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ABSTRACT: The western South Atlantic humpback whale population was severely depleted by 12 

commercial whaling in the late 19th and 20th centuries, and today inhabits a human-impacted 13 

environment in its wintering grounds off the Brazilian coast. Here, we identify distribution patterns 14 

related to environmental features and provide new estimates of population size, which can inform 15 

future management actions. We fitted spatial models to line transect data from two research cruises 16 

conducted in 2008 and 2012 to investigate (1) habitat use and (2) abundance of humpback whales 17 

wintering in the Brazilian continental shelf. Potential explanatory variables were year, depth, seabed 18 

slope, sea-surface temperature (SST), northing and easting, current speed, wind speed, distance to 19 

coastline and to the continental shelf break, and shelter (a combination of wind speed and SST 20 

categories). Whale density was higher in slower currents, at shorter distances to both the coastline 21 

and shelf break, and at SSTs between 24 and 25°C. The distribution of whales was also strongly 22 

related to shelter. For abundance estimation, easting and northing were included in the model instead 23 

of SST; estimates were 14,264 whales (CV = 0.084) for 2008 and 20,389 (CV = 0.071) for 2012. 24 

Environmental variables explained well the variation in whale density; higher density was found to 25 

the south of the Abrolhos Archipelago, and shelter seems to be important for these animals in their 26 

breeding area. Estimated distribution patterns presented here can be used to mitigate potential human-27 

related impacts, such as supporting protection in the population’s core habitat near the Abrolhos 28 

Archipelago. 29 
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INTRODUCTION 32 

The Brazilian coast is inhabited every winter and spring by the western South Atlantic (WSA) 33 

humpback whale (Megaptera novaeangliae) population (also referred to as breeding stock A by the 34 

International Whaling Commission). Whales aggregate in coastal waters along the central and 35 

northeastern coasts of Brazil to mate and give birth before migrating to feeding areas (Martins et al. 36 

2001, Zerbini et al. 2006). This population was severely exploited by whaling between the late 37 

nineteenth and mid-twentieth centuries (Zerbini et al. 2011; Morais et al. 2017), to the point of near 38 

extinction in the 1950s, but has since been recovering (Andriolo et al. 2010, Zerbini et al. 2011, 39 

Bortolotto et al. 2016a). The Red List of the International Union for Conservation of Nature and 40 

Natural Resources (IUCN) lists the conservation status of this species as “Least Concern” (Reilly et 41 

al. 2008). Recent abundance estimates from ship-based line transect surveys suggest that the WSA 42 

population size was near 20,000 animals in 2012 (Bortolotto et al. 2016a). However, that estimate 43 

was not computed for the entire area currently recognized as the typical distribution range of these 44 

animals during the breeding season. This increasing population faces today an environment modified 45 

by human activities such as marine traffic (Bezamat et al. 2015), fishing (Rocha-Campos et al. 2011, 46 

Moura et al. 2013, Ott et. al.2016), coastal water pollution (Moura et al. 2013, Ott et al. 2016), noise 47 

pollution (Rossi-Santos 2015), and activities related to the oil industry (Iversen et al. 2009, Martins 48 

et al. 2013, Ronconi et al. 2015, Rossi-Santos 2015, Brasil 2017a). Specifically, there is an increasing 49 

interest for oil and gas production activities in the area; according to the Brazilian National Agency 50 

of Petroleum, Natural Gas and Biofuels (Agência Nacional do Petróleo, Gás Natural e 51 

Biocombustíveis, ANP) the majority of the Brazilian petroleum reserves is found in the marine 52 

environment (Brasil 2017a). 53 

Human-related activities in the area are expected to increase and negative interactions with 54 

humpback whales are likely to become more frequent (Andriolo et al. 2010, Martins et al. 2013). 55 

Existing marine protected areas (MPAs) alone provide very limited effective protection in the 56 

breeding grounds for this population, because they only cover a small fraction of the range of these 57 

whales (Castro et al. 2014). Therefore, a broad understanding of their distribution patterns and habitat 58 

use is fundamental to inform management actions. Area-based management, with the objective of 59 

protecting this charismatic flagship species, may also enhance biodiversity protection, because 60 

populations occupy relatively large and biodiversity-rich marine habitats. 61 

For seasonal migratory animals such as many baleen whale species, the environmental factors 62 

expected to be important in habitat selection differ between feeding areas, where prey distribution is 63 

the primary driver (e.g., MacLeod et al. 2004, Friedlaender et al. 2006), and breeding areas (Corkeron 64 

& Connor 1999). During the breeding season, large whales select habitat according to their breeding 65 

status (Rayment et al. 2015), presence of calves in groups (Cartwright et al. 2012) and other 66 
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reproduction-related characteristics (Ersts & Rosenbaum 2003, Craig et al. 2014, Lindsay et al. 2016).  67 

In this context, sheltered waters, bathymetric features, distance to the shore and sea-surface 68 

temperature (SST) are important factors for habitat usage of humpback whales in breeding areas (e.g., 69 

Taber & Thomas 1982, Smultea 1994, Rasmussen et al. 2007, Felix & Botero-Acosta 2011, 70 

Cartwright et al. 2012, Trudelle et al. 2016). Understanding and explaining key features of the ecology 71 

of migratory whale populations, such as habitat use, distribution and abundance, may provide 72 

important information to evaluate the impacts of human use of the environment inhabited by them. 73 

WSA humpback whales are found in their breeding area, the Brazilian continental shelf 74 

between Natal (5°S) and Cabo Frio (23°S) (Fig. 1), during winter and spring every year, and animals 75 

concentrate on the Abrolhos Bank (~18oS) (Zerbini et al. 2006, Andriolo et al. 2010). The few 76 

previous studies that formally investigated their distribution relative to environmental variables 77 

