112 research outputs found

    Dolphin blubber/axial muscle shear : implications for rigid transdermal intramuscular tracking tag trauma in whales

    Get PDF
    Author Posting. © The Company of Biologists, 2017. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 220 (2017): 3717-3723, doi:10.1242/jeb.165282.Whale tracking tags often penetrate semi-rigid blubber, with intramuscular sharp tips and toggling barbs under the subdermal sheath to reduce premature shedding. Tag sites can show persistent regional swellings or depressions. Fibroelastic blubber grips a tag, so if muscle shears relative to blubber during locomotion, the tag tip could cavitate the muscle within overall shearing distance. We modeled shearing of blubber relative to muscle, within the dorsal-ventral peduncular movement range of four common dolphin (Delphinus delphis) cadavers (mean length 186 cm). The net change in angle and hence tip distance moved was calculated with dorsal and ventral flexion, and compared between 1.5 mm diameter needles inserted into blubber only and through blubber into muscle. The greatest shearing value was 3.6 cm, and shearing was most pronounced in the areas ventral and caudal to the dorsal fin. Scaled dummy tags were also inserted and the animal cyclically flexed dorsally and ventrally for 18 h. Tag sites were dissected and cavities around the tag tips documented. If this shearing is comparable in large whales, depressions and regional swellings observed with intramuscular tracking tags are likely the result of tissue loss and repair, respectively. Placing tags para-sagittally anterior to the dorsal fin would cause the least trauma, but pain from such tags remains a concern.This study was undertaken with support from the Office of Naval Research (award no. N00014-13-1-0653 to Cascadia Research Collective).2018-08-1

    Abundance of blue whales off Chile from the 1997/98 SOWER survey

    Get PDF
    The 1997/98 SOWER survey in Chile searched the region from 18°30′S to 38°S. Although the primary intention of the surveys was to maximize blue whale encounters, survey coverage was sufficient to estimate abundance using line transect methods. The baseline abundance estimate, excluding transit legs, was 452 (CV = 0.56, 95% CI: 160–1300). This abundance estimate is negatively biased because inshore regions including Chiloé Island and the Gulf of Corcovado, where blue whales are now known to aggregate, were outside the survey area. If it is conservatively assumed that the baseline estimate applied to the entire population, then the population was at a minimum of 7–23% of pre-exploitation levels in 1997

    Estimating abundance of an elusive cetacean in a complex environment: Harbor porpoises (Phocoena phocoena) in inland waters of Southeast Alaska

    Get PDF
    The harbor porpoise (Phocoena phocoena) is common in temperate waters of the eastern North Pacific Ocean, including Southeast Alaska inland waters, a complex environment comprised of open waterways, narrow channels, and inlets. Two demographically independent populations are currently recognized in this region. Bycatch of porpoises in the salmon drift gillnet fisheries is suspected to occur regularly. In this study, we apply distance sampling to estimate abundance of harbor porpoise during ship surveys carried out in the summer of 2019. A stratified survey design was implemented to sample different harbor porpoise habitats. Survey tracklines were allocated following a randomized survey design with uniform coverage probability. Density and abundance for the northern and southern Southeast Alaska inland water populations were computed using a combination of design-based line- and strip-transect methods. A total of 2,893 km was surveyed in sea state conditions ranging from Beaufort 0 to 3 and 194 harbor porpoise groups (301 individuals) were detected. An independent sighting dataset from surveys conducted between 1991 and 2012 were used to calculate the probability of missing porpoise groups on the survey trackline (g[0]=0.53, CV=0.11). Abundance of the northern and southern populations were estimated at 1,619 (CV=0.26) and 890 (CV=0.37) porpoises, respectively. Bycatch estimates, which were only obtained for a portion of the drift gillnet fishery, suggest that mortality within the range of the southern population may be unsustainable. Harbor porpoises are highly vulnerable to mortality in gillnets, therefore monitoring abundance and bycatch is important for evaluating the potential impact of fisheries on this species in Southeast Alaska

    Estimating the abundance of marine mammal populations

    Get PDF
    Support for this project was provided by the Lenfest Ocean Program.Motivated by the need to estimate the abundance of marine mammal populations to inform conservation assessments, especially relating to fishery bycatch, this paper provides background on abundance estimation and reviews the various methods available for pinnipeds, cetaceans and sirenians. We first give an “entry-level” introduction to abundance estimation, including fundamental concepts and the importance of recognizing sources of bias and obtaining a measure of precision. Each of the primary methods available to estimate abundance of marine mammals is then described, including data collection and analysis, common challenges in implementation, and the assumptions made, violation of which can lead to bias. The main method for estimating pinniped abundance is extrapolation of counts of animals (pups or all-ages) on land or ice to the whole population. Cetacean and sirenian abundance is primarily estimated from transect surveys conducted from ships, small boats or aircraft. If individuals of a species can be recognized from natural markings, mark-recapture analysis of photo-identification data can be used to estimate the number of animals using the study area. Throughout, we cite example studies that illustrate the methods described. To estimate the abundance of a marine mammal population, key issues include: defining the population to be estimated, considering candidate methods based on strengths and weaknesses in relation to a range of logistical and practical issues, being aware of the resources required to collect and analyze the data, and understanding the assumptions made. We conclude with a discussion of some practical issues, given the various challenges that arise during implementation.Publisher PDFPeer reviewe

