72 research outputs found

    Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study.

    Get PDF
    BACKGROUND: Monitoring cerebrovascular reactivity in adult traumatic brain injury (TBI) has been linked to global patient outcome. Three intra-cranial pressure (ICP)-derived indices have been described. It is unknown which index is superior for outcome association in TBI outside previous single-center evaluations. The goal of this study is to evaluate indices for 6- to 12-month outcome association using uniform data harvested in multiple centers. METHODS: Using the prospectively collected data from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, the following indices of cerebrovascular reactivity were derived: PRx (correlation between ICP and mean arterial pressure (MAP)), PAx (correlation between pulse amplitude of ICP (AMP) and MAP), and RAC (correlation between AMP and cerebral perfusion pressure (CPP)). Univariate logistic regression models were created to assess the association between vascular reactivity indices with global dichotomized outcome at 6 to 12 months, as assessed by Glasgow Outcome Score-Extended (GOSE). Models were compared via area under the receiver operating curve (AUC) and Delong's test. RESULTS: Two separate patient groups from this cohort were assessed: the total population with available data (n = 204) and only those without decompressive craniectomy (n = 159), with identical results. PRx, PAx, and RAC perform similar in outcome association for both dichotomized outcomes, alive/dead and favorable/unfavorable, with RAC trending towards higher AUC values. There were statistically higher mean values for the index, % time above threshold, and hourly dose above threshold for each of PRx, PAx, and RAC in those patients with poor outcomes. CONCLUSIONS: PRx, PAx, and RAC appear similar in their associations with 6- to 12-month outcome in moderate/severe adult TBI, with RAC showing tendency to achieve stronger associations. Further work is required to determine the role for each of these cerebrovascular indices in monitoring of TBI patients.Data used in preparation of this manuscript were obtained in the context of CENTER-TBI, a large collaborative project with the support of the European Union 7th Framework program (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA) and from Integra LifeSciences Corporation (USA).DKM was also supported by funding from the National Institute for Health Research (NIHR, UK) through a Senior Investigator award and the Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust. The study also received additional support from the NIHR Clinical Research network. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care, UK. FAZ has received salary support for dedicated research time, during which this project was completed. Such salary support came from: the Cambridge Commonwealth Trust Scholarship, the University of Manitoba Clinician Investigator Program, and the Royal College of Surgeons of Canada – Harry S. Morton Travelling Fellowship in Surgery

    Rethinking neuroprotection in severe traumatic brain injury : toward bedside neuroprotection

    Get PDF
    Neuroprotection after traumatic brain injury (TBI) is an important goal pursued strenuously in the last 30 years. The acute cerebral injury triggers a cascade of biochemical events that may worsen the integrity, function, and connectivity of the brain cells and decrease the chance of functional recovery. A number of molecules acting against this deleterious cascade have been tested in the experimental setting, often with preliminary encouraging results. Unfortunately, clinical trials using those candidate neuroprotectants molecules have consistently produced disappointing results, highlighting the necessity of improving the research standards. Despite repeated failures in pharmacological neuroprotection, TBI treatment in neurointensive care units has achieved outcome improvement. It is likely that intensive treatment has contributed to this progress offering a different kind of neuroprotection, based on a careful prevention and limitations of intracranial and systemic threats. The natural course of acute brain damage, in fact, is often complicated by additional adverse events, like the development of intracranial hypertension, brain hypoxia, or hypoperfusion. All these events may lead to additional brain damage and worsen outcome. An approach designed for early identification and prompt correction of insults may, therefore, limit brain damage and improve results

    Cerebrovascular reactivity is not associated with therapeutic intensity in adult traumatic brain injury: a CENTER-TBI analysis.

    Get PDF
    BACKGROUND: Impaired cerebrovascular reactivity in adult traumatic brain injury (TBI) is known to be associated with poor outcome. However, there has yet to be an analysis of the association between the comprehensively assessed intracranial hypertension therapeutic intensity level (TIL) and cerebrovascular reactivity. METHODS: Using the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit (ICU) cohort, we derived pressure reactivity index (PRx) as the moving correlation coefficient between slow-wave in ICP and mean arterial pressure, updated every minute. Mean daily PRx, and daily % time above PRx of 0 were calculated for the first 7 days of injury and ICU stay. This data was linked with the daily TIL-Intermediate scores, including total and individual treatment sub-scores. Daily mean PRx variable values were compared for each TIL treatment score via mean, standard deviation, and the Mann U test (Bonferroni correction for multiple comparisons). General fixed effects and mixed effects models for total TIL versus PRx were created to display the relation between TIL and cerebrovascular reactivity. RESULTS: A total of 249 patients with 1230 ICU days of high frequency physiology matched with daily TIL, were assessed. Total TIL was unrelated to daily PRx. Most TIL sub-scores failed to display a significant relationship with the PRx variables. Mild hyperventilation (p < 0.0001), mild hypothermia (p = 0.0001), high levels of sedation for ICP control (p = 0.0001), and use vasopressors for CPP management (p < 0.0001) were found to be associated with only a modest decrease in mean daily PRx or % time with PRx above 0. CONCLUSIONS: Cerebrovascular reactivity remains relatively independent of intracranial hypertension therapeutic intensity, suggesting inadequacy of current TBI therapies in modulating impaired autoregulation. These findings support the need for investigation into the molecular mechanisms involved, or individualized physiologic targets (ICP, CPP, or Co2) in order to treat dysautoregulation actively.EU 7th Framewor