(Wedekin 2011, Pavanato et al. 2017), or how they use the available habitat (Martins et al. 2001), 78 

indicate that bathymetric features (i.e., depth) may play an important role in how WSA whale groups 79 

are distributed. 80 

Here we provide new insights into the distribution and density of WSA humpback whales in 81 

relation to environmental features in their breeding grounds, and present new abundance estimates 82 

for this population. We applied density surface models (DSMs) to line transect data (Miller et al. 83 

2013) from ship-based surveys conducted in 2008 and 2012 (Bortolotto et al. 2016a) and fitted spatial 84 

models focusing on two main objectives: (1) to investigate habitat use and (2) to calculate model-85 

based abundance estimates. 86 

The new information should inform management actions to conserve humpback whales on their 87 

Brazilian breeding grounds. More specifically, new abundance estimates may be used to update this 88 

population’s conservation status, and the distribution results to evaluate areas where this population 89 

may be at higher risk of being affected by human-related activities, such as oil and gas exploration 90 

and production activities.  91 

METHODS 92 

Shipboard visual line transect surveys were conducted in 2008 and 2012 during research cruises 93 

aboard the R/V Atlântico Sul (Universidade Federal do Rio Grande, FURG). Cruises were part of the 94 

Monitoring Whales by Satellite Project (Projeto Monitoramento de Baleias por Satélite, PMBS). 95 

PMBS main objectives were to deploy satellite-link tags on humpback whales to track their 96 

movements, to understand their space-use patterns in breeding and feeding grounds and characterize 97 

their migratory routes (Zerbini et al. 2006). 98 

The survey area corresponded to the Brazilian continental shelf, between the shore and the shelf 99 

break (defined here as up to the 500 m isobath) from Cabo de São Roque (5°S), in Rio Grande do 100 
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Norte State, to Cabo Frio (23°S), in Rio de Janeiro State (Fig. 1). Surveys were conducted from 25 101 

August to 23 September in 2008 and from 7 August to 3 September in 2012, during the expected 102 

annual peak of occurrence of humpback whales in the area (August–September; Martins et al. 2001, 103 

Morete et al. 2003). Lines were designed to survey the full extent of this population’s breeding area 104 

and data collection followed the distance sampling methodology (Buckland et al. 2001). Trackline 105 

design, observation effort and data collection details are described in previous work (Bortolotto et al. 106 

2016a, Bortolotto et al. 2016b). 107 

Correcting for imperfect detection: detection function modelling  108 

We used a detection function to correct for whales that were not detected when lines were surveyed 109 

(Buckland et al. 2001). Because other large whale species where rarely seen during the survey, 110 

sightings that were attributed to “unidentified large whales” were pooled with those of confirmed 111 

humpback whales. It is very unlikely that unidentified whale sightings were not of humpback whales, 112 

as discussed in Bortolotto et al. (2016a). 113 

Detection functions were fitted to perpendicular distance data using R (version 3.2.1; R Core 114 

Team 2015) and “Distance” package (version 0.9.6; Miller 2016). Factor covariates sea conditions  115 

(“calm” for Beaufort 0–3 and “moderate” for Beaufort 4–6), detection cue (splash, body, blow or 116 

“other”), detection method (binoculars or naked eye) and year (2008 or 2012), and the continuous 117 

covariate group size (from 1 to 7) were considered. Variance in the detection function parameters was 118 

estimated using Fisher’s information matrix (Buckland et al. 2001, p. 61–68). 119 

Data for spatial modelling 120 

Survey tracklines were divided into 8 km segments using QGIS software (version 2.8.3; QGIS 121 

Development Team 2015). Standard segment length was chosen to be twice the truncation distance 122 

(= 4 km), resulting in 8 by 8 km squares for most segments. During line segmentation, some segments 123 

at the end of lines were shorter than 8 km. In those cases, segments less than 4 km long were merged 124 

with the previous one and those longer than 4 km were considered as an independent new segment. 125 

A few segments (5 out of 516) that were less than 4 km long, and that could not be merged with 126 

another line, were excluded from the analysis. The response variable used to model whale distribution 127 

was the whale counts in each segment, which were corrected using the detection function described 128 

above. 129 

Based on previous studies on the distribution of cetaceans in breeding areas and environmental 130 

data availability, covariates considered as potential explanatory variables were: current speed close 131 

to the surface, depth, distance to coast, distance to the shelf break, SST, seabed slope, wind speed at 132 

the surface, geographic position (northing and easting) and year (Table 1). Additionally, to represent 133 

a combination of environmental conditions that may be related to energy saving for the calf, six 134 
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categories for shelter (Table 1) were created by combining three categories of wind speeds at the 135 

surface (“light” for values between 0.94 and 5.15 m s-1; “moderate” for values between 5.15 and 136 

6.67 m s-1; “strong” for values between 6.67 and 9.16 m s-1) and two categories of SST (“cold” for 137 

values between the minimum of 20.2° and 24.7°C; “warm” for values between 24.7° and the 138 

maximum 26.9°C). The wind and SST categories were delimited by quantiles of wind speed (33rd 139 

percentile = 5.15 m s-1 and 66th percentile = 6.67 m s-1) and SST (median = 24.7oC). 140 

Values for depth were extracted from the global model of land topography and ocean 141 

bathymetry ETOPO1 (Amante & Eakins 2009). Circular buffers (radius = 4 km) were created around 142 

segment midpoints in QGIS and the average of depth values within the buffer zone was computed for 143 

each segment. This procedure was adopted because the resolution of ETOPO1 was much finer than 144 

the size of segments and buffers (between 13 and 16 ETOPO1 cells were included in the 50 km2 145 

buffers and used to compute mean depth values). After mean depth values extraction, 25 out of 511 146 

segments gave values greater than 500 m and were excluded from the analysis because the study area 147 

was previously defined as the continental shelf, from the shore up to the 500 m isobath. Slope values 148 

were derived from ETOPO1 data and were obtained in the same way, i.e., extracting mean values 149 

using the same circular buffers. 150 

Distances to physical features (distance to coast and distance to shelf break) were calculated in 151 

