August 2009.

[13] P. L’Ecuyer and R. Simard, “TestU01: a C library for empirical
testing of random number generators,” ACM Transactions on
Mathematical Software, vol. 33, no. 4, 22 pages, 2007.

[14] G. Marsaglia, Diehard Battery of Tests of Randomness,
http://stat.fsu.edu/pub/diehard/, 1995.

[15] D. E. Knuth, Seminumerical Algorithms, Volume 2 of The Art
of Computer Programming, Addison-Wesley, Reading, Mass,
USA, 3rd edition, 1997.

[16] B. D. McCullough, “A review of TESTU01,” Journal of Applied
Econometrics, vol. 21, no. 5, pp. 677–682, 2006.

[17] A. Rukhin, J. Soto, J. Nechvatal et al., “A statistical test
suite for random and pseudorandom number generators for
cryptographic applications,” http://csrc.nist.gov/publications/
nistpubs/800-22-rev1a/ SP800-22rev1a.pdf, Special Publica-
tion 800-22, Revision 1a, 2010.

[18] G. B. Robert, Dieharder: A Random Number Test Suite,
http://www.phy.duke.edu/?rgb/General/dieharder.php, Ver-
sion 3.31.0, 2011.

[19] D. B. Thomas, W. Luk, P. H. W. Leong, and J. D. Villasenor,
“Gaussian random number generators,” ACM Computing
Surveys, vol. 39, no. 4, article 11, 2007.

[20] G. E. P. Box and M. E. Muller, “A note on the generation
of random normal deviates,” The Annals of Mathematical
Statistics, vol. 29, no. 2, pp. 610–611, 1958.

[21] A. Ghazel, E. Boutillon, J. L. Danger et al., “Design and
performance analysis of a high speed AWGN communication
channel emulator,” in Proceedings of the IEEE Pacific Rim
Conference, pp. 374–377, Citeseer, Victoria, BC, Canada, 2001.

[22] D.-U. Lee, J. D. Villasenor, W. Luk, and P. H. W. Leong,
“A hardware Gaussian noise generator using the box-muller
method and its error analysis,” IEEE Transactions on Comput-
ers, vol. 55, no. 6, pp. 659–671, 2006.

[23] G. Marsaglia and W. W. Tsang, “The ziggurat method for
generating random variables,” Journal of Statistical Software,
vol. 5, pp. 1–7, 2000.

[24] G. Zhang, P. H. W. Leong, D.-U. Lee, J. D. Villasenor, R. C.
C. Cheung, and W. Luk, “Ziggurat-based hardware gaussian
random number generator,” in Proceedings of the International

International Journal of Reconfigurable Computing 11

Conference on Field Programmable Logic and Applications (FPL
’05), pp. 275–280, August 2005.

[25] H. Edrees, B. Cheung, M. Sandora et al., “Hardware-optimized
ziggurat algorithm for high-speed gaussian random number
generators,” in Proceedings of the International Conference on
Engineering of Recongurable Systems & Algorithms (ERSA ’09),
pp. 254–260, July 2009.

[26] N. A. Woods and T. Court, “FPGA acceleration of quasi-monte
carlo in finance,” in Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL ’08), pp.
335–340, September 2008.

[27] C. S. Wallace, “Fast pseudorandom generators for normal
and exponential variates,” ACM Transactions on Mathematical
Software, vol. 22, no. 1, pp. 119–127, 1996.

[28] C. S. Wallace, MDMC Software—Random Number Gener-
ators, http://www.datamining.monash.edu.au/software/ran-
dom/index.shtml, 2003.

[29] D. U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H.
W. Leong, “A hardware Gaussian noise generator using the
Wallace method,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, no. 8, pp. 911–920, 2005.

[30] R. Korn, E. Korn, and G. Kroisandt, Monte Carlo Methods
and Models in Finance and Insurance, Financial Mathematics
Series, Chapman & Hull/CRC, Boca Raton, Fla, USA, 2010.

[31] L. Devroye, Non-Uniform Random Variate Generation,
Springer, New York, NY, USA, 1986.

[32] J. A. Peter, An algorithm for computing the inverse normal
cumulative distribution function, 2010.

[33] B. Moro, “The full Monte,” Risk Magazine, vol. 8, no. 2, pp.
57–58, 1995.

[34] D.-U. Lee, R. C. C. Cheung, W. Luk, and J. D. Villasenor, “Hier-
archical segmentation for hardware function evaluation,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 1, pp. 103–116, 2009.

[35] D.-U. Lee, W. Luk, J. Villasenor, and P. Y. K. Cheung, “Hier-
archical Segmentation Schemes for Function Evaluation,” in
Proceedings of the IEEE International Conference on Field-
Programmable Technology (FPT ’03), pp. 92–99, 2003.

[36] IEEE-SA Standards Board. IEEE 754-2008 Standard for
Floating-Point Arithmetic, August 2008.

[37] Free Software Foundation Inc. GSL—GNU Scientic Library,
http://www.gnu.org/software/gsl/, 2011.

[38] S. L. Heston, “A closed-form solution for options with
stochastic volatility with applications to bond and currency
options,” Review of Financial Studies, vol. 6, no. 2, p. 327, 1993.

[39] S. S. Shapiro and M. B. Wilk, “An analysis-of-variance test for
normality (complete samples),” Biometrika, vol. 52, pp. 591–
611, 1965.

[40] M. A. Stephens, “EDF statistics for goodness of fit and some
comparisons,” Journal of the American Statistical Association,
vol. 69, no. 347, pp. 730–737, 1974.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

