34 research outputs found

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study.

    Get PDF
    Introduction: The BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs). Methods: A study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel. Results: A total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4 % and 85 % respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1 h. The user experience was positive, implying a potential benefit of rapidity of results\u27 turnover in optimising patient management strategies. Conclusion: The study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study

    Get PDF
    Introduction: The BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs). Methods: A study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel. Results: A total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4 % and 85 % respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1 h. The user experience was positive, implying a potential benefit of rapidity of results' turnover in optimising patient management strategies. Conclusion: The study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting

    A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society

    Get PDF
    Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.http://www.wileyonlinelibrary.com/journal/mbt2hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-01:No povertySDG-02:Zero HungerSDG-03:Good heatlh and well-beingSDG-04:Quality EducationSDG-06:Clean water and sanitationSDG-07:Affordable and clean energySDG-08:Decent work and economic growthSDG-12:Responsible consumption and productionSDG-13:Climate actionSDG-14:Life below wate

    Probiyotikler

    No full text

    Antimicrobial Susceptibilities and Molecular Characterization of Toxin-Positive Clostridium difficile Isolates: The First Report on the Presence of Hypervirulent Strains from Turkey

    No full text
    WOS: 000408311400004PubMed ID: 28929960Clostridium difficile infection is one of the most important hospital-acquired infections. Infections caused by hypervirulent C. difficile strains which produce toxins at high levels, have higher morbidity and mortality rates, more complications and relapses. They are characterized by higher sporulation ratios and resistance rates for fluoroquinolones. In order to prevent serious morbidities, mortalities and remarkable increase in health costs, highly pathogenic C. difficile strains must be identified before causing severe outbreaks. The aim of this study was to determine the antimicrobial susceptibilities and molecular characteristics of 61 C. difficile strains isolated by culture from toxin-positive fecal samples of patients who were admitted to three different laboratories in Ankara, between September 2012 and November 2014. Antimicrobial susceptibilities were determined by using gradient test strips and results were interpreted according to the current CLSI and EUCAST criteria. The presence of toxin genes was investigated by polymerase chain reaction (PCR), and mutations in the tcdC gene were determined by sequence analysis following PCR amplification. Genetic characterization of one hypervirulent strain was performed by Public Health Institution of Turkey using the GenoType CDiff (Hain Lifescience, Germany) test. All strains were susceptible to vancomycin and metronidazole. Three (4.9%) isolates were resistant to moxifloxacin with a minimum inhibitory concentration (MIC) of > 8 mu g/ml. The MIC 50 and MIC 90 values for erythromycin and clindamycin were 1.5-3 mu g/ml, and 2-4 mu g/ml, respectively. All strains carried the tcdA and tcdB genes, and 1 (1.6%) was positive for the binary-toxin (cdtA and cdtB) genes. The binary-toxin positive strain carried a 54 bp deletion as well as a single nucleotide change in the tcdC gene. Various single nucleotide changes were found in the tcdC gene of 12 strains (19.6%). Our results have shown that, hypervirulent strains exist in our country, but we have no evidence for the presence of ribotype 027 yet. On the other hand, when the increasing incidence of these strains through out the world is taken into consideration, it would be of great importance to perform surveillance studies and characterize the isolated strains

    Guillain-Barré syndrome following influenza immunization: A case report Influenza aşisi sonrasi Guillain-Barré sendromu: Bir vaka takdimi

    No full text
    Guillain-Barré syndrome (GBS) is a peripheral polyneuro radiculopathy with acute onset which is most commonly characterized by rapidly progressive symmetric weakness and areflexia. Infectious agents, surgery or immunizations may trigger the formation of the disease. An 11-year-old boy was admitted to the hospital after presenting weakness and symptoms of walking disabilities three weeks after the influenza vaccination. The neurologic examination revealed a symmetric proximal muscle weakness of upper and lower extremities, Gower's sign and absent deep tendon reflexes. Cerebrospinal fluid analysis revealed an albuminocytologic dissociation. Therefore, a diagnosis of GBS following vaccination was made. While studies have found inconclusive results on the association between influenza vaccine and GBS, all suspected cases should be published for further evaluation and investigated with the aid of literature

    PCR investigation of Panton-Valentine leukocidin, enterotoxin, exfoliative toxin, and agr genes in Staphylococcus aureus strains isolated from psoriasis patients

    Get PDF
    Background/aim: Staphylococcus aureus colonization is a determiner of disease activation in psoriasis patients. Here we evaluate the presence of genes encoding Panton-Valentine leukocidin (PVL), enterotoxins, TSST-1, exfoliative toxins, and the accessory gene regulatory locus by polymerase chain reaction (PCR) in S. aureus isolates obtained from healthy and diseased skin regions and anterior nares of psoriasis patients and healthy controls. Materials and methods: The presence of PVL and toxin genes was investigated, and agr typing was performed by PCR. Results: Eighteen of the isolated strains carried the sei, 1 carried the seb-sec, and 1 carried the seg enterotoxin gene. Eight of the strains carrying enterotoxin genes were isolated from nasal swabs, 6 from diseased skin swabs, and 4 from healthy skin swabs. None of the strains isolated from the control group carried the agr locus. On the other hand, 11 of the S. aureus strains isolated from the patients carried type 1, 7 carried type 1 + 3, 4 carried type 2, 4 carried type 3, and 1 carried type 1 + 2 agr loci. Conclusion: Enterotoxin production and the carried accessory gene regulatory locus may be important in the aggravation of psoriasis

    Comparison of polymerase chain reaction and conventional methods in detecting methicillin-resistant Staphylococcus aureus

    No full text
    Background: Accurate and rapid detection of methicillin-resistant Staphylococcus aureus is very important in a clinical laboratory setting to avoid treatment failure. Conventional methods were compared against the gold standard polymerase chain reaction (PCR) technique to determine the best combination of the routine procedures. Methodology: Methicillin resistance was investigated in 416 clinical Staphylococcus aureus isolates by PCR, oxacillin agar screening (OAS), oxacillin disk diffusion (ODD) and cefoxitin disk diffusion (CDD) methods. Results: Two hundred and ten (51%) out of 416 S. aureus strains were found to be mecA-positive by PCR. Sensitivity and specificity of the ODD, CDD and OAS methods were detected as follows: 100% and 89%, 99.50% and 100%, and 99.50% and 100%, respectively . Conclusion: Combining the ODD and CDD methods could be a good choice for detecting methicillin resistance in S. aureus strains where mecA PCR cannot be performed. Key Words : Methicillin-resistant Staphylococcus aureus (MRSA), polymerase chain reaction (PCR), oxacillin disk diffusion, cefoxitin disk diffusion, oxacillin agar screening
    corecore