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Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. In the

last 30 years several neuroprotective agents, attenuating the downstream molecular and

cellular damaging events triggered by TBI, have been extensively studied. Even though

many drugs have shown promising results in the pre-clinical stage, all have failed in large

clinical trials. Mesenchymal stromal cells (MSCs) may offer a promising new therapeutic

intervention, with preclinical data showing protection of the injured brain. We selected

three of the critical aspects identified as possible causes of clinical failure: the window

of opportunity for drug administration, the double-edged contribution of mechanisms

to damage and recovery, and the oft-neglected role of reparative mechanisms. For

each aspect, we briefly summarized the limitations of previous trials and the potential

advantages of a newer approach using MSCs.
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INTRODUCTION

Traumatic brain injury (TBI) is the leading cause of mortality and morbidity across all ages in
all countries. In Europe, it is estimated that 2.5 million people suffer a TBI each year, 1 million
are admitted to hospital, and 57,000 die (1). TBI survivors have to deal with chronic post-injury
motor, cognitive, and neuropsychological symptoms/dysfunctions. Even in the milder cases, TBI
substantially increases the risk of epilepsy, stroke, and late-life neurodegenerative diseases (1). TBI
thus implies a huge burden for patients, their families, and society.

Trauma causes primary damage to the brain by multiple mechanisms, including tearing,
shearing, and stretching forces. Consequently, a cascade of metabolic, biochemical, and
inflammatory changes is initiated, leading to secondary damage. Then second insults, both
intracranial and systemic such as hypoxia, hypotension and intracranial hypertension, may worsen
the progression of the injury.

Treatment of TBI patients has not changed much in the last 20 years, consisting only in
supportive therapy directed at prevention, early detection and treatment of second insults, since
all pharmacological trials testing neuroprotective agents have failed (2–5). This translational
defeat may have several explanations, analyzed in numerous papers (6–8). In these critical
reappraisals, many factors were identified at preclinical and clinical levels as area of improvement.
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They included, but were not limited to, pharmacokinetics and
pharmacodynamics, inadequate sample sizes, heterogeneity of
TBI populations, the lack of relevant mechanistic early endpoints
and insensitivity of global outcome measures (9).

Mesenchymal stromal cells (MSCs) may offer a promising
strategy, with preclinical data showing that MSCs of human
origin protect the injured brain by acting on multiple
mechanisms of protection and repair (10–13), with potential
advantages in terms of therapeutic window.

After initial expectations about the possibility of MSC
trans-differentiation through neuronal lineage for brain
reconstruction, decades of experimental data mainly show that
MSCs do not protect the TBI brain through cell replacement, but
by stimulating neuroprotective and endogenous neuroreparative
mechanisms that this narrative review will discuss. We shall
focus on three flaws of past trials that MSC-based therapy has
the potential to overcome: the “window of opportunity” for drug
administration, the double-edged contribution of mechanisms
to damage and recovery, and the important, but often neglected,
role of reparative mechanisms.

WINDOW OF OPPORTUNITY FOR
PHARMACOLOGICAL
NEUROPROTECTION IN TBI

The biochemical mechanisms of progressive brain damage are
set in motion immediately after TBI as a consequence of the
external force applied to the head. Using microdialysis in a
rodent model of concussion, Katayama demonstrated a surge
of extracellular potassium in the first minutes after injury,
parallel with massive release of glutamate—up to 10–100 times
the normal concentration (14). The time-resolution of the
method, however, was limited (1min of dead space for dialysate
collection); when electrodes were used, almost immediate K+
release was demonstrated after trauma (15).

Early mechanisms of cellular injury act in minutes-to-hours
after injury. The massive release of excitatory neurotransmitters,
spreads energy failure and overload of free radicals from the
contused tissue to surrounding brain regions. Energy crisis
alters cell permeability, causing calcium inflow, which triggers
mitochondrial dysfunction, with consequent energy failure, and
apoptotic/necrotic death. Primary axotomy is uncommon, even
in the case of traumatic axonal injury; the alteration of membrane
permeability induces edema and impairs axonal transport,
making axons more vulnerable to secondary axotomy and
demyelination. These cascades clearly indicate how mechanical
forces applied to the brain may evolve and propagate to healthy,
potentially salvable tissue (16, 17).