    Final Report for the April 2009 Gulf of Alaska Line-Transect Survey (Goals) in the Navy Training Exercise Area

    Get PDF
    Little is known about the occurrence of cetaceans found in offshore waters in the Gulf of Alaska; however, whaling records and a few recent surveys have shown this area to be important habitat. The United States Navy maintains a maritime training area in the central Gulf of Alaska, east of Kodiak Island, and has requested additional information on marine mammal presence and use of this area. To determine the occurrence and distribution of marine mammals in and around the Navy training area, a line-transect visual and acoustic survey was conducted 10-20 April 2009 from the NOAA R/V Oscar Dyson. The primary survey area encompassed nearshore, shelf and offshore pelagic waters of the central Gulf of Alaska. Survey lines were designed to provide equal coverage of the nearshore and offshore habitat.Funded by Naval Postgraduate School.N00244-09-P-096

    An integrated approach to historical population assessment of the great whales: case of the New Zealand southern right whale

    Get PDF
    Accurate estimation of historical abundance provides an essential baseline for judging the recovery of the great whales. This is particularly challenging for whales hunted prior to twentieth century modern whaling, as population-level catch records are often incomplete. Assessments of whale recovery using pre-modern exploitation indices are therefore rare, despite the intensive, global nature of nineteenth century whaling. Right whales (Eubalaena spp.) were particularly exploited: slow swimmers with strong fidelity to sheltered calving bays, the species made predictable and easy targets. Here, we present the first integrated population-level assessment of the whaling impact and pre-exploitation abundance of a right whale, the New Zealand southern right whale (E. australis). In this assessment, we use a Bayesian population dynamics model integrating multiple data sources: nineteenth century catches, genetic constraints on bottleneck size and individual sightings histories informing abundance and trend. Different catch allocation scenarios are explored to account for uncertainty in the population's offshore distribution. From a pre-exploitation abundance of 28 800–47 100 whales, nineteenth century hunting reduced the population to approximately 30–40 mature females between 1914 and 1926. Today, it stands at less than 12% of pre-exploitation abundance. Despite the challenges of reconstructing historical catches and population boundaries, conservation efforts of historically exploited species benefit from targets for ecological restoration

    Whale distribution in a breeding area : spatial models of habitat use and abundance of western South Atlantic humpback whales

    Get PDF
    GA Bortolotto PhD is funded by the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq; Science Without Borders, scholarship #208203/2014 - 1). Cetacean International Society granted GA Bortolotto with small grants which contributed to the development of this study.The western South Atlantic humpback whale population was severely depleted by commercial whaling in the late 19th and 20th centuries, and today inhabits a human-impacted environment in its wintering grounds off the Brazilian coast. We identified distribution patterns related to environmental features and provide new estimates of population size, which can inform future management actions. We fitted spatial models to line transect data from 2 research cruises conducted in 2008 and 2012 to investigate (1) habitat use and (2) abundance of humpback whales wintering in the Brazilian continental shelf. Potential explanatory variables were year, depth, seabed slope, sea-surface temperature (SST), northing and easting, current speed, wind speed, distance to coastline and to the continental shelf break, and shelter (a combination of wind speed and SST categories). Whale density was higher in slower currents, at shorter distances to both the coastline and shelf break, and at SSTs between 24 and 25°C. The distribution of whales was also strongly related to shelter. For abundance estimation, easting and northing were included in the model instead of SST; estimates were 14264 whales (CV = 0.084) for 2008 and 20389 (CV = 0.071) for 2012. Environmental variables explained well the variation in whale density; higher density was found to the south of the Abrolhos Archipelago, and shelter seems to be important for these animals in their breeding area. Estimated distribution patterns presented here can be used to mitigate potential human-related impacts, such as supporting protection in the population’s core habitat near the Abrolhos Archipelago.PostprintPeer reviewe

    Whale, whale, everywhere: increasing abundance of western South Atlantic humpback whales (Megaptera novaeangliae) in their wintering grounds

    Get PDF
    The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563–25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595–24,500) and 19,429 (CV = 0.101, 95% CI = 15,958–23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated.Publisher PDFPeer reviewe

    Robustness of potential biological removal to monitoring, environmental, and management uncertainties

    Get PDF
    Support for this project was provided by the Lenfest Ocean Program.The potential biological removal (PBR) formula used to determine a reference point for human-caused mortality of marine mammals in the United States has been shown to be robust to several sources of uncertainty. This study investigates the consequences of the quality of monitoring on PBR performance. It also explores stochastic and demographic uncertainty, catastrophic events, sublethal effects of interactions with fishing gear, and the situation of a marine mammal population subject to bycatch in two fisheries, only one of which is managed. Results are presented for two pinniped and two cetacean life histories. Bias in abundance estimates and whether there is a linear relationship between abundance estimates and true abundance most influence conservation performance. Catastrophic events and trends in natural mortality have larger effects than environmental stochasticity. Managing only one of two fisheries with significant bycatch leads, as expected, to a lower probability of achieving conservation management goals, and better outcomes would be achieved if bycatch in all fisheries were managed. The results are qualitatively the same for the four life histories, but estimates of the probability of population recovery differ.Publisher PDFPeer reviewe
    • …
    corecore