QGIS or R as the shortest distance between the segment midpoint and the feature. For the distance to 152 

coast variable, the Brazilian coastline was obtained from a shapefile provided by SisCom (IBAMA 153 

2011). To represent the continental shelf break, the 500 m isobath was generated from ETOPO1 in 154 

ArcGIS software using the “contour tool” function (Esri 2011). 155 

SST was extracted from “MUR Global Foundation Sea Surface Temperature Analysis” dataset 156 

(JPL MUR MEaSUREs Project 2010) and ocean currents from “OSCAR” dataset (ESR 2009), both 157 

available from PO.DAAC/NASA website. Wind speed data were extracted from “ERA-Interim” 158 

dataset (ECMWF; Dee et al. 2011). With the exception of SST, the resolution of these datasets was 159 

too coarse when compared to the size of the circular buffers, so segment midpoints were used to 160 

extract covariate values in R software (“raster” package; Hijmans 2016). For SST, the circular buffers 161 

previously described were used to obtain mean values (around 40 SST values per buffer).  162 

Spatial models and model selection 163 

An initial investigation was performed to assess correlation among explanatory variables, and those 164 

that were highly correlated (i.e., a pair of variables that presented Pearson’s correlation coefficient 165 

greater than 0.7, or clear correlation identified via pair plots) were not included in the same model at 166 

the same time. Interaction terms, combining year and other covariates, were not tested because part 167 

of the study area was not surveyed in 2012, which would make the comparison severely unbalanced. 168 
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The quasi-Poisson distribution with logarithmic link function was assumed for the response 169 

variable (negative binomial and Tweedie distributions were also tested). An offset of ln(segment 170 

length) was included in all models. Generalized Additive Models (GAMs) were fitted using the “dsm” 171 

R package (version 2.2.14; Miller et al. 2017). Smooth functions were fitted to covariates, with a 172 

bivariate smooth for geographic position, since this included easting and northing. The basis 173 

dimension parameter k for the geographic position smooth term was set to 20, and for the univariate 174 

smooth terms it was set to 8 (see Wood 2006, p. 161, for an explanation on setting the dimension 175 

parameter).  Model selection was conducted using a forward approach (i.e., adding one variable at a 176 

time), starting with a set of models, each with only one candidate explanatory variable. The model 177 

selected at each step was chosen by looking for an improvement in the Restricted Maximum 178 

Likelihood (REML) (Harville 1977) score. This score was used to minimize problems with parameter 179 

estimation that other potential scores (e.g., UBRE and GCV) may present when applying DSMs, 180 

following the recommendation in Miller et al. (2013). The auto-correlation in the residuals (ordered 181 

by the time of data collection) of spatial models was checked using the “acf” function (“stats” R 182 

package; R Core Team 2015). Model performance was assessed with model diagnostic plots (function 183 

“gam.check”, “dsm” R package) and 10-fold cross validation (Refaeilzadeh, Tang & Liu 2009). 184 

Two modelling exercises were undertaken, each considering a different set of covariates and 185 

having different objectives: 186 

1. Habitat Use Model (HUM): to explain habitat use in a way that could be interpreted 187 

biologically. All variables, except geographic position (northing/easting), were considered; 188 

2. Abundance Estimation Model (AEM): to compute abundance estimates from the spatial 189 

model and all available variables were considered. 190 

The HUM was designed to investigate which environmental variables were more related to 191 

distribution, while the AEM was designed to obtain the best density surface prediction, possibly 192 

including northing/easting, which could explain variability that was not explained by the 193 

environmental covariates. 194 

Predictions 195 

A prediction grid formed by 8 by 8 km cells was created over the entire study area using QGIS. The 196 

size of the prediction grid cells was chosen to match that of the segments used in the models. 197 

Covariate values for each grid cell were obtained in a similar way of that described for segments, 198 

using cell midpoints or 4 km buffers around midpoints. For covariates that varied in time within each 199 

survey (e.g., SST), the mean of values for the survey period was used for predictions. 200 

 The model-based abundance estimates for 2008 and 2012 were obtained from the sums across 201 

all grid cells of predicted values from the AEM, for each year. Maps showing patterns of distribution 202 
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(density surface) were created using the AEM predictions in QGIS. Variances were obtained with the 203 

delta method, combining the variance from the detection function and the spatial models, using the 204 

“dsm.var” function of the “dsm” R package. Maps of uncertainty in model predictions (standard 205 

deviation surface) were also created with the variance calculated for each grid cell (Fig. S6). 206 

Predictions in 2012 were extrapolated to the area to the north of Salvador (~13°S), which was not 207 

surveyed in 2012 (Fig. 1) because of poor weather conditions (Bortolotto et al. 2016a). 208 

RESULTS 209 

Survey effort used in the analysis totaled 2,350 km in 2008 and 1,700 km in 2012. The number of 210 

whale groups (including mother-calf pairs and solitary animals) in the data was 493 (416 humpbacks 211 

and 77 unidentified large whales) and 737 (557 humpbacks and 180 unidentified large whales) in 212 

2008 and 2012, respectively.  213 

Detection function 214 

Perpendicular distances were truncated at 4 km, resulting in 81 (out of 1230) detections being 215 

excluded from the detection function analysis. The best-fitting detection function was a hazard rate 216 

model with covariates cue, year and sea conditions  (Fig. 2; Table S1). The average probability of 217 

detection p was estimated as 0.482 (CV = 0.044) and the goodness of fit tests showed a good fit 218 