The progress of secondary injury, in its sequence of deleterious
events over time, is the theoretical basis for neuroprotective
strategies. When neuroprotectant drugs were tested under
experimental conditions, it became evident that their maximum
potential was exploited by early administration or—when
possible—by pre-treating the brain before insults (18). In general,
however, later exposure to a protective compound gave less or no
benefit (19–21).

These findings shaped the design of clinical trials, where drugs
had to be administered in the first hours after injury, when
there was felt to be a “window of opportunity.” A recent review
(5) of 16 robust trials testing neuroprotective agents in TBI
indicated a window of opportunity of 4 h in three, 6 h in two,
8 h in seven, and 12 h in one trial, while only three trials tested
treatment up to 24 h after injury (Table 1). This narrow window
of opportunity makes clinical trials more challenging, reducing
enrolment rates and increasing complexity. Patients need to be
rescued, stabilized, centralized to the study center, evaluated
clinically and by imaging; relatives must be contacted for consent
procedures so, finally, randomization and drug preparation and
administration can start within the few hours permitted by the
protocol. It is no surprise that a number of cases failed to meet
the time limit: in several trials∼20% of potential candidates could
not be enrolled because of the narrow time window (36). In the
same trials the duration of the pharmacological intervention was
limited to the first days after ICU admission (Table 1).

However, mounting evidences indicate that pathophysiologic
processes caused by the initial injury do not exhaust themselves
in the first days but persist for months or years, and
that TBI survivors are at risk of late neurodegenerative
diseases (including Alzheimer’s and Parkinson’s disease, chronic
traumatic encephalopathy) (37). For example, Johnson et al.
reported immunohistochemical evidence of microglia activation
and white matter degradation in subjects who died many years

TABLE 1 | Major randomized clinical trials (RCT) evaluating pharmacological

treatments for acute moderate/severe TBI.

Study Drug Treatment

start

Treatment

duration

Sample

size

Results

Skolnick (22) Progesterone <8 h 5 days 1,195 ND

Wright (4) Progesterone <4 h 4 days 882 ND

Shakur (23) Anatibant <8 h 4 days 228 ND

Marmarou (24) Bradycor <12 h 5 days 139 ND

Eurogroup (25) Nimodipine <24 h 7 days 852 ND

Teasdale (26) Nimodipine <24 h 7 days 352 ND

Perel (27) Tranexamic

acid

<8 h 1 day 170 ND

Robertson (28) Erythropoietin <6 h 14 days 200 ND

Maas (29) Dexanabinol <6 h 1 day 861 ND

Yurkewicz (30) Traxopodil <8 h 3 days 404 ND

Morris (31) Selfotel <8 h 4 days 693 ND

Marshall (32) Tirilazad <4 h 5 days 1,120 ND

Young (33) Pegorgotein <8 h 1 day 463 ND

Asehnoune (34) Steroids <24 h 10 days 336 ND

Edwards (2) Steroids <8 h 2 days 10,008 ND

Grumme (35) Steroids <4 h 8 days 396 ND

Study selection was derived from the systematic review by Bragge et al. (5). An RCT was

defined as robust if it was multicenter, included more than 100 patients, and had low risk

of bias. For each study, it is reported first author and year of publication, the investigated

drug, treatment start and length, number of patients included, and the effect on outcome,

as mortality for Shakur, Perel and Asehnoune and Glasgow Outcome Scale for the others.