    Severe traumatic brain injury : targeted management in the intensive care unit

    Get PDF
    Severe traumatic brain injury (TBI) is currently managed in the intensive care unit with a combined medical-surgical approach. Treatment aims to prevent additional brain damage and to optimise conditions for brain recovery. TBI is typically considered and treated as one pathological entity, although in fact it is a syndrome comprising a range of lesions that can require different therapies and physiological goals. Owing to advances in monitoring and imaging, there is now the potential to identify specific mechanisms of brain damage and to better target treatment to individuals or subsets of patients. Targeted treatment is especially relevant for elderly people-who now represent an increasing proportion of patients with TBI-as preinjury comorbidities and their therapies demand tailored management strategies. Progress in monitoring and in understanding pathophysiological mechanisms of TBI could change current management in the intensive care unit, enabling targeted interventions that could ultimately improve outcomes.Peer reviewe

    Neuroprotection in traumatic brain injury : mesenchymal stromal cells can potentially overcome some limitations of previous clinical trials

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. In the last 30 years several neuroprotective agents, attenuating the downstream molecular and cellular damaging events triggered by TBI, have been extensively studied. Even though many drugs have shown promising results in the pre-clinical stage, all have failed in large clinical trials. Mesenchymal stromal cells (MSCs) may offer a promising new therapeutic intervention, with preclinical data showing protection of the injured brain. We selected three of the critical aspects identified as possible causes of clinical failure: the window of opportunity for drug administration, the double-edged contribution of mechanisms to damage and recovery, and the oft-neglected role of reparative mechanisms. For each aspect, we briefly summarized the limitations of previous trials and the potential advantages of a newer approach using MSCs

    Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study

    Get PDF
    BackgroundMonitoring cerebrovascular reactivity in adult traumatic brain injury (TBI) has been linked to global patient outcome. Three intra-cranial pressure (ICP)-derived indices have been described. It is unknown which index is superior for outcome association in TBI outside previous single-center evaluations. The goal of this study is to evaluate indices for 6- to 12-month outcome association using uniform data harvested in multiple centers.MethodsUsing the prospectively collected data from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, the following indices of cerebrovascular reactivity were derived: PRx (correlation between ICP and mean arterial pressure (MAP)), PAx (correlation between pulse amplitude of ICP (AMP) and MAP), and RAC (correlation between AMP and cerebral perfusion pressure (CPP)). Univariate logistic regression models were created to assess the association between vascular reactivity indices with global dichotomized outcome at 6 to 12 months, as assessed by Glasgow Outcome Score–Extended (GOSE). Models were compared via area under the receiver operating curve (AUC) and Delong’s test.ResultsTwo separate patient groups from this cohort were assessed: the total population with available data (n = 204) and only those without decompressive craniectomy (n = 159), with identical results. PRx, PAx, and RAC perform similar in outcome association for both dichotomized outcomes, alive/dead and favorable/unfavorable, with RAC trending towards higher AUC values. There were statistically higher mean values for the index, % time above threshold, and hourly dose above threshold for each of PRx, PAx, and RAC in those patients with poor outcomes.ConclusionsPRx, PAx, and RAC appear similar in their associations with 6- to 12-month outcome in moderate/severe adult TBI, with RAC showing tendency to achieve stronger associations. Further work is required to determine the role for each of these cerebrovascular indices in monitoring of TBI patients.</p

    Changing care pathways and between-center practice variations in intensive care for traumatic brain injury across Europe: a CENTER-TBI analysis.

    Get PDF
    PURPOSE: To describe ICU stay, selected management aspects, and outcome of Intensive Care Unit (ICU) patients with traumatic brain injury (TBI) in Europe, and to quantify variation across centers. METHODS: This is a prospective observational multicenter study conducted across 18 countries in Europe and Israel. Admission characteristics, clinical data, and outcome were described at patient- and center levels. Between-center variation in the total ICU population was quantified with the median odds ratio (MOR), with correction for case-mix and random variation between centers. RESULTS: A total of 2138 patients were admitted to the ICU, with median age of 49 years; 36% of which were mild TBI (Glasgow Coma Scale; GCS 13-15). Within, 72 h 636 (30%) were discharged and 128 (6%) died. Early deaths and long-stay patients (> 72 h) had more severe injuries based on the GCS and neuroimaging characteristics, compared with short-stay patients. Long-stay patients received more monitoring and were treated at higher intensity, and experienced worse 6-month outcome compared to short-stay patients. Between-center variations were prominent in the proportion of short-stay patients (MOR = 2.3, p < 0.001), use of intracranial pressure (ICP) monitoring (MOR = 2.5, p < 0.001) and aggressive treatments (MOR = 2.9, p < 0.001); and smaller in 6-month outcome (MOR = 1.2, p = 0.01). CONCLUSIONS: Half of contemporary TBI patients at the ICU have mild to moderate head injury. Substantial between-center variations exist in ICU stay and treatment policies, and less so in outcome. It remains unclear whether admission of short-stay patients represents appropriate prudence or inappropriate use of clinical resources
    corecore