(Kolmogorov-Smirnov test statistic = 0.016, p-value = 0.930; Cramer-von Mises test (unweighted) 219 

statistic = 0.036, p-value = 0.952). 220 

Spatial models 221 

Model diagnostics (Fig. S1 and S2) indicated the quasi-Poisson distribution to be adequate and to 222 

provide a better fit than the other distributions that were considered. Cross-validation yielded root-223 

mean-square errors of 6.932 (SD = 1.116) for 2008 and 7.981 (SD = 0.967) for 2012 (Table S7). SST 224 

was found to be highly correlated with geographic position. Depth, slope and distance to the shelf 225 

break were also correlated to each other. Therefore, if one of the above variables was selected at a 226 

model selection step, those correlated were not considered in subsequent steps of model selection. 227 

The selected HUM included variables distance to the coast, distance to the shelf break, SST, 228 

current speed and shelter, and presented 54.1% of deviance explained. The variable with the most 229 

pronounced effect was SST, with a peak around 24–25oC (Fig. 3). Whale density was positively 230 

related to distance to the coast and distance to the shelf break, but negatively related to current speed, 231 

apparent from around 0.2 m s-1 and greater. Shelter coefficients indicated differences in whale 232 

densities between shelter categories, with significantly (at α = 0.05) higher densities in relatively cold 233 

waters with light winds  (Table 2; Tables S2 and S3). 234 
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The selected AEM included variables distance to the coast, distance to the shelf break, current 235 

speed, shelter and geographic position, and had an explained deviance of 66.8%. This model was 236 

used for plotting purposes here, because this model presented a larger portion of explained deviance 237 

and the distribution patterns are likely better represented. Very weak signs of auto-correlation were 238 

found in the residuals of HUM and no signs of auto-correlation were present in the residuals of AEM 239 

(ACF plots; Fig. S1 and S2). 240 

Abundance estimates 241 

Estimated abundances for prediction grid cells ranged from 0.139 to 53.0 animals (mean = 7.47, 242 

SD = 8.90) in 2008 and from 0.144 to 60.9 animals (mean = 10.7, SD = 12.7) in 2012.  Model-based 243 

abundance estimates were 14,264 whales (CV = 0.084) for 2008 and 20,389 (CV = 0.071) for 2012 244 

(Table S6). Surface maps for predicted density showed higher numbers in the Abrolhos Bank region, 245 

with a concentration area to the south of the Abrolhos Archipelago, which was more pronounced for 246 

2012 (Fig. 4). Other areas also showed relatively high densities, such as the coast of Alagoas and 247 

Sergipe States (Fig. S4), and near the city of Salvador, Bahia State (Fig. S5). 248 

DISCUSSION 249 

Systematically collected sightings data were used to model the distribution and abundance of 250 

humpback whales in their wintering areas off the coast of Brazil. The suite of environmental 251 

covariates tested included powerful predictors of whale density across the study area, with SST and 252 

geographic position being the most powerful explanatory terms. The effect of year was not selected 253 

in the spatial models, suggesting that differences in the distribution patterns from 2008 to 2012 were 254 

better explained by the variation in the spatial covariates than by temporal changes between survey 255 

years.  256 

These sighting data were previously used to estimate abundance of humpback whales off the 257 

coast of Brazil in 2008 and 2012 using design-based methods (Bortolotto et al. 2016a). However, the 258 

realized effort in that study did not conform exactly to the designed lines. For example, because of 259 

unfavorable weather conditions in 2012, there were no data available for areas to the north of 260 

Salvador, Bahia State (Fig. 1). Consequently, the abundance estimate previously presented for that 261 

year was computed for only part of what is currently known to be the typical breeding area for WSA 262 

humpback whales. Because of logistical restrictions, our results likely represent WSA humpback 263 

distribution during the annual peak of their occurrence in the area (August–September) and it is not 264 

possible to infer intra-season variations. 265 

Migratory whales show marked differences in habitat preferences according to different age 266 

classes, sexes, reproductive-related individual characteristics and/or group composition (Best 1990, 267 

Craig & Herman 2000, Martins et al. 2001, Ersts & Rosenbaum 2003, Elwen & Best 2004a, Oviedo 268 
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& Solis 2008, Cartwright et al. 2012, Craig et al. 2014, Rayment et al. 2015, Lindsay et al. 2016), and 269 

for specific group types (Elwen & Best 2004b, Felix & Botero-Acosta 2011) when in breeding areas. 270 

However, the passing mode data collection procedure adopted here prevented obtaining more specific 271 

data on individual whales, such as sex, age class or accurate group composition. Because of this, 272 

results presented here are representative of the population as a whole, not of any particular sex, age 273 

or group. Although some of the results may be consistent with what could be expected for habitat 274 

preferences of breeding or/and calving animals in the area, such as the importance of shelter as a 275 

predictor of density, it is not possible to make robust inferences for specific reproductive stages. A 276 

study to investigate the distribution and habitat use of WSA humpback whales based on data from 277 

satellite tagging of individual whales (Zerbini et al. 2006) is underway, which is expected to provide 278 

information on predictors of distribution and habitat use in relation to sex and group composition. 279 

Because the procedure of attaching tags requires close proximity to the animals, collection of 280 

individual and group information is possible at the moment of tagging. 281 

Spatial modelling 282 

The covariates retained in the models explained a high portion of the variation in whale density across 283 

the surveyed area (deviance explained = 54.1% for HUM; 66.8% for AEM). In addition to this 284 

increase in explained deviance, in the AEM the residual auto-correlation in the HUM (“ACF” plots; 285 

Fig. S1 and S2) was no longer apparent (although the auto-correlation in the residuals of the HUM 286 

was not high and required no further action; see Wood 2006 for concerns about residual auto-287 

correlation of GAMs). It is likely, therefore, that the bivariate smooth for easting/northing included 288 

in the AEM is acting as a proxy for unmodelled environmental or social characteristics. For example, 289 

because it was highly correlated with SST, which was not included in the AEM, easting/northing may 290 

be representing not only SST but also some other environmental feature(s). This may explain the 291 

increase in percentage of explained deviance when SST is substituted by easting/northing in the 292 