ND, no statistical difference between intervention and control regarding selected outcome.
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FIGURE 1 | After the biomechanical impact (left panel), toxic secondary cascades including excitotoxicity, axonal injury, apoptosis, demyelinization, blood/brain barrier

damage, toxic inflammation, protein misfolding, and gliotic scar (red arrows) contribute to the amplification of brain damage. Endogenous responses in TBI also

comprise potentially beneficial mechanisms of protective inflammation, neurogenesis, angiogenesis, neuroplasticity, synaptogenesis (green arrows) but are too weak

and short-lived to counteract the toxic cascades (right upper panel). MSC can mitigate toxic cascades and foster the regenerative ones, contributing to both

neuroprotection and neurorestoration (right lower panel).

after TBI (38); and in patients there is a relation between chronic
inflammation detected by positron emission tomography, up to
17 years post-TBI, and worse cognitive outcomes (39).

Inflammation is an important beneficial mechanism for
clearing pathological debris and effecting repair (40–44);
however, if dysregulated, it may also contribute to neuronal
damage. The relative positive or negative effects of
inflammation in relation to time from injury are still far
from certain, and a threat of neurodegeneration associated
with late microglia inhibition has recently been reported
in TBI subjects chronically treated with minocycline, an

antibiotic that can inhibit microglia activation (45). With
this in mind, immunomodulatory rather than inhibitory
strategies contributing to the resolution of inflammatory
changes may prove effective, with a wide therapeutic
window.

MSCs have high immunomodulatory potential both in vitro
and in vivo. It has been suggested that in response to injury these
cells can sense the injured environment, leading to the promotion
of injury resolution and regenerative processes through the
secretion of immunomodulatory bioactive factors and trophic
molecules including growth factors, cytokines, and antioxidants
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(46–48), that may vary in relation to the needs of the tissue and
the time from injury.

Preclinical studies in rodents address the effects of MSCs
in a wide range of TBI-to-therapy intervals, with consistent
data from several laboratories showing their efficacy when
infused 24 h post-TBI. Both central (49–60) and systemic (60–75)
administration of MSCs 24 h post-TBI have resulted in early and
persistent improvements of functional and structural outcomes.
It was recently shown that a double systemic infusion of MSC
(at 4 and 24 h) post-TBI was more effective than a single dose
at 24 h (76). The authors showed 4 and 24 h post-TBI peaks of
IL1β, TNFα, and IFNγ, suggesting that a shorter lag time between
TBI and treatment may be important to counteract early pro-
inflammatory changes. Whether this gain in protection was due
to multiple doses or the earlier treatment still needs to be fully
investigated.

MSC infusion has also given protective effects when delivered
in the sub-acute phase (between 2 and 7 days after injury) either
systemically (77, 78) or centrally (79–81). Kota et al. administered
bone-marrow MSCs (BM-MSCs) 3 days after TBI, showing IFN-
γ and TNF-α reductions of∼50% (82), with significant inhibition
of brain permeability, edema, microglial activation and systemic
levels of norepinephrine, while promoting neurogenesis (83).

Effect size relative to the time from experimental TBI to MSC
administration has been evaluated in a recent meta-analysis (10).
The analysis confirms MSC efficacy when infused from 2 h up to
7 days, with no significant differences in effect sizes relative to the
time from TBI to intervention.

So far there are only few reports of MSC given in the chronic
phase of TBI. At 2 months post-TBI, MSC transplant into the
lesion core improved sensorimotor deficits and promoted neuro-
restorative processes (84, 85). However, at this stage iv injection
was not effective (86), suggesting that MSC may act through
complementary mechanisms when infused locally into the brain
or systemically, the latter no longer being sufficient at later stages.

Compelling data on MSC rationale, efficacy, immune
tolerance, and feasibility are fostering the design of clinical
studies. Pragmatically, to optimize the reduction of toxic cascades
and the promotion of endogenous reparative mechanisms, an
administration of MSC within 48 h from TBI would seem to be
desirable. However, only data from clinical trials will provide a
definitive answer in term of the best timing for intervention.