AEM. 293 

Shelter (a combination of SST and wind speed) was created as an environmental feature that 294 

could be important to whales that are calving, for example to represent conditions that may be related 295 

to energy saving for the calf (Corkeron & Connor 1999). Because the effects of wind speed on 296 

detectability have been accounted for in the estimation of detection probability, no confounding with 297 

the effects of wind in the shelter variable is expected. The response variables in the detection function 298 

model and the habitat use/abundance estimation spatial models are completely different; in the 299 

detection process it is the perpendicular distance (in relation to the trackline) and in the spatial models 300 

the response variable is abundance (corrected count per segment). Furthermore, wind speed may 301 

influence both the detectability of animals and how animals use their habitat, which is supported by 302 
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the present results. Indeed, a major advantage of density surface modelling using data from distance 303 

sampling surveys is that the effects of variables on detectability and on abundance can be teased apart. 304 

The density surface modelling approach permitted inference and extrapolation from the AEM 305 

to the area not surveyed in 2012 by Bortolotto et al. (2016a), resulting in a 2012 abundance estimate 306 

for a larger part of the breeding ground distribution than would otherwise be available. The lack of 307 

data to the north of Salvador in 2012 implies that the effect of the bivariate smooth for 308 

easting/northing on the predictions for that area is largely influenced by data from 2008. However, 309 

the other variables retained in the model were responsible for the large majority of the explained 310 

deviance, as illustrated by the percentage of explained deviance of the HUM (54.1%), so this is not 311 

considered to be an important limitation for our inferences about abundance. 312 

Model-based abundances for humpback whales breeding off the coast of Brazil (14,264, 313 

CV = 0.084 for 2008; 20,389, CV = 0.071 for 2012) were estimated to be close to those computed by 314 

design-based methods (16,410, CV = 0.228 for 2008; 19,429, CV = 0.101 for 2012; Bortolotto et al. 315 

2016a). This similarity could be expected because both estimates are derived from the same data. The 316 

higher precision in the model-based abundance estimates (CV = 0.084 vs 0.228 for 2008; CV = 0.071 317 

vs 0.101 for 2012) is mainly because the covariates explained some of the variability in the data, 318 

demonstrating the value of the analysis. 319 

Habitat use 320 

The main reasons for SST to be considered an important factor in explaining the distribution of 321 

migratory whales in their breeding grounds are likely related to presence of calves, which are not as 322 

efficient in conserving their body temperature as older animals (Corkeron & Connor 1999). SST was 323 

the most important variable selected in the HUM and it was highly correlated with geographic 324 

position (northing/easting). The overall relation between whale density and SST was positive, 325 

peaking at 24 to 25°C. This result for SST may reflect habitat selection of calving females for the 326 

reason stated above. The habitat use of North Atlantic right whales in their calving grounds off south-327 

eastern United States was also observed to be strongly related to SST (Keller et al. 2006), however 328 

differences in species characteristics (e.g., latitudinal range) should be taken into account in any 329 

comparison. Trudelle et al. (2016) did not find a relationship between SST and humpback whale 330 

movements in their Madagascar coastal breeding area, possibly because of the relatively low variation 331 

in SST in the area. Although a temporal change in distribution was not supported by our models, long 332 

term monitoring should provide important insights on this, as the effects of climate change (Walther 333 

et al. 2002), for example,  may impact the distribution of marine animals. 334 

Shelter, which incorporated SST, was consistently retained in our spatial models and therefore 335 

can be considered an important factor to explain this population’s distribution in the breeding area. 336 
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The fitted relationship for this covariate suggests that relatively slow and moderate surface winds had 337 

a significant positive effect on density, when the water was relatively colder. Because wind speed 338 

was not selected in the spatial models, our results suggest that wind may be an important habitat 339 

feature for WSA humpback whales only when the water temperature is relatively cool. A possibility 340 

is that, because temperature is one of the most important features for these animals in the area, they 341 

tolerate a range of wind speeds that is not their preferred, when the SST is relatively warmer. As 342 

mentioned above, because calves may benefit from an environment where they can save body energy 343 

reserves, calm conditions at the water surface are likely preferable for calves to swim and to surface 344 

to breathe (Taber & Thomas 1982, Cartwright et al. 2012). At a daily scale study of habitat use, Felix 345 

& Botero-Acosta (2011) found that mother-calf humpback whale pairs in Ecuador preferred 346 

shallower waters during the afternoon hours, when wind speeds in the area tended to increase and the 347 

sea to become rougher. The combination of water temperature and wind at the surface seems to be an 348 

important factor for WSA humpback whale habitat selection in breeding grounds. Rayment et al. 349 

(2015), to the best of our knowledge, was the only study that incorporated a variable to explicitly 350 

represent shelter in habitat use models for breeding migratory whales. These authors investigated the 351 

influence of shelter in breeding right whales distribution and found that wave exposure and distance 352 

to shelter (defined as areas with lower wind exposure) influenced habitat selection of right whale 353 

groups with calves.  354 

It is still unclear which environmental features really represent shelter for breeding whales and 355 

how this may vary among different species. Martins et al. (2001) showed that the occurrence of WSA 356 

humpback whales groups containing calves increased with the proximity to the Abrolhos 357 

Archipelago, which may represent shelter for these animals, with the archipelago presence perhaps 358 

creating a calmer environment. Also, Zerbini et al. (2004) observed that WSA mothers-calf groups 359 

were more frequently found closer to the shore than other group types off the north-eastern coast of 360 

Brazil. Our results add to this discussion of which environmental variables may combine to create a 361 

sheltered environment that benefits migratory whale species in their breeding grounds. While several 362 

other covariates could have been included or combined to create a spatial covariate to represent shelter 363 

(e.g., speed and direction of ocean currents), the simple combination that we present here for shelter 364 

permits easy interpretation of model results. A complicated combination of several covariates would 365 

likely produce results that would be difficult to interpret biologically. 366 

The relationships between whale density and environmental covariates revealed by our models 367 

are consistent with what could be expected for mothers, which may prefer a secure environment for 368 

the development of their calves in sheltered waters. However, Trudelle et al. (2016) noted that while 369 

the movements of female humpback whales in a breeding area off the Madagascar coast are 370 

influenced by environmental features such as depth and distance to the shore, male movements are 371 
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probably more influenced by social factors, such as female occurrence. Despite the fact that their 372 

distribution may also be influenced by the presence of other males (Herman 2017), adult males are 373 

indeed likely to seek receptive females, not those that are about to or have just given birth. Calving 374 

females may prefer shallow waters where the chances of being harassed by males are lower; their 375 

habitat selection may be driven primarily by avoidance of males (Craig et al. 2014). Humpback whale 376 

groups containing calves have been found significantly more frequently in shallower waters than 377 

groups without calves in Brazilian breeding grounds (Martins et al. 2001, Zerbini et al. 2004). Thus, 378 

bathymetric features may also be related to what may represent shelter for the whales. 379 

Overall, this discussion highlights the importance of having data on the sex and reproductive 380 

status of individuals and not only on environmental features to understand the distribution of large 381 

whales in breeding areas. For example, we did not consider bathymetry as part of shelter to facilitate 382 

interpretation of results, but if such individual data were available it could be informative to 383 

investigate a wider range of covariate combinations representing shelter in models of habitat use. 384 

Future studies could also investigate in detail the conditions of the marine environment in areas 385 

surrounding the Abrolhos Archipelago. For example, the presence of coral reefs may be related to (or 386 

contribute to) shelter from rough water (Lindsay et al. 2016). 387 

The positive relationship between whale density and distance to both the coast and the 388 

continental shelf break could mean that humpback whales off the coast of Brazil prefer to be in the 389 

middle part of the shelf, or that they prefer to avoid the shelf boundaries. Trudelle et al. (2016) 390 

suggested that the distance to the coast was one of the most important factors affecting the movement 391 

patterns of female humpback whales off the Madagascar breeding grounds and other studies have 392 

shown that calving humpback whales are associated with areas close to the shore (Martins et al. 2001, 393 

Zerbini et al. 2004, Felix & Botero-Acosta 2011). Avoidance of the shelf edge could be in response 394 

to the risk of predation by large predators in offshore waters, such as large shark species (Smultea 395 

1994). Areas too close to the shore could be avoided because they are too shallow for swimming 396 

(Oviedo & Solis 2008) or because of disturbances that were not considered here, such as noise from 397 

human activities. 398 

The estimated negative effect on predicted whale numbers of current speeds greater than 0.2 m 399 

s-1 is not very well supported by the data (95% confidence interval widens with increasing current 400 

speed). In a study that supports the importance of the current for large whales in breeding areas, 401 

Trudelle et al. (2016) found that differences in current speed between shelf and oceanic waters 402 

influenced the movement patterns of humpback whales in their Madagascar breeding area. Whales 403 

of both sexes swam faster in slower currents and the authors suggest that when animals are engaged 404 

in mate-searching-related movements close to the coast, the current speed probably did not have an 405 

important effect. Therefore, it is likely that data on the behavioral status and/or movements of 406 
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individual animals are needed to better understand the effects of current speed on habitat use of 407 

humpback whales off Brazil. In addition, the resolution of this covariate (5-day bins and 0.33x0.33° 408 

of latitude/longitude; Table 1) was likely unable to capture fine scale variability, particularly around 409 

complex coastlines. 410 

Implications for conservation and management 411 

The predicted distributions support previous work showing that WSA humpback whales have a strong 412 

preference for the Abrolhos Bank region during their breeding season in coastal waters of Brazil 413 

(Siciliano 1997, Andriolo et al. 2010, Wedekin 2011, Martins et al. 2013, Pavanato et al. 2017). 414 

However, other areas also had relatively high predicted densities, such as near Salvador and off the 415 

coasts of Sergipe and Alagoas States (Figs. S4 and S5). Little is known about their distribution or 416 

habitat use in these areas (Zerbini et al. 2004, Baracho-Neto et al. 2012), but relatively recent 417 

observations indicate that the distribution of WSA humpback whales in Brazil may be broader than 418 

currently recognized (e.g., Wedekin et al. 2014, Bortolotto et al. 2016c, Pavanato et al. 2017). 419 

The Abrolhos Archipelago is included in the Abrolhos Marine National Park, which is a 420 

national “Conservation Unit” (abbreviated as UC in Portuguese) area of 880 km2 (ICMBio 2017). 421 

According to the Brazilian Ministry of Environment (Brasil 2017b) this is a federal UC of “integral 422 

protection” where only scientific research and educational, recreational and small-scale ecotourism 423 

activities are permitted. All of these activities are regulated by the Chico Mendes Institute for 424 

Biodiversity Conservation (ICMBio), the federal body responsible for protected areas in Brazil. 425 

Commercial activities are therefore mostly limited to those related to small-scale ecotourism. The 426 

nearby Environmental Protection Area of Ponta da Baleia is regulated by the Bahia State and is in the 427 

category of “sustainable use area” (INEMA 2017). These protected areas cover a very small portion 428 

of the area predicted to have the highest concentration of animals (Fig. 5). Our results support the 429 

conclusions of Castro et al. (2014) who used satellite tracked movement data to show that MPAs only 430 

cover a very small portion of the areas most used by WSA humpback whales in their breeding 431 

grounds.  432 

The Abrolhos Bank is a region of high biodiversity (Werner et al. 2000) and expanding the area 433 

under protection could benefit not only cetaceans but also other marine organisms, such as the unique 434 

coral reefs in the area (Francini-Filho & Moura 2008). Because most humpback whale births are 435 

expected to occur on or near Abrolhos Bank (Martins et al. 2001), expanding the protected area during 436 

the period when whales are present consistently (winter–spring), could reduce the risk of 437 

anthropogenic impact especially for calves that are known to be more vulnerable to disturbance 438 