DOUBLE-EDGED CONTRIBUTION OF
MECHANISMS TO DAMAGE AND
RECOVERY

Counteracting specific damage pathways should reduce the
extent of tissue injury, and ultimately contribute to a better
outcome. This is the logic behind several lines of investigation in
TBI, from studies on calcium blockers to N-methyl-D-aspartate
(NMDA) antagonists.

Under physiological conditions, glutamate plays an important
role as a neurotransmitter; it is also involved in coupling
glucose utilization and neuronal activity (87). However, high
concentrations of glutamate (100–500 micromoles) are lethal for

neurons in vitro, and have been measured in the extracellular
space of experimental TBI in rodents. In humans too there
is evidence of high extracellular concentrations of glutamate
after TBI, particularly in the elderly (88). This supported the
hypothesis that blocking glutamate receptors (like the NMDA
subtype) might attenuate the deleterious effects of the glutamate
surge induced by TBI. Several compounds inhibiting the NMDA
receptors, with competitive or non-competitive mechanisms,
have therefore been tested in experimental and clinical settings.
While in the laboratory evidence of neuroprotection was found
(89, 90), clinical trials all failed to show benefit (91). Among
the possible explanations for these repeated failures, there is the
hypothesis that NMDA receptor activity is essential for neuronal
function and integrity, so that NMDA blockage at critical time
points (92), especially in vulnerable phases after TBI, could be
deleterious rather than protective.

Another failed neuroprotective treatment is corticosteroids,
which were tested in the first mega-trial in TBI at the end of the
last century, “Corticosteroid randomization after significant head
injury” (CRASH) (2). The hypothesis leading to this trial was
that inflammation is a key component of the brain response to
TBI and that blocking the inflammatory cascade could therefore
be protective. Soluble mediators and cellular components of
inflammation were investigated and related to the extent of brain
damage. Unfortunately, however, the CRASH results showed
no improvement in favorable outcomes and there was in fact
a higher risk of mortality in the treatment group, not fully
explained by systemic complications (such as infection and
gastric bleeding); this may call into play the complex double-
edged function of inflammation involved not only in toxic but
also in regenerative processes, as discussed above. In this context
MSCs affect the biology of the injured cells and tissue through
the secretion of cytokines, morphogens, small molecules, and
cargo-bearing exosomes (93, 94), which skew the activation of
immune cells from a toxic to a more permissive phenotype, thus
contributing to injury resolution and tissue repair (55, 58).

THE NEGLECTED ROLE OF REPARATIVE
MECHANISMS

Besides toxic cascades TBI also induces neuro-restorative
processes including neurogenesis, gliogenesis, angiogenesis,
synaptic plasticity, and axonal sprouting (95–97). These events
are induced by biochemical factors such as growth factors,
steroids, and neurotransmitters, released in response to injury,
with the potential for counteracting progression of the injury
and contributing to functional recovery. However, all these
spontaneous processes are short-lived and the efficacy of the
self-repair responses is limited. Providing the injured tissue
with a facilitatory milieu that increases endogenous reparative
mechanisms may open up new therapeutic opportunities.

In the adult brain the subventricular zone (SVZ) and the
subgranular zone (SGZ) of the dentate gyrus (DG) are populated
by neural stem cells, which can differentiate into functional
neurons (95, 98). Proliferation in the DG is age-dependent,
with higher potential in the juvenile brains. The new cells can
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differentiate into functional mature neurons, involved in higher
functions.

The neurogenic response after TBI comprises three phases:
proliferation of precursors/progenitors cells, migration to injured
tissue, and differentiation into proper cell types (99). An
increased proliferative response in the hippocampus 2 days
after TBI, with a peak in the first week after injury, has been
described in different TBI models (100). These proliferating cells
may differentiate into astrocytes, oligodendrocytes, and neurons,
and extend projections alongside the hippocampal mossy fibers
participating in recovery of function.