(Schaffar et al. 2013). To conserve marine species in the area, past management actions have included 439 

the cancellation of seismic activity on the Bank during humpback breeding season and other oil and 440 
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gas exploitation activities (Engel et al. 2004, Marchioro et al. 2005). However, there is increasing 441 

interest from the oil and gas industry to explore for oil on the Bank (Brasil 2017a). Because young 442 

animals are more vulnerable to stressors (Schaffar et al. 2013, Ott et al. 2016, Dunlop et al. 2017) and 443 

we did not include group composition in this study, future studies aiming to provide information for 444 

conservation should investigate the distribution of different group types at a finer scale and include 445 

potentially stressors and displacement factors associated with human presence in the marine 446 

environment, with special attention to the Abrolhos Bank region.   447 

 Abundance estimates presented here (14,264, CV = 0.084 for 2008 and 20,389, CV = 0.071 448 

for 2012) provide additional confirmation that the WSA humpback whale population is growing 449 

(Zerbini et al. 2011). A new population status assessment in the framework of Zerbini et al. (2011) is 450 

currently underway, which will take the present results and new catch history data (Morais et al. 451 

2017) into account to provide an updated understanding of this population’s recovery, more than four 452 

decades after whaling ceased in 1973 in this area.  453 

Going forward, it is important that efforts to monitor potential threats are intensified, because 454 

our current knowledge on this is very limited (Bezamat et al. 2015, Bortolotto et al. 2016c, Ott et al. 455 

2016). To evaluate adequately the need for improvement or adjustment of current conservation 456 

strategies and management actions, such as enhancing protection in the area (Castro et al. 2014), it is 457 

essential to assess the conservation status of WSA humpback whales and to take into account the 458 

current and future potential impacts on the population. The distribution results presented here may 459 

also be used in evaluating areas of higher risk for this population by investigating sources of impact 460 

by human-related activities in the areas predicted to be most used by the animals. 461 
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     669 
Fig. 1. Survey lines in 2008 and 2012. Planned (dashed grey lines) and completed effort (black thick lines) are 670 

shown. A black triangle indicates the location of the Abrolhos Archipelago.  671 
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 672 
Fig. 2. Detection function curve (red line) from a hazard rate model fitted to the perpendicular distances (in 673 

meters) of humpback whale groups detected. Different dotted curves represent different combinations of 674 

covariates sea conditions, cue and year. Each point represents the predicted value for observation.675 
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  676 

 677 
Fig. 3. Model terms for the Habitat Use Model (HUM) of humpback whales off the coast of Brazil. Smooth 678 

terms’ effective degrees of freedom are shown inside brackets in the vertical axis. The shelter coefficients are 679 

presented relative to the intercept. (wa = warm SST, co = cold SST, li = light wind, mo = moderate wind, st = 680 

strong wind).681 
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     682 
Fig. 4. Density surface maps for 2008 and 2012. Predictions were made with the Abundance Estimation Model 683 

(AEM)..  684 
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     685 
Fig. 5. Density surface maps for 2008 and 2012 for the Abrolhos Bank region. Predictions were made with the 686 

Abundance Estimation Model (AEM). A black triangle shows the location of the Abrolhos archipelago. Red 687 

polygons represent the Abrolhos Marine National Park and the brown polygon represents the Ponta da Baleia 688 

MPA.  689 
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Table 1. Explanatory variables tested in Generalized Additive Models to model the density of humpback 690 

whales off the coast of Brazil. 691 

Variables Description Resolution* Unit Reference/Data source  

curr.sp Speed of the water 

current close to the 

surface 

5-day; 0.33 x 0.33° 

(latitude x longitude) 

m s-1 OSCAR dataset (ESR 2009)  

depth Depth 0.1 x 0.1° (latitude x 

longitude) 

m ETOPO1 (Amante & Eakins 

2009) 

 

dist.coast Distance to the coastline – m SisCom (IBAMA 2011)  

dist.shelf Distance to the 500 

meter isobath 

– m 500 meter isobath created 

from ETOPO1 in GIS 

software 

 

shelter Category according  to 

values of wind.sp and 

sst 

– – –  

slope Seabed slope: 

percentage of elevation 

over distance 

0.1 x 0.1° (latitude x 

longitude) 

 Derived from ETOPO1   

sst Temperature at the 

surface of the sea 

1-day; 0.011 x 0.011° 

(latitude x longitude) 

°C JPL-L4UHfnd-GLOB-MUR 

dataset (JPL MUR 

MEaSUREs Project 2010) 

 

wind.sp Speed of wind at the 

surface 

6-hour (the daily mean 

was used); 80 x 80 km 

m s-1 ERA-Interim dataset (Dee et 

al. 2011) 

 

x Easting – m Survey GPS  

y Northing – m Survey GPS  

year Year of survey – year Survey data  

*Spatial and/or temporal resolution, depending on covariate nature. 
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Table 2. Generalized Additive Model results for the HUM (Habitat Use Model) and AEM (Abundance 693 

Estimation Model). Variables are described in Table 1. Effective degrees of freedom for smooth terms are 694 

presented inside brackets. Blank spaces represent variables not selected and a dash represents a covariate not 695 

considered in the model selection. (S = smooth term, F = factor) 696 

Variable HUM AEM 

curr.sp S(3.315) S(3.294) 

Depth   

dist.coast S(2.401) S(5.528) 

dist.shelf S(0.975) S(0.940) 

Shelter F F 

Slope   

Sst S(3.766)  

wind.sp   

x, y — S(15.865) 

year   

   

% Deviance explained 54.1 66.8 

-REML score 718.5 678.0 
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The following supplement accompanies the article  698 

Whale distribution in a breeding area: spatial models of habitat use and abundance of 699 

western South Atlantic humpback whales 700 

Guilherme A. Bortolotto*, Daniel Danilewicz, Philip S. Hammond, Len Thomas, Alexandre N. 701 