TBI induces a proliferative response in the neurogenic niche
in the SVZ and hippocampus (101), under stimulation by
growth factors. Preclinical studies have shown that intracerebral
administration of single growth factors including fibroblast
growth factor 2 (FGF-2) and epidermal growth factor (EGF)
can promote endogenous neurogenesis after TBI (102, 103)
and improve cognitive outcome. Similarly, infusion of VEGF
into the lateral brain ventricle in TBI mice promotes cell
proliferation in the SVZ and the peri-lesional cortex after
TBI (104); VEGF in fact mediates the survival of newly
generated neurons rather than proliferation of neuroblasts
(105).

On account of their neurogenic and neuroprotective effects,
growth factors are an interesting tool to stimulate reparative
processes after TBI. However, their administration after injury
is linked to temporal issues related to their rapid kinetics and
limited effects. Studies in TBI rodents have shown increased
amounts of growth factors after MSC treatment (52, 55, 64,
106–108), leading to the promotion of endogenous restorative
processes and suggesting that MSCs may act as a local
bioreactor able to produce and release a multitude of growth
factors, depending on the specific requirements of the injured
tissue.

It has been shown that MSCs stimulate endogenous
neurogenesis with an higher proliferation rate in the SVZ and
SGZ (64) and an increased number of developing neurons in
the SVZ (detected as doublecortin marker) (57, 60); they also
stimulate axonal regeneration, as documented by increased GAP-
43 expression (58, 107) in MSC-treated TBI animals. Likewise,
their ability to promote plasticity in TBI has been documented
by infusing a fluorescent dye into the contralateral cortex 5
weeks after injury and measuring its transport from the injection
site to the injured hemisphere through the corpus callosum 1
week later (79). Functional outcome and axonal fiber length
were increased in MSC-treated animals, suggesting an MSC
mediated effect on neuronal connectivity by directing axonal
projections, neurite outgrowth and elongation in the injured
cortex.

Another aspect linked to neuroplastic processes is represented
by glial activation and extracellular matrix composition, both
aspects possibly being modulated by MSCs. Acute glial activation
is needed to clear excessive glutamate release and remove cellular
debris (109, 110). However, at chronic stages, excessive gliotic
scar may hamper remodeling processes (111). MSCs reduce

the gliotic scar surrounding the contusion 1 month after TBI
and this effect is associated with a smaller lesion and better
functional recovery (55, 57). MSCs can also alter the extracellular
matrix composition, allowing restorative plasticity by circuit
reorganization (112).

MSCs act also on vascular cerebral compartment, increasing
vessel density in the pericontusional tissue after acute (24 h
post-TBI) (57, 60, 113, 114), sub-acute (7 days) (115), and
chronic (84) administrations. This suggests that rescue
effects on injured vessels as well as regenerative action
on brain vasculature involve mechanisms stimulated by
cell therapy. In fact, gene expression microarray analysis
showed MSC expression of genes involved in angiogenic
processes possibly sustaining both neurovascular repair in
the acute phase after injury and neovascularization later on
(81).

CONCLUSIONS

Despite its high prevalence and heavy social burden, TBI remains
a neglected syndrome. Acute care for TBI patients relies on
maintenance of cerebral and body homeostasis, blunting or
avoiding further insults. After more than 30 years looking
for treatments, broadly defined as neuroprotective strategies,
to reverse or mitigate injury progression in TBI, we still
lack any effective therapy. The reasons for this failure have
been extensively analyzed, and new therapeutic approaches for
dealing with them could have higher translational potential.
Experimental studies support the hypothesis that MSCs may
overcome three of the major limitations. First, MSCs in animal
models show efficacy when administered within the acute,
sub-acute and delayed phases post-TBI, not being limited by
a narrow window of opportunity. Second, preclinical data
support the notion that MSCs influence a complex pathway
such as inflammation, favoring restorative over deleterious
aspects. Finally, the recognition that MSCs act on the injured
environment fostering reparative processes, relies on a new
paradigm, exploitation of the endogenous ability of self-
repair.

In conclusion, MSCs have the potential to be
the next candidate for neuroprotective trials in TBI
patients.
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