Zerbini 702 

*Corresponding author: bortolotto.ga@gmail.com 703 

 704 

Detection function model results 705 

Table S1. Detection function parameters from a hazard-rate key-model fitted to 1149 perpendicular 706 

distance values for humpback whale sightings (data were truncated at 4000 m). Coefficient values 707 

are on the scale of the log link function. The intercept includes terms “cue blow”, “year 2008” and 708 

“sea state calm”. 709 

Scale Coefficients Estimate Standard error 

Intercept 7.097 0.125 

Cue splash 0.535 0.162 

Cue body -0.470 0.164 

Cue “other” 0.363 0.310 

Year 2012 0.291 0.107 

Sea state moderate -0.220 0.107 

  710 
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Habitat Use Model (HUM) results 711 

Table S2. Parametric coefficients in the Habitat Use Model (HUM). (t = t distribution value) 712 

Coefficients Estimate Standard error t p-value 

Intercept -15.704      0.116  -134.819   < 0.001* 

shelter.cold.moderate   -0.473      0.111    -4.272  < 0.001* 

shelter.cold.strong   -1.122      0.271    -4.138  < 0.001* 

shelter.warm.light   -0.760      0.193    -3.942  < 0.001* 

shelter.warm.moderate   -1.140      0.261    -4.364  < 0.001* 

shelter.warm.strong   -0.524      0.242    -2.164    0.031 

*Significant at α = 0.05 

 713 

Table S3. Smooth terms in the Habitat Use Model (HUM). (edf = effective degrees of 714 

freedom, df = degrees of freedom, F = F distribution value)  715 

Smooth terms edf Reference df F p-value 

s(sst)  3.766       7  6.347 < 0.001* 

s(dist.shelf)   0.975       7  5.041 < 0.001* 

s(coast)      2.401       7  4.918 < 0.001* 

s(curr.sp)     3.315       7  2.535 < 0.001* 

*Significant at α = 0.05 
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Abundance Estimation Model (AEM) results 717 

Table S4. Parametric coefficients in the Abundance Estimation Model (AEM). (t = t distribution 718 

value) 719 

Coefficients Estimate Standard error  t p-value 

Intercept   -16.007     0.105  -153.078   < 0.001* 

shelter.cold.moderate   -0.279      0.109    -2.559  0.011* 

shelter.cold.strong   -0.830      0.247    -3.364  < 0.001* 

shelter.warm.light  -0.484      0.148    -3.268  0.001* 

shelter.warm.moderate   -0.532      0.221    -2.402  0.012* 

shelter.warm.strong   -0.470      0.207    -2.272  0.024* 

*Significant at α = 0.05. 

 720 

Table S5. Smooth terms in the Abundance Estimation Model (AEM). (edf = effective degrees 721 

of freedom, df = degrees of freedom, F = F distribution value) 722 

Smooth terms Edf Reference df F p-value 

s(x,y) 15.865 19  9.911   < 0.001* 

s(curr.sp) 3.294       7  4.009  < 0.001* 

s(coast) 5.528       7  4.283  < 0.001* 

s(dist.shelf) 0.940       7  2.155  < 0.001* 

*Significant at α = 0.05 
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Abundance estimates results 724 

Table S6. Summaries of uncertainty in a density surface model (Abundance Estimation Model, 725 

AEM) calculated analytically for GAM, with delta method, for 2008 and 2012. 726 

2008 

Approximate asymptotic confidence interval 

2.5% Mean 97.5% 

12,108 14,264  16,805  

Abundance 

Point estimate 14,264 

CV of detection function 0.044 

CV from GAM 0.071  

Total standard error 1,195 

Total coefficient of variation 0.084 

2012 

Approximate asymptotic confidence interval 

2.5% Mean 97.5% 

17,746 20,389  23,426  

Abundance 

Point estimate 20,389 

CV of detection function 0.044 

CV from GAM 0.056  

Total standard error 1,446  

Total coefficient of variation 0.071 
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Cross-validation results 728 

Table S7. Root-Mean-Squared-Errors (RMSEs) for 10-fold cross-validation of Abundance 729 

Estimates Model (AEM) and Habitat Use Model (HUM). 730 

 Model 

Cross-validation fold AEM HUM 

1 7.429 8.413 

2 7.295 7.185 

3 8.855 8.875 

4 5.517 6.998 

5 6.696 8.046 

6 6.813 7.422 

7 8.271 9.705 

8 6.852 8.563 

9 5.213 6.500 

10 6.382 8.097 

   

Mean 6.932 7.981 

Standard deviation 1.116 0.967 

   731 
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732 

 733 

Fig. S1. Habitat Use Model (HUM) diagnostic plots from “gam.check” R function and auto-734 

correlation regression plot from “acf” function.  735 
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736 

 737 

Fig. S2. Abundance Estimation Model (AEM) diagnostic plots from “gam.check” R function and 738 

auto-correlation regression plot from “acf” function.  739 
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 740 

Fig. S3. Model terms for the Abundance Estimation Model (AEM) of humpback whales off the 741 

coast of Brazil. Smooth terms’ effective degrees of freedom are shown inside brackets in the 742 

vertical axis. The plot for s(x,y) is not included here. The shelter coefficients are presented relative 743 

to the intercept. (wa = warm SST, co = cold SST, li = light wind, mo = moderate wind, st = strong 744 

wind).  745 
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     746 

 747 

Fig. S4. Density surface maps for 2008 and 2012 for the region of Sergipe and Alagoas coasts. 748 

Predictions were made with the Abundance Estimation Model (AEM).  749 
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     750 
 751 

Fig. S5. Density surface maps for 2008 and 2012 for part of the coast of Bahia State. Predictions 752 

were made with the Abundance Estimation Model (AEM).  753 
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     754 
Fig. S6. Standard deviation surface maps for 2008 and 2012. Standard deviations from the 755 

Abundance Estimation Model (AEM). 